Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/7662
Título : | Non-linear parameter estimates from non-stationary MEG data |
Autor : | López Hincapié, José David Castellanos Domínguez, César Germán Barnes, Gareth Robert Baker, Adam Woolrich, Mark W. |
metadata.dc.subject.*: | MEG inverse problem Co-registration Hidden Markov Model Non-stationary brain activity Bayesian comparison |
Fecha de publicación : | 2016 |
Editorial : | Frontiers Media |
Citación : | Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366 |
Resumen : | ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. |
metadata.dc.identifier.eissn: | 166-2453 |
ISSN : | 1662-4548 |
metadata.dc.identifier.doi: | 10.3389/fnins.2016.00366 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
LopezJose_2016_NonlinearParameterEstimates.pdf | Artículo de investigación | 3.38 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons