Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/7662
Título : Non-linear parameter estimates from non-stationary MEG data
Autor : López Hincapié, José David
Castellanos Domínguez, César Germán
Barnes, Gareth Robert
Baker, Adam
Woolrich, Mark W.
metadata.dc.subject.*: MEG inverse problem
Co-registration
Hidden Markov Model
Non-stationary brain activity
Bayesian comparison
Fecha de publicación : 2016
Editorial : Frontiers Media
Citación : Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366
Resumen : ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.
metadata.dc.identifier.eissn: 166-2453
ISSN : 1662-4548
metadata.dc.identifier.doi: 10.3389/fnins.2016.00366
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LopezJose_2016_NonlinearParameterEstimates.pdfArtículo de investigación3.38 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons