Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/12825
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Agudelo, Víctor Alonso-
dc.contributor.authorBaena García, Andrés-
dc.contributor.authorRamírez Malule, Howard-
dc.contributor.authorOchoa Cáceres, Silvia Mercedes-
dc.contributor.authorBarrera Robledo, Luis Fernando-
dc.contributor.authorRíos Estepa, Rigoberto-
dc.date.accessioned2020-01-04T22:19:27Z-
dc.date.available2020-01-04T22:19:27Z-
dc.date.issued2017-
dc.identifier.citationLópez Agudelo, V. A., Baena García, A., Ramírez Malule, H., Ochoa Cáceres, S. M., Barrera Robledo, L. F., & Ríos Estepa, R. (2017). Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Systems. Biology, 11(107), 1-18. https://doi.org/10.1186/s12918-017-0496-zspa
dc.identifier.urihttp://hdl.handle.net/10495/12825-
dc.description.abstractABSTRACT: Background: Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb’s vulnerability and metabolic adaptation have been carried out. Results: A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. Conclusions: This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.spa
dc.format.extent17spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBMCspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución 2.5 Colombia (CC BY 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/co/*
dc.subjectMycobacterium tuberculosis-
dc.subjectAnálisis del plano de fase fenotípica-
dc.subjectModelado metabólico a escala del genoma-
dc.subjectReprogramación metabólica-
dc.titleMetabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infectionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupBioprocesosspa
dc.publisher.groupGrupo de Inmunología Celular e Inmunogenéticaspa
dc.publisher.groupSimulación, Diseño, Control y Optimización de Procesos (SIDCOP)spa
dc.identifier.doi10.1186/s12918-017-0496-z-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1752-0509-
oaire.citationtitleBMC Systems Biologyspa
oaire.citationstartpage1spa
oaire.citationendpage18spa
oaire.citationvolume11spa
oaire.citationissue107spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeLondres, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.description.researchgroupidCOL0008639spa
dc.description.researchgroupidCOL0023715spa
dc.description.researchgroupidCOL0056574spa
dc.relation.ispartofjournalabbrevBMC Syst. Biol.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LopezVictor_2017_Metabolicadaptationtwo.pdfArtículo de investigación3.24 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons