Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/13129
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSanz Vicario, José Luis-
dc.contributor.authorPérez Torres, Jhon Fredy-
dc.contributor.authorMoreno Polo, Germán-
dc.date.accessioned2020-01-14T03:47:47Z-
dc.date.available2020-01-14T03:47:47Z-
dc.date.issued2017-
dc.identifier.citationSanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.022503spa
dc.identifier.issn2469-9926-
dc.identifier.urihttp://hdl.handle.net/10495/13129-
dc.description.abstractABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within themanifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAmerican Physical Societyspa
dc.type.hasversioninfo:eu-repo/semantics/submittedVersionspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleElectronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis setsspa
dc.typeinfo:eu-repo/semantics/lecturespa
dc.publisher.groupGrupo de Física Atómica y Molecularspa
dc.identifier.doi10.1103/PhysRevA.96.022503-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2469-9934-
oaire.citationtitlePhysical Review Aspa
oaire.citationvolume96spa
oaire.citationissue22503spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeEstados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArticulo de investigaciónspa
dc.subject.proposalDescomposición de Schmidtspa
dc.subject.proposalOndas expandidasspa
dc.subject.proposalBases no ortogonalesspa
dc.description.researchgroupidCOL0008441spa
dc.relation.ispartofjournalabbrevPhys. Rev. Dspa
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SanzJose_2017_ElectronicNuclearEntanglement.pdfArticulo de investigación4.22 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons