Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/20175
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Sepúlveda Cano, Lina María | - |
dc.contributor.author | González Benaissa, Aarón Al Rachid | - |
dc.date.accessioned | 2021-06-17T16:01:59Z | - |
dc.date.available | 2021-06-17T16:01:59Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/10495/20175 | - |
dc.description.abstract | ABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection. | spa |
dc.format.extent | 8 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.title | IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models | spa |
dc.type | info:eu-repo/semantics/other | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
thesis.degree.name | Especialista en Analítica y Ciencia de Datos | spa |
thesis.degree.level | Especialización | spa |
thesis.degree.discipline | Facultad de Ingeniería. Especialización en Analítica y Ciencia de Datos | spa |
thesis.degree.grantor | Universidad de Antioquia | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/COther | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Especialización | spa |
dc.subject.unesco | Electronic commerce | - |
dc.subject.unesco | Comercio electrónico | - |
dc.subject.unesco | Artificial intelligence | - |
dc.subject.unesco | Inteligencia artificial | - |
dc.subject.agrovoc | Fraud | - |
dc.subject.agrovoc | Fraude | - |
dc.subject.agrovoc | Illegal practices | - |
dc.subject.agrovoc | Practicas Ilegales | - |
dc.subject.agrovoc | Classification systems | - |
dc.subject.agrovoc | Sistemas de Clasificación | - |
dc.subject.agrovoc | Linked open data | - |
dc.subject.agrovoc | Datos abiertos vinculados | - |
dc.subject.proposal | Fraud detection | spa |
dc.subject.proposal | binary classification | spa |
dc.subject.proposal | imbalanced data | spa |
dc.subject.proposal | dimensionality reduction | spa |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_8139c3d0 | - |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_15682 | - |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_9000017 | - |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_773acdb4 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept11036 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept3052 | - |
dc.relatedidentifier.url | https://github.com/AaronGonzalezB/monografia-especializacion-udea.git | spa |
dc.identifier.url | https://github.com/AaronGonzalezB/monografia-especializacion-udea.git | spa |
Aparece en las colecciones: | Especializaciones de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
AaronAlrachid_2021IEECISFraudPrediction | Trabajo de grado de especialización | 552.34 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons