Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/20659
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorRamos Pollán, Raul-
dc.contributor.authorCeballos Arroyo, Alberto Mario-
dc.date.accessioned2021-07-06T21:38:06Z-
dc.date.available2021-07-06T21:38:06Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10495/20659-
dc.description.abstractABSTRACT : In this work, we first present a methodology for preparing 10 m to 60 m spatial resolution Sentinel-1, Sentinel-2, and ALOS DSM imagery of forest/grassland areas in Colombia to train a DeepLabV3+ convolutional neural network model. Our preprocessing pipeline for the Sentinel-2 imagery comprises cloud and shadow removal, atmospheric correction, and topographical correction, resulting in mostly cloud-free mosaics of tropical areas. At first, we train the network on very low spatial resolution (500 m) labels of the Colombian Amazonas region resampled to 10 m (+100000 samples after augmentation). Then, we fine-tune the network on medium spatial resolution data (30 m) of northern Antioquia, also resampled to 10 m, resulting in faster convergence and higher accuracy despite the limited number of labelled samples (~5000 samples after augmentation). Our results validate recent proposals where low spatial resolution data is used for training neural networks, and motivate us to keep exploring this line of research.spa
dc.format.extent22spa
dc.format.mimetypepdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleA machine learning methodology for land use/land cover classification in tropical areas using medium resolution satellite imagery, case: Colombiaspa
dc.typeinfo:eu-repo/semantics/otherspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameEspecialista en Analítica y Ciencia de Datosspa
thesis.degree.levelEspecializaciónspa
thesis.degree.disciplineFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datosspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.redcolhttp://purl.org/redcol/resource_type/COtherspa
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.subject.unescoRemote sensing-
dc.subject.unescoTeledetección-
dc.subject.agrovocMachine learning-
dc.subject.agrovocAprendizaje electrónico-
dc.subject.agrovocImágenes por satélites-
dc.subject.agrovocSatellite imagery-
dc.subject.agrovocRedes de neuronas-
dc.subject.agrovocNeural networks-
dc.subject.agrovocTratamiento de imágenes-
dc.subject.agrovocImage processing-
dc.subject.proposalDeep Learningspa
dc.subject.proposalSentinel-2spa
dc.subject.proposalConvolutional Neural Networkspa
dc.subject.proposalSatellite Imageryspa
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_49834-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_37359-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_36761-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_37467-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept1557-
dc.relatedidentifier.urlhttps://drive.google.com/file/d/1uYiQiuiUTjwVbnYwZTNRQJpLWR-XFYtc/view?usp=sharingspa
Aparece en las colecciones: Especializaciones de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Ceballos_Alberto_2021_ML_LULC_Colombia.pdfTrabajo de grado de especialización2.02 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons