Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/24588
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorRuiz Álvarez, José David-
dc.contributor.authorArcila Quintero, Norbey-
dc.date.accessioned2021-12-06T14:08:23Z-
dc.date.available2021-12-06T14:08:23Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10495/24588-
dc.description.abstractRESUMEN : Se plantea un modelo para predicción de niveles de riesgos por fallas de rocas en obras subterráneas para la generación temprana de alertas , el desarrollo del proyecto tiene como base la metodología semi-empírica propuesta por Fukuzono (1985), quien identificó una relación entre el tiempo de aceleración de una falla de un material geológico (geomaterial) era inversamente proporcional a la tasa de cambio de la deformación, de lo cual se deriva que el tiempo de falla del geomaterial se puede pronosticar extrapolando la tendencia lineal hacia cero de la gráfica del inverso de la velocidad de deformación contra el tiempo (Fukuzono, 1985). El modelo utiliza el algoritmo de aprendizaje supervisado de Máquinas de Soporte Vectorial para clasificar una serie temporal de datos de deformación de un geomaterial registrados por instrumentos instalados para dicho fin. Dado lo anterior, el volumen de datos para entrenamiento a partir de estos registros es limitado por el número de instrumentos, la cantidad de tiempo registrando lecturas y la cifra y variedad de alarmas reportadas. Por tanto, debió recurrirse a la generación de datos sintéticos que cubriesen el volumen de información requerida para el entrenamiento del modelo, mediante el uso de una ecuación de la curva logística, en su tramo con mayor tasa de cambio. A partir de los datos sintéticos se generan las primeras iteraciones para la puesta en operación del modelo, con cada iteración se definieron distintos parámetros de la implementación de scikit-learn sklearn.svm, buscando los que entregasen un mejor desempeño del modelo. Finalmente, se obtuvieron mejores resultados implementando un modelo de clasificación con un Kernel polinómico de grado 2.spa
dc.description.abstractABSTRACT : A model is proposed for predicting risk levels due to rock failures in underground works for the early generation of alerts, the development of the project is based on the semi-empirical methodology proposed by Fukuzono (1985), who identified a relationship between time of acceleration of a failure of a geological material (geomaterial) was inversely proportional to the rate of change of the deformation, from which it follows that the failure time of the geomaterial can be predicted by extrapolating the linear trend towards zero from the graph of the inverse of the strain rate against time (Fukuzono, 1985), see Ilustración 1. The model uses the supervised learning algorithm of Vector Support Machines to classify a time series of deformation data of a geomaterial recorded by instruments installed for this purpose. Given the above, the volume of data for training from these records is limited by the number of instruments, the amount of time recording readings, and the number and variety of reported alarms. Therefore, it was necessary to resort to the generation of synthetic data that covered the volume of information required for the training of the model, using an equation of the logistic curve, in its section with the highest rate of change. From the synthetic data, the first iterations are generated to put the model into operation. With each iteration, different parameters of the scikit-learn sklearn.svm, implementation were defined, looking for those that delivered a better performance of the model. Finally, better results were obtained by implementing a classification model with a polynomial kernel of degree 2.spa
dc.format.extent37spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleModelo de predicción de alarmas de falla de rocas en obras subterráneas a partir de datos de instrumentación geotécnicaspa
dc.typeinfo:eu-repo/semantics/otherspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameEspecialista en Analítica y Ciencia de Datosspa
thesis.degree.levelEspecializaciónspa
thesis.degree.disciplineFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datosspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellínspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.redcolhttp://purl.org/redcol/resource_type/COtherspa
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.subject.unescoIngeniería geológica-
dc.subject.unescoEngineering geology-
dc.subject.agrovocRiesgo-
dc.subject.agrovocRisk-
dc.subject.agrovocAlgoritmos-
dc.subject.agrovocAlgorithms-
dc.subject.agrovocAnálisis de datos-
dc.subject.agrovocData analysis-
dc.subject.proposalInstrumentación geotécnicaspa
dc.subject.proposalNiveles de alertaspa
dc.subject.proposalMáquinas de vectores de soportespa
dc.subject.proposalDatos sintéticosspa
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_6612-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_295ae038-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_15962-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept611-
Aparece en las colecciones: Especializaciones de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ArcilaNorbey_2021_PredicciónFallaRocas.pdfTrabajo de grado de especialización1.09 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons