Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/25987
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Zabala Orrego, Sandra Patricia | - |
dc.contributor.advisor | Cadavid Betancur, Lixander Felipe | - |
dc.contributor.author | López Castaño, Jose Andrés | - |
dc.date.accessioned | 2022-02-11T22:26:33Z | - |
dc.date.available | 2022-02-11T22:26:33Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/10495/25987 | - |
dc.description.abstract | RESUMEN : La Gerencia de Auditoría de Negocios Corporativos Empresariales, Leasing, Renta y Uso perteneciente a la VAI del grupo Bancolombia, requiere consultar y analizar grandes volúmenes de datos con el fin de realizar diferentes pruebas de auditoría. Tiene la necesidad de crear un tablero de control con el que pueda monitorear el comportamiento financiero de sus clientes, esto con el fin de predecir o anticipar un posible riesgo de crédito. Teniendo en cuenta lo enunciado se propone la creación de un modelo predictivo de Machine Learning, que genere una estimación del riesgo de crédito en una cartera de clientes corporativos y empresariales. Para el desarrollo del proyecto, se tienen en cuenta hitos como: La gestión para obtener los accesos a las fuentes de información, conexión por medio de ODBC a las bases de datos, el diseño de queries que extraen la información financiera de los clientes, el desarrollo de un programa en Python que construye los estados financieros y calcula los indicadores a partir de la información previamente extraída, el análisis descriptivo de las variables e indicadores financieros de los clientes con el fin de reducir la dimensionalidad y descartar variables que se encuentren altamente relacionadas, diseño e implementación del modelo de Machine Learning con los indicadores y alertas financieras de los clientes empresariales y corporativos, Diseño e implementación del reporte para la consulta de los resultados por parte de los auditores y finalmente publicación del manual técnico y de usuario para las personas que se encargan de ejecutar y analizar los resultados en las evaluaciones de auditoría. | spa |
dc.description.abstract | ABSTRACT : The Gerencia de Auditoría de Negocios Corporativos Empresariales, Leasing, Renta y Uso (corporative business, leasing, renting and usage management) belonging to Grupo Bancolombia's VAI needs to consult and analyze large volumes of data in order to carry out different auditing tests. Furthermore, it requires a control dashboard capable of monitoring the financial behavior of their clients, with the intention of predicting or anticipating any possible credit related risk. Taking this into consideration, the creation of a predictive Machine Learning model capable of generating a credit risk estimation on corporative and business clients´ credit portfolios is proposed. The project's development contains certain milestones, such as: Data source access management, ODBC connection to the database, design of queries which will extract the clients´ financial information, development of a Python program capable of building financial states and calculating financial indicators based on the previously extracted data, the descriptive analysis of the variables and financial indicators of the clients in order to reduce the dimensionality and discard variables that are highly related, design and implementation of the ML model with the indicators and financial alerts of the different clients, design and implementation of the auditors´ results report and finally the publishing of the technical user manual for the people in charge of running and analyzing the results of the auditing tests. | spa |
dc.format.extent | 21 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.title | Tablero de indicadores y alertas financieras - negocios corporativos y empresariales. | spa |
dc.type | info:eu-repo/semantics/bachelorThesis | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
thesis.degree.name | Ingeniero de Sistemas | spa |
thesis.degree.level | Pregrado | spa |
thesis.degree.discipline | Facultad de Ingeniería. Ingeniería de Sistemas | spa |
thesis.degree.grantor | Universidad de Antioquia | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.publisher.place | Medellín | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
dc.subject.unesco | Datos estadísticos | - |
dc.subject.unesco | Statistical data | - |
dc.subject.unesco | Finanzas | - |
dc.subject.unesco | Finance | - |
dc.subject.unesco | Programa de ordenador | - |
dc.subject.unesco | Computer software | - |
dc.subject.lemb | Auditoria bancaria | - |
dc.subject.lemb | Bank examination | - |
dc.subject.lemb | Riesgo (finanzas) | - |
dc.subject.lemb | Risk (finance) | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept5835 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept663 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept6081 | - |
Aparece en las colecciones: | Ingeniería de Sistemas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
LopezJose_2022_TableroAlertasFinancieras.pdf | Trabajo de grado de pregrado | 497.73 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons