Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/31908
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.advisorRíos Urrego, Cristian David-
dc.contributor.authorFlórez Flórez, Marco Tulio-
dc.date.accessioned2022-11-08T22:07:59Z-
dc.date.available2022-11-08T22:07:59Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/10495/31908-
dc.description.abstractRESUMEN : En este trabajo se propone un enfoque basado en el aprendizaje por transferencia (del inglés, Transfer Learning, TL), este método consiste en usar y/o ajustar modelos previamente entrenados para mejorar el rendimiento de una tarea objetivo. Su eficiencia radica en el ahorro de tiempo y recursos al no tener que entrenar modelos desde cero. Esta técnica se implementó en la clasificación de cuatro emociones: neutro, enojado, feliz y triste, con el fin de comprender el comportamiento de una persona frente a los acontecimientos que se presentan en un entorno dado. Reconocer las emociones mencionadas anteriormente, resulta de gran utilidad a la hora de realizar aplicaciones dentro de este ámbito, por ejemplo, en el área de la educación, los profesores pueden identificar el nivel de atención de sus alumnos a través de sus expresiones faciales. Otra área de aplicación es la seguridad, donde a partir de cámaras de vigilancia se pueda obtener información útil del estado emocional de una persona, que refleje en sus expresiones posibles amenazas para la seguridad propia o de terceros. Motivados por esto, en este trabajo se propone abordar el problema de clasificación de emociones en rostros implementando tres arquitecturas de redes neuronales convolucionales usando la base de datos FER-2013 para obtener modelos base y emplearlos en el aprendizaje por transferencia hacia la base de datos Cohn-Kanade, esto con el fin de mejorar la eficiencia de los modelos implementados para la clasificación de cuatro emociones: neutro, feliz, triste y enojado. Particularmente, en este trabajo se realizarón 5 experimentos con el fin de comparar y comprobar si la técnica de aprendizaje por transferencia mejora diferentes métricas de desempeño: I Implementación y evaluación de diferentes redes neuronales convolucionales (VGG-16, AlexNet y LeNet) utilizando la base de datos FER-2013. II Implementación y evaluación de redes neuronales convolucionales (VGG-16, AlexNet y LeNet) utilizando la base de datos Cohn-Kanade. III Implementación y evaluación de aprendizaje por transferencia desde los modelos creados con la base de datos FER-2013 para la clasificación de Cohn-Kanade. IV Implementación y comparación de métodos clásicos de clasificación como: máquinas de soporte vectorial (del inglés, Support Vector Machines, SVM), bosques aleatorios (del inglés, Random Forest, RF) y el algoritmo de aumento de gradiente extremo (del inglés, Extreme Gradient Boosting, XGBoost) a partir de representaciones intermedias obtenidas de las CNNs usando la técnica de triple pérdida. V Clasificación biclase a partir del plano de Arousal y Valencia, utilizando métodos clásicos sobre la base de datos Cohn-Kanade. En general los resultados muestran para los distintos experimentos realizados que la técnica de aprendizaje por transferencia incrementa el desempeño de la clasificación de emociones en rostros de personas en comparación a modelos entrenados desde cero. Al igual, se puede observar que la técnica triple pérdida en conjunto con métodos de clasificación clásicos, logran resultados comparables a los obtenidos a partir de redes neuronales profundas.spa
dc.format.extent48spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleAprendizaje por transferencia usando redes neuronales convolucionales para la clasificación de emociones en rostrosspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameIngeniero de Telecomunicacionesspa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Ingeniería de Telecomunicacionesspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín - Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.unescoInteligencia artificial-
dc.subject.unescoArtificial intelligence-
dc.subject.lembTransferencia de información-
dc.subject.lembInformation transfer-
dc.subject.lembCanales de comunicación-
dc.subject.lembCommunication channels-
dc.subject.lembPersonalidad y emociones-
dc.subject.lembPersonality and emotions-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept3052-
Aparece en las colecciones: Ingeniería de Telecomunicaciones

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
FlorezMarco_2022_EmocionTransferenciaRedes.pdfTrabajo de grado de pregrado1.58 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons