Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34247
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRíos Urrego, Cristian David-
dc.contributor.authorMoreno Acevedo, Santiago Andrés-
dc.contributor.authorNöth, Elmar-
dc.contributor.authorOrozco Arroyave, Juan Rafael-
dc.date.accessioned2023-03-27T16:47:23Z-
dc.date.available2023-03-27T16:47:23Z-
dc.date.issued2022-
dc.identifier.citationRíos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27spa
dc.identifier.isbn978-3-031-16270-1-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/10495/34247-
dc.description.abstractABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression.spa
dc.format.extent12spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringerspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleEnd-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Networkspa
dc.typeinfo:eu-repo/semantics/conferenceObjectspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
dc.identifier.doi10.1007/978-3-031-16270-1_27-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1611-3349-
oaire.citationtitleLecture Notes in Computer Sciencespa
oaire.citationstartpage308spa
oaire.citationendpage319spa
oaire.citationvolume13502spa
oaire.citationconferenceplaceBrno, República Checaspa
oaire.citationconferencedate2022-09-06-/2022-09-09spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.type.coarhttp://purl.org/coar/resource_type/c_5794spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ECspa
dc.type.localDocumento de conferenciaspa
dc.subject.decsParkinson Disease-
dc.subject.decsEnfermedad de Parkinson-
dc.subject.decsSpeech Recognition Software-
dc.subject.decsSoftware de Reconocimiento del Habla-
dc.subject.decsMemoria a Corto Plazo-
dc.subject.decsMemory, Short-Term-
dc.subject.lembRedes neurales (computadores)-
dc.subject.lembNeural networks (Computer science)-
dc.description.researchgroupidCOL0044448spa
dc.relation.ispartofjournalabbrevLect. Notes Comput. Sci.spa
Aparece en las colecciones: Documentos de conferencias en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RiosCristian_2022_EndtoEndParkinsonsDisease.pdfDocumento de conferencia1.29 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons