Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34831
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCárdenas Torres, Andrés Mauricio-
dc.contributor.authorUribe Pérez, Juliana-
dc.contributor.authorFont Llagunes, Josep M.-
dc.contributor.authorHernández Valdivieso, Alher Mauricio-
dc.contributor.authorPlata Contreras, Jesús Alberto-
dc.date.accessioned2023-05-05T14:09:54Z-
dc.date.available2023-05-05T14:09:54Z-
dc.date.issued2023-
dc.identifier.citationCárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.spa
dc.identifier.issn0966-6362-
dc.identifier.urihttps://hdl.handle.net/10495/34831-
dc.description.abstractABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence.spa
dc.format.extent7spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleNovel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniquesspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Investigación en Bioinstrumentación e Ingeniería Clínica (GIBIC)spa
dc.publisher.groupRehabilitación en Saludspa
dc.identifier.doi10.1016/j.gaitpost.2023.03.020-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1879-2219-
oaire.citationtitleGait & Posturespa
oaire.citationstartpage125spa
oaire.citationendpage131spa
oaire.citationvolume102spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeOxford, Londresspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsAmputados-
dc.subject.decsAmputees-
dc.subject.decsMiembros Artificiales-
dc.subject.decsArtificial Limbs-
dc.subject.decsTeorema de Bayes-
dc.subject.decsBayes Theorem-
dc.subject.decsFenómenos Biomecánicos-
dc.subject.decsBiomechanical Phenomena-
dc.subject.decsExtremidades-
dc.subject.decsExtremities-
dc.subject.decsMarcha-
dc.subject.decsGait-
dc.subject.decsDiseño de Prótesis-
dc.subject.decsProsthesis Design-
dc.subject.proposalTransfemoral amputeesspa
dc.subject.proposalGround reaction forcespa
dc.subject.proposalNeural networksspa
dc.subject.proposalSupport Vector Machinespa
dc.description.researchgroupidCOL0054963spa
dc.description.researchgroupidCOL0015599spa
dc.relation.ispartofjournalabbrevGait Posturespa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Cardenas_Andres_2023_NovelComputationalProtocol.pdfArtículo de investigación2.59 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons