Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/34949
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Muñetón Santa, Guberney | - |
dc.contributor.author | Manrique Ruiz, Luis Carlos | - |
dc.date.accessioned | 2023-05-10T18:34:59Z | - |
dc.date.available | 2023-05-10T18:34:59Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://hdl.handle.net/10495/34949 | - |
dc.description.abstract | ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging. | spa |
dc.format.extent | 21 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | MDPI | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/co/ | * |
dc.title | Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Recursos Estratégicos Región y Dinámicas Socioambientales | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 2076-0760 | - |
oaire.citationtitle | Social Science | spa |
oaire.citationstartpage | 1 | spa |
oaire.citationendpage | 21 | spa |
oaire.citationvolume | 12 | spa |
oaire.citationissue | 5 | spa |
thesis.degree.discipline | sin facultad - programa | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/CJournalArticle | spa |
dc.type.local | Artículo de revista | spa |
dc.subject.proposal | Multidimensional poverty index | spa |
dc.subject.proposal | Spatial analysis | spa |
dc.subject.proposal | Poverty | spa |
dc.subject.proposal | Machine learning | spa |
dc.subject.proposal | Indice de pobreza multidimensional | spa |
dc.subject.proposal | Pobreza | spa |
dc.subject.proposal | Análisis espacial | spa |
dc.subject.proposal | Medellín, Colombia | spa |
Aparece en las colecciones: | Artículos de Revista en Estudios Regionales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf | 37.1 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons