Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34949
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMuñetón Santa, Guberney-
dc.contributor.authorManrique Ruiz, Luis Carlos-
dc.date.accessioned2023-05-10T18:34:59Z-
dc.date.available2023-05-10T18:34:59Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/10495/34949-
dc.description.abstractABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.spa
dc.format.extent21spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPIspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titlePredicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial dataspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupRecursos Estratégicos Región y Dinámicas Socioambientalesspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2076-0760-
oaire.citationtitleSocial Sciencespa
oaire.citationstartpage1spa
oaire.citationendpage21spa
oaire.citationvolume12spa
oaire.citationissue5spa
thesis.degree.disciplinesin facultad - programaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.redcolhttp://purl.org/redcol/resource_type/CJournalArticlespa
dc.type.localArtículo de revistaspa
dc.subject.proposalMultidimensional poverty indexspa
dc.subject.proposalSpatial analysisspa
dc.subject.proposalPovertyspa
dc.subject.proposalMachine learningspa
dc.subject.proposalIndice de pobreza multidimensionalspa
dc.subject.proposalPobrezaspa
dc.subject.proposalAnálisis espacialspa
dc.subject.proposalMedellín, Colombiaspa
Aparece en las colecciones: Artículos de Revista en Estudios Regionales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf37.1 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons