Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/34974
Título : | The Human Gene Damage Index as a Gene-level Approach to Prioritizing Exome Variants |
Autor : | Itan, Yuval Shang, Lei Bertrand, Boisson Patin, Etienne Bolze, Alexandre Moncada Vélez, Marcela Scott, Eric Ciancanelli, Michael Lafaille, Fabien Markle, Janet Martinez Barricarte, Ruben Jill de Jong, Sarah Fei Kong, Xiao Nitschke, Patrick Belkadi, Aziz Bustamante, Jacinta Puel, Anne Boisson-Dupuis, Stéphanie Stenson, Peter D. Gleeson, Joseph G. Cooper, David N. Quintana Murci, Lluis Claverie, Jean Michel Zhang, Shen Ying Abel, Laurent Casanova, Jean-Laurent |
metadata.dc.subject.*: | Exome Exoma Mutation Mutación DNA Damage Daño del ADN |
Fecha de publicación : | 2015 |
Editorial : | National Academy of Sciences |
Citación : | Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, Scott E, Ciancanelli MJ, Lafaille FG, Markle JG, Martinez-Barricarte R, de Jong SJ, Kong XF, Nitschke P, Belkadi A, Bustamante J, Puel A, Boisson-Dupuis S, Stenson PD, Gleeson JG, Cooper DN, Quintana-Murci L, Claverie JM, Zhang SY, Abel L, Casanova JL. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13615-20. doi: 10.1073/pnas.1518646112 |
Resumen : | ABSTRACT: The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). |
metadata.dc.identifier.eissn: | 091-6490 |
ISSN : | 0027-8424 |
metadata.dc.identifier.doi: | 10.1073/pnas.1518646112 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ItanYuval_2015_HumanDamageIndex.pdf | Artículo de investigación | 1.03 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons