Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/35136
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRendón Hurtado, Néstor David-
dc.contributor.authorRodríguez Buriticá, Susana-
dc.contributor.authorSanchez Giraldo, Camilo-
dc.contributor.authorDaza Rojas, Juan Manuel-
dc.contributor.authorIsaza Narváez, Claudia Victoria-
dc.date.accessioned2023-05-29T13:27:27Z-
dc.date.available2023-05-29T13:27:27Z-
dc.date.issued2022-
dc.identifier.citationNestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.109017spa
dc.identifier.issn1470-160X-
dc.identifier.urihttps://hdl.handle.net/10495/35136-
dc.description.abstractABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics of biological communities and physical components of the sites and thus complement the information about the structures of landscape. However, the link between the analysis and quantification of ecosystem transformation based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape heterogeneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two watersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified that AHI allows estimating the similarity of points with similar transformations, and where the soundscape provides information about the transition states. This proposal allows complementing landscape transformation studies with information on the acoustic heterogeneity between pairs of sites.spa
dc.format.extent11spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.lcshProtección del medio ambiente-
dc.subject.lcshEnvironmental protection-
dc.subject.lcshColombia - Bosques secos tropicales-
dc.subject.lcshColombia - Tropical dry forests-
dc.subject.lcshCambios en el paisaje-
dc.subject.lcshLandscape changes-
dc.titleAutomatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forestsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo Herpetológico de Antioquiaspa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.1016/j.ecolind.2022.109017-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1872-7034-
oaire.citationtitleEcological Indicatorsspa
oaire.citationstartpage1spa
oaire.citationendpage11spa
oaire.citationissue140spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeNueva York, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsAprendizaje automático-
dc.subject.decsMachine learning-
dc.subject.decsAcústica-
dc.subject.decsAcoustics-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85044203-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2013001320-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85074408-
dc.description.researchgroupidCOL0010717spa
dc.description.researchgroupidCOL0007373spa
dc.relation.ispartofjournalabbrevEcol. Indic.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RendonNestor_2022_AutomaticAcoustic.pdfArtículo de investigación17.61 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons