Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/36029
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorVelásquez Vélez, Ricardo Andrés-
dc.contributor.advisorIsaza Ramírez, Sebastián-
dc.contributor.authorGómez Hurtado, Jonathan Ferney-
dc.date.accessioned2023-07-26T18:47:02Z-
dc.date.available2023-07-26T18:47:02Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/10495/36029-
dc.description.abstractABSTRACT : Researchers using Spiking Neural Networks to deploy its applications on Servers and Workstations with graphics processing units because of the restricted access the specialized neuromorphic platforms. Moreover, using such conventional systems imply high energy and acquisition costs. Recently, we have seen the popularization of computing platforms with small form factors, low energy consumption, and the ability to perform artificial intelligence. These platforms, known as single-board computers, often integrate graphics processing units and other hardware accelerators; thus, they are feasible alternatives to traditional computer systems in critical energy consumption applications. This work presents our insights into implementing a 2-layer Spiking Neural Networks inference algorithm for handwritten digit recognition. We implemented the network on a GPU MALI included on the VIM3 and a workstation GPU using the C++ language and openCL. Our experimental results show that while single-board computer inference is 6x slower compared to a workstation, it is 7x more efficient in energy consumption.spa
dc.format.extent80spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleImplementation of a SNN model on an SBC-GPU and on a workstation in order to compare their efficiencyspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMaestría en Ingenieríaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.decsNeural Networks, Computer-
dc.subject.decsRedes Neurales de la Computación-
dc.subject.lembConsumo de energía-
dc.subject.lembEnergy consumption-
dc.subject.lembAlgoritmos (computadores)-
dc.subject.lembComputer algorithms-
dc.subject.lembRendimiento energético-
dc.subject.lembEnergy efficiency-
dc.subject.proposalSpiking Neural Networksspa
dc.subject.proposalSingle Board Computerspa
dc.subject.proposalEmbedded GPUspa
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GomezJonathan_2023_ImplementationSnnModel.pdf2.02 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons