Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/38957
Título : Electronic and optical properties of the exponential and hyperbolic Rosen–Morse types quantum wells under applied magnetic field
Autor : Duque Echeverri, Carlos Alberto
Kasapoglu, E.
Yücel, M. B.
metadata.dc.subject.*: Magnetic fields
Pozos cuánticos
Quantum wells
Propiedades ópticas
Optical properties
http://id.loc.gov/authorities/subjects/sh85079703
Fecha de publicación : 2023
Editorial : Springer
Citación : Kasapoglu, E., Yücel, M.B. & Duque, C.A. Electronic and optical properties of the exponential and hyperbolic Rosen–Morse types quantum wells under applied magnetic field. Eur. Phys. J. Plus 138, 1026 (2023). https://doi.org/10.1140/epjp/s13360-023-04594-x
Resumen : ABSTRACT: In this study, we considered the electronic and optical properties of quantum wells with the exponential and hyperbolic Rosen–Morse potentials under an applied magnetic field. Calculations are made within the framework of effective mass and parabolic band approximations. We have used the diagonalization method by choosing a wave function based on the trigonometric orthonormal function to find eigenvalues and eigenfunctions of the confined electron. Our results show that the magnetic field, asymmetry, and confinement parameters cause a significant increase in electron energies and energy differences between the electron states and the blue shift in the absorption peaks. These results can be used to probe materials’ electronic and structural properties and develop new materials with tailored optical properties.
metadata.dc.identifier.eissn: 2190-5444
metadata.dc.identifier.doi: 10.1140/epjp/s13360-023-04594-x
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DuqueCarlos_2023_ElectronicOpticalProperties.pdfArtículo de investigación960.51 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons