Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/39626
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGallón Gómez, Santiago Alejandro-
dc.contributor.authorLoubes, Jean Michel-
dc.contributor.authorGamboa, Fabrice-
dc.date.accessioned2024-06-04T03:03:21Z-
dc.date.available2024-06-04T03:03:21Z-
dc.date.issued2015-
dc.identifier.citationGallón, Santiago & Loubes, Jean-Michel & Gamboa, Fabrice. (2013). Functional calibration estimation by the maximum entropy on the mean principle. Statistics. 49. 10.1080/02331888.2014.932795.spa
dc.identifier.issn0233-1888-
dc.identifier.urihttps://hdl.handle.net/10495/39626-
dc.description.abstractABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator.spa
dc.format.extent20 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTaylor and Francis Groupspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleFunctional calibration estimation by the maximum entropy on the mean principlespa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupMicroeconomía Aplicadaspa
dc.identifier.doi10.1080/02331888.2014.932795-
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1029-4910-
oaire.citationtitleStatisticsspa
oaire.citationstartpage989spa
oaire.citationendpage1004spa
oaire.citationvolume49spa
oaire.citationissue5spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeHampshire, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembEntropía-
dc.subject.lembEntropy-
dc.subject.proposalAuxiliary informationspa
dc.subject.proposalFunctional calibration weightsspa
dc.subject.proposalFunctional dataspa
dc.subject.proposalInfinite dimensional linear inverse problemsspa
dc.subject.proposalSurvey samplingspa
dc.description.researchgroupidCOL0013808spa
dc.relation.ispartofjournalabbrevStatisticsspa
Aparece en las colecciones: Artículos de Revista en Ciencias Económicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GallonSantiago_2015_Functional_Calibration_Estimation.pdfArtículo de investigación1.8 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons