Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/40130
Título : | A probabilistic approach to the asymptotics of the length of the longest alternating subsequence |
Autor : | Restrepo López, Ricardo Houdré, Christian |
metadata.dc.subject.*: | Teorema del límite central Central limit theorem Logaritmos Logarithms Longest alternating subsequence Random permutations Random words M-dependence http://id.loc.gov/authorities/subjects/sh85021905 http://id.loc.gov/authorities/subjects/sh85078091 |
Fecha de publicación : | 2010 |
Editorial : | Electronic Journal of Combinatorics |
Resumen : | ABSTRACT: Let $LA_{n}(\tau)$ be the length of the longest alternating subsequence of a uniform random permutation $\tau\in[n]$. Classical probabilistic arguments are used to rederive the asymptotic mean, variance and limiting law of $LA_{n}(\tau)$. Our methodology is robust enough to tackle similar problems for finite alphabet random words or even Markovian sequences in which case our results are mainly original. A sketch of how some cases of pattern restricted permutations can also be tackled with probabilistic methods is finally presented. |
metadata.dc.identifier.eissn: | 1077-8926 |
metadata.dc.identifier.doi: | 10.37236/440 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RestrepoRicardo_2010_ProbabilisticApproachAsymptotics.pdf | Artículo de investigación | 2.94 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons