Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/40130
Título : A probabilistic approach to the asymptotics of the length of the longest alternating subsequence
Autor : Restrepo López, Ricardo
Houdré, Christian
metadata.dc.subject.*: Teorema del límite central
Central limit theorem
Logaritmos
Logarithms
Longest alternating subsequence
Random permutations
Random words
M-dependence
http://id.loc.gov/authorities/subjects/sh85021905
http://id.loc.gov/authorities/subjects/sh85078091
Fecha de publicación : 2010
Editorial : Electronic Journal of Combinatorics
Resumen : ABSTRACT: Let $LA_{n}(\tau)$ be the length of the longest alternating subsequence of a uniform random permutation $\tau\in[n]$. Classical probabilistic arguments are used to rederive the asymptotic mean, variance and limiting law of $LA_{n}(\tau)$. Our methodology is robust enough to tackle similar problems for finite alphabet random words or even Markovian sequences in which case our results are mainly original. A sketch of how some cases of pattern restricted permutations can also be tackled with probabilistic methods is finally presented.
metadata.dc.identifier.eissn: 1077-8926
metadata.dc.identifier.doi: 10.37236/440
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RestrepoRicardo_2010_ProbabilisticApproachAsymptotics.pdfArtículo de investigación2.94 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons