Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/41496
Título : | A molecular barcode and web-based data analysis tool to identify imported Plasmodium vivax malaria |
Autor : | Lopera Mesa, Tatiana María Tobón Castaño, Alberto Vélez Beranal, Iván Darío Montenegro Cadena, Lidia Madeline Assefa, Ashenafi Aseffa, Abraham Auburn, Sarah Barry, Alyssa Batista Pereira, Dhelio B. Barber, Bridget Chau, Nguyen H. Chu, Cindy S. Drury, Eleanor Echeverry, Diego F. Espino, Fe E. J. Ferreira, Marcelo U. Gao, Qi Getachew, Sisay Gonçalves, Sónia Green, Justin A. Grigg, Matthew J. Hamedi, Yaghoob Hiền, Trần T Khan, Wasif A. Koh, Gavin Krudsood, Srivicha Kwiatkowski, Dominic P. Lacerda, Marcus V. G. Laman, Moses Ley, Benedikt Liu, Yaobao Llanos Cuentas, Alejandro Lon, Chanthap Adam, Ishag Marfurt, Jutta Miles, Alistair Miotto, Olivo Mohammed, Rezika Anstey, Nicholas M. Mueller, Ivo Namaik Larp, Chayadol Noviyanti, Rintis Nosten, Francois Pava, Zuleima Pearson, Richard D. Petros, Beyene Price, Ric N. Rahim, Awab G. Rayner, Julian C. Simpson, Victoria Sriprawat, Kanlaya Sutanto, Edwin Thriemer, Kamala Alam, Mohammad S. Trimarsanto, Hidayat Villegas, María F. Amato, Roberto Wangchuck, Sonam White, Nicholas J. William, Timothy Yilma, Daniel |
metadata.dc.subject.*: | Funciones de Verosimilitud Likelihood Functions Malaria Plasmodium vivax Malaria Vivax Código de Barras del ADN Taxonómico DNA Barcoding, Taxonomic Análisis de Datos Data Analysis https://id.nlm.nih.gov/mesh/D058893 https://id.nlm.nih.gov/mesh/D016013 https://id.nlm.nih.gov/mesh/D008288 https://id.nlm.nih.gov/mesh/D010966 https://id.nlm.nih.gov/mesh/D016780 https://id.nlm.nih.gov/mesh/D000078332 |
Fecha de publicación : | 2022 |
Editorial : | Nature Publishing Group UK |
Resumen : | ABSTRACT: Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control program |
metadata.dc.identifier.eissn: | 2399-3642 |
metadata.dc.identifier.doi: | 10.1038/s42003-022-04352-2 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
LoperaTatiana_2022_Molecular_Data_Plasmodium.pdf | Artículo de investigación | 2.11 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons