Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/41496
Título : A molecular barcode and web-based data analysis tool to identify imported Plasmodium vivax malaria
Autor : Lopera Mesa, Tatiana María
Tobón Castaño, Alberto
Vélez Beranal, Iván Darío
Montenegro Cadena, Lidia Madeline
Assefa, Ashenafi
Aseffa, Abraham
Auburn, Sarah
Barry, Alyssa
Batista Pereira, Dhelio B.
Barber, Bridget
Chau, Nguyen H.
Chu, Cindy S.
Drury, Eleanor
Echeverry, Diego F.
Espino, Fe E. J.
Ferreira, Marcelo U.
Gao, Qi
Getachew, Sisay
Gonçalves, Sónia
Green, Justin A.
Grigg, Matthew J.
Hamedi, Yaghoob
Hiền, Trần T
Khan, Wasif A.
Koh, Gavin
Krudsood, Srivicha
Kwiatkowski, Dominic P.
Lacerda, Marcus V. G.
Laman, Moses
Ley, Benedikt
Liu, Yaobao
Llanos Cuentas, Alejandro
Lon, Chanthap
Adam, Ishag
Marfurt, Jutta
Miles, Alistair
Miotto, Olivo
Mohammed, Rezika
Anstey, Nicholas M.
Mueller, Ivo
Namaik Larp, Chayadol
Noviyanti, Rintis
Nosten, Francois
Pava, Zuleima
Pearson, Richard D.
Petros, Beyene
Price, Ric N.
Rahim, Awab G.
Rayner, Julian C.
Simpson, Victoria
Sriprawat, Kanlaya
Sutanto, Edwin
Thriemer, Kamala
Alam, Mohammad S.
Trimarsanto, Hidayat
Villegas, María F.
Amato, Roberto
Wangchuck, Sonam
White, Nicholas J.
William, Timothy
Yilma, Daniel
metadata.dc.subject.*: Funciones de Verosimilitud
Likelihood Functions
Malaria
Plasmodium vivax
Malaria Vivax
Código de Barras del ADN Taxonómico
DNA Barcoding, Taxonomic
Análisis de Datos
Data Analysis
https://id.nlm.nih.gov/mesh/D058893
https://id.nlm.nih.gov/mesh/D016013
https://id.nlm.nih.gov/mesh/D008288
https://id.nlm.nih.gov/mesh/D010966
https://id.nlm.nih.gov/mesh/D016780
https://id.nlm.nih.gov/mesh/D000078332
Fecha de publicación : 2022
Editorial : Nature Publishing Group UK
Resumen : ABSTRACT: Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control program
metadata.dc.identifier.eissn: 2399-3642
metadata.dc.identifier.doi: 10.1038/s42003-022-04352-2
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LoperaTatiana_2022_Molecular_Data_Plasmodium.pdfArtículo de investigación2.11 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons