Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/41650
Título : Quantifying the performance of MEG source reconstruction using resting state data
Autor : López Hincapié, José David
Little, Simon
Bonaiuto, James
S. Meyer, Sofie
Bestmann, Sven
Barnes, Gareth
metadata.dc.subject.*: Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
Fecha de publicación : 2018
Editorial : Elsevier
Citación : Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030
Resumen : ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms.
metadata.dc.identifier.eissn: 1095-9572
ISSN : 1053-8119
metadata.dc.identifier.doi: 10.1016/j.neuroimage.2018.07.030
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LittleSimon_2018_Quantifying_Performance.pdfArtículo de investigación1.55 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons