Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/42133
Título : | Harmonized-Multinational qEEG norms (HarMNqEEG) |
Autor : | Tobón Quintero, Carlos Andrés Ochoa Gómez, John Fredy Li, Min Wang, Ying López Naranjo, Carlos Hu, Shiang García Reyes, Ronaldo César Paz Linares, Deirel Areces González, Ariosky Abd Hamid, Aini Ismafairus Evans, Alan C. Savostyanov, Alexander N. Calzada Reyes, Ana Villringer, Arno García Agustín, Daysi Yao, Dezhong Dong, Li Aubert Vázquez, Eduardo Reza, Faruque Razzaq, Fuleah Abdul Omar, Hazim Abdullah, Jafri Malin Galler, Janina R. Prichep, Leslie S. Galán García, Lidice Morales Chacón, Lilia Valdés Sosa, Mitchell J. Tröndle, Marius Mohd Zulkifly, Mohd Faizal Rahman, Muhammad Riddha Bin Abdul Milakhina, Natalya S. Langer, Nicolas Rudych, Pavel Koenig, Thomas Virues Alba, Trinidad A. Lei, Xu Bringas Vega, Maria L. Bosch Bayard, Jorge F. Valdés Sosa, Pedro Antonio |
metadata.dc.subject.*: | Éncefalo Brain Encefalopatías Brain Diseases Mapeo Encefálico Brain Mapping Electroencefalografía Electroencephalography COVID-19 https://id.nlm.nih.gov/mesh/D001921 https://id.nlm.nih.gov/mesh/D001927 https://id.nlm.nih.gov/mesh/D001931 https://id.nlm.nih.gov/mesh/D000086382 https://id.nlm.nih.gov/mesh/D004569 |
Fecha de publicación : | 2022 |
Editorial : | Elsevier Academic Press |
Citación : | Li M, Wang Y, Lopez-Naranjo C, Hu S, Reyes RCG, Paz-Linares D, Areces-Gonzalez A, Hamid AIA, Evans AC, Savostyanov AN, Calzada-Reyes A, Villringer A, Tobon-Quintero CA, Garcia-Agustin D, Yao D, Dong L, Aubert-Vazquez E, Reza F, Razzaq FA, Omar H, Abdullah JM, Galler JR, Ochoa-Gomez JF, Prichep LS, Galan-Garcia L, Morales-Chacon L, Valdes-Sosa MJ, Tröndle M, Zulkifly MFM, Abdul Rahman MRB, Milakhina NS, Langer N, Rudych P, Koenig T, Virues-Alba TA, Lei X, Bringas-Vega ML, Bosch-Bayard JF, Valdes-Sosa PA. Harmonized-Multinational qEEG norms (HarMNqEEG). Neuroimage. 2022 Aug 1;256:119190. doi: 10.1016/j.neuroimage.2022.119190. Epub 2022 Apr 7. PMID: 35398285. |
Resumen : | ABSTRACT: This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings. |
metadata.dc.identifier.eissn: | 1095-9572 |
ISSN : | 1053-8119 |
metadata.dc.identifier.doi: | 10.1016/j.neuroimage.2022.119190 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TobonCarlos_2022_Harmonized_Multinational_qEEG.pdf | Artículo de investigación | 6.38 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons