Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/43086
Título : A protocol for the development and internal validation of a model to predict clinical response to antihistamines in urticaria patients
Autor : Velásquez Lopera, Margarita María
Sánchez Caraballo, Jorge Mario
Jaimes Barragán, Fabián Alberto
metadata.dc.subject.*: Chronic Urticaria
Urticaria Crónica
Cohort Studies
Estudios de Cohortes
Histamine Antagonists
Antagonistas de los Receptores Histamínicos
Logistic Models
Modelos Logísticos
Prognosis
Pronóstico
Validation Studies as Topic
Estudios de Validación como Asunto
https://id.nlm.nih.gov/mesh/D000080223
https://id.nlm.nih.gov/mesh/D015331
https://id.nlm.nih.gov/mesh/D006633
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D011379
https://id.nlm.nih.gov/mesh/D054928
Fecha de publicación : 2020
Editorial : Public Library of Science
Citación : Sanchez J, Velasquez M, Jaimes F. A protocol for the development and internal validation of a model to predict clinical response to antihistamines in urticaria patients. PLoS One. 2020 Oct 6;15(10):e0239962. doi: 10.1371/journal.pone.0239962. Update in: PLoS One. 2024 Feb 23;19(2):e0295791. doi: 10.1371/journal.pone.0295791.
Resumen : ABSTRACT: Chronic urticaria causes a significant limitation to quality of life. In the literature, various studies can be found that have reviewed several clinical and laboratory markers, but none of these variables alone is sufficient to predict the patient's prognosis. In this study, we present a protocol to develop a prognostic model that can predict the clinical response of urticaria patients to antihistamines. This is a protocol for a bidirectional cohort study. Urticaria data will be routinely collected from a population of patients over 18 years old. A full multivariable logistic regression model will be fitted, following five steps: 1) Selection of predictive variables for the model; 2) Evaluation of the quality of the collected data and control of lost data; 3) Data statistical management; 4) Strategies to select the variables to include at the end of the model; 5) Evaluation of the performance of the different possible models (predictive accuracy) and selection of the best model. The performance and internal validation of the model will be assessed. Some clinical and paraclinical variables will be measured for further exploration.
metadata.dc.identifier.eissn: 1932-6203
metadata.dc.identifier.doi: 10.1371/journal.pone.0239962
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SanchezJorge_2020_Protocol_Development_Internal.pdfArtículo de investigación986.74 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons