Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/4326
Título : | Methodology for predicting and/or compensating the behavior of optical frequency comb |
Autor : | Botia Valderrama, Javier Fernando |
metadata.dc.contributor.advisor: | Cárdenas Soto, Ana María |
metadata.dc.subject.*: | Rayo láser Lasers Conversión de frecuencia óptica Predicciones científicas http://vocabularies.unesco.org/thesaurus/concept5746 |
Fecha de publicación : | 2016 |
Citación : | Botia Valderrama, J. F. (2016). Methodology for predicting and/or compensating the behavior of optical frequency comb. (Tesis doctoral). Universidad de Antioquia. Medellín, Colombia. |
Resumen : | RESUMEN: Optical frequency comb spectrum can change its behavior due to temperature fluctuations, normal dispersion, and mechanical vibrations. Such limitations can affect the peak power and wavelength separation of comb lines. In the propagation through single−mode fiber, the linear and non−linear phenomena can modify spectral shape, phase shifts and flatness of spectrum. To find a strategy of compensation, the PhD thesis is focused on a prediction methodology based on fuzzy cellular automata, intuitionistic fuzzy sets and fuzzy entropy measures. The research work proposes a predictor called intuitionistic fuzzy cellular automata based on mean vector and a validation measure called general intuitionistic fuzzy entropy based on adequacy and non−adequacy. In the accomplished experiments, the method was used in three experiments: mode−locked lasers, cascaded intensity modulators−Mach Zehnder modulators, and microresonator ring. The obtained results showed that the power and phase distortions were reduced by using a pulse shaper, where the method was programmed. In addition, the stability and/or instability of spectrum were found for the microresonator ring. |
Aparece en las colecciones: | Doctorados de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
BotiaJavier_2016_METHODOLOGY FOR PREDICTING.pdf | Tesis doctoral | 10.8 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons