Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/43459
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorTorres López, Edwar Andrés-
dc.contributor.advisorAlaeddini, Adel-
dc.contributor.authorGaleano Ruiz, Melissa-
dc.date.accessioned2024-11-13T20:14:06Z-
dc.date.available2024-11-13T20:14:06Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/10495/43459-
dc.description.abstractABSTRACT : In the realm of mechanical engineering, seamless human-machine interaction is pivotal for innovation and progress. This internship proposal aims to develop real-time facial and emotion recognition software, addressing a critical need in the field. Such technology holds vast potential to transform mechanical engineering applications, from enhancing automotive safety systems to optimizing human-robot collaboration in industrial environments. At its core, the project focuses on creating a robust software solution utilizing convolutional neural networks (CNNs) and computer vision techniques, leveraging TensorFlow, OpenCV, NumPy, and Scikit-learn libraries. This software will play a key role in a larger initiative dedicated to advancing human-machine interaction within mechanical engineering contexts. By tackling the challenge of real-time facial and emotion recognition through a structured approach encompassing data collection, model development, integration, and optimization, the software will be tailored to meet the demands of real-world scenarios. Thus, this internship proposal offers hands-on experience and skill development opportunities while contributing to the broader goal of driving innovation and excellence in mechanical engineering through cutting-edge technological solutions.spa
dc.format.extent58 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/embargoedAccessspa
dc.titleEmpowering Mechanical Engineering: The Role of Convolutional Neural Networks in Facial and Emotion Recognition in Engineering Contexts. Undergraduate Thesisspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
thesis.degree.nameIngeniera Mecánicaspa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Ingeniería Mecánicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.decsNeural Networks, Computer-
dc.subject.decsRedes Neurales de la Computación-
dc.subject.unescoInnovation-
dc.subject.unescoInnovación-
dc.subject.unescoArtificial intelligence-
dc.subject.unescoInteligencia artificial-
dc.subject.lembFace perception-
dc.subject.lembPercepción de caras-
dc.subject.lembRobots, industrial-
dc.subject.lembRobots industriales-
dc.subject.proposalDetección de emocionesspa
dc.subject.proposalVisión por computadoraspa
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept17170-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept3052-
dc.relatedidentifier.urlhttps://n9.cl/cnn_emotion_recognition_engspa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D016571-
Aparece en las colecciones: Ingeniería Mecánica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GaleanoMelissa_2024_EmotionRecognitionEngineering.pdf
  Until 2025-11-13
Trabajo de grado de pregrado2.02 MBAdobe PDFVisualizar/Abrir  Request a copy
Poster.pdf
  Until 2025-11-13
Anexo775.09 kBAdobe PDFVisualizar/Abrir  Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.