Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/44772
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Vargas Escobar, Paola | - |
dc.contributor.author | Flórez Acosta, Oscar Albeiro | - |
dc.contributor.author | Quintero Rincón, Patricia | - |
dc.date.accessioned | 2025-02-07T18:25:43Z | - |
dc.date.available | 2025-02-07T18:25:43Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Vargas-Escobar, P., Quintero-Rincón, P. & Flórez-Acosta, O. Development of a Dermal Nanoemulsion with Antioxidants Derived from Rice Residues Using an HLD Theory Approach. AAPS PharmSciTech 26, 56 (2025). https://doi.org/10.1208/s12249-025-03043-5 | spa |
dc.identifier.uri | https://hdl.handle.net/10495/44772 | - |
dc.description.abstract | ABSTRACT: Agricultural waste, such as rice straw, has become increasingly valuable as biocomposites in various industries. For cosmetic and pharmaceutical sectors, these biocomposites have improved active substance incorporation and waste reduction, which is pivotal for mitigating environmental impact. This study reports the encapsulation of a protein derivative derived from rice straw within a nanoemulsion for skin care applications, emphasizing stability and efcacy. Protein hydrolysates were produced by extracting proteins in an alkaline medium, followed by precipitation at the isoelectric point. The hydrolysates were enzymatically treated with Alcalase® at 80 °C and pH 10 for 45 min to generate antioxidant-rich formulations. Utilizing Hydrophilic-Lipophilic Deviation (HLD) theory, oil-in-water (O/W) emulsions were formulated by adjusting variables to achieve an HLD near zero. Sunfower oil and surfactants were combined, stirred at 70 °C, and homogenized using a rotor–stator. The fnal formulation's stability and permeability were evaluated through fuorescence microscopy, particle size analysis, zeta potential measurements, and accelerated stability assays. Nanoemulsion ENE37 showed high stability with 47.25 nm size, PDI 0.21, and excellent dispersion, maintaining integrity without phase separation. Hydrolyzed protein into ENE37 (NE37-HP) improved stability, increasing zeta potential and preventing aggregation while maintaining structure without phase inversion. NE37-HP exhibited shear-thinning behavior and good difusion capacity, achieving 20.14 μg/cm2. h. The HLD theory and ternary diagrams are valuable methodological tools for formulating stable nanoscale emulsions. Additionally, this dosage form, containing protein hydrolysates derived from rice straw, demonstrated potential for adequate dermal absorption in humans. | spa |
dc.format.extent | 17 páginas | spa |
dc.format.mimetype | Springer | spa |
dc.language.iso | eng | spa |
dc.publisher | Nueva York, Estados Unidos | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/co/ | * |
dc.title | Development of a dermal nanoemulsion with antioxidants derived from rice residues using an HLD theory approach | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Diseño y Formulación de Medicamentos Cosméticos y Afines | spa |
dc.identifier.doi | 10.1208/s12249-025-03043-5 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 1530-9932 | - |
oaire.citationtitle | AAPS PharmSciTech | spa |
oaire.citationstartpage | 1 | spa |
oaire.citationendpage | 17 | spa |
oaire.citationvolume | 26 | spa |
oaire.citationissue | 56 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
oaire.fundername | Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODI | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
dc.subject.decs | Administración Cutánea | - |
dc.subject.decs | Administration, Cutaneous | - |
dc.subject.decs | Antioxidantes | - |
dc.subject.decs | Antioxidants | - |
dc.subject.decs | Química Farmacéutica - métodos | - |
dc.subject.decs | Chemistry, Pharmaceutical - methods | - |
dc.subject.decs | Estabilidad de Medicamentos | - |
dc.subject.decs | Drug Stability | - |
dc.subject.decs | Emulsiones - química | - |
dc.subject.decs | Emulsions - chemistry | - |
dc.subject.decs | Interacciones Hidrofóbicas e Hidrofílicas | - |
dc.subject.decs | Hydrophobic and Hydrophilic Interactions | - |
dc.subject.decs | Nanopartículas - química | - |
dc.subject.decs | Nanoparticles - chemistry | - |
dc.subject.decs | Oryza - química | - |
dc.subject.decs | Oryza - chemistry | - |
dc.subject.decs | Tamaño de la Partícula | - |
dc.subject.decs | Particle Size | - |
dc.subject.decs | Permeabilidad | - |
dc.subject.decs | Permeability | - |
dc.subject.decs | Hidrolisados de Proteína - administración & dosificación | - |
dc.subject.decs | Protein Hydrolysates - administration & dosage | - |
dc.subject.decs | Hidrolisados de Proteína - química | - |
dc.subject.decs | Protein Hydrolysates - chemistry | - |
dc.subject.decs | Absorción Cutánea - efectos de los fármacos | - |
dc.subject.decs | Skin Absorption - drug effects | - |
dc.subject.decs | Absorción Cutánea - fisiología | - |
dc.subject.decs | Skin Absorption - physiology | - |
dc.subject.decs | Aceite de Girasol - química | - |
dc.subject.decs | Sunflower Oil - chemistry | - |
dc.subject.decs | Tensoactivos - química | - |
dc.subject.decs | Surface-Active Agents - chemistry | - |
dc.description.researchgroupid | COL0003623 | spa |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D000279 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D000975 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D002626 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D004355 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D004655 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D057927 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D053758 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D012275 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D010316 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D010539 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D011492 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D012869 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D000074242 | - |
dc.subject.meshuri | https://id.nlm.nih.gov/mesh/D013501 | - |
dc.relation.ispartofjournalabbrev | AAPS PharmSciTech | spa |
oaire.funderidentifier.ror | RoR:03bp5hc83 | - |
Aparece en las colecciones: | Artículos de Revista en Farmacéutica y Alimentarias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
VargasPaola_2025_Dermal_Nanoemulsion_Antioxidants.pdf | Artículo de investigación | 1.58 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons