Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/7652
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGodino Llorente, Juan Ignacio-
dc.date.accessioned2017-07-14T16:07:47Z-
dc.date.available2017-07-14T16:07:47Z-
dc.date.issued2015-
dc.identifier.citationJ. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e17063595spa
dc.identifier.issn1099-4300-
dc.identifier.urihttp://hdl.handle.net/10495/7652-
dc.description.abstractABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.spa
dc.format.extent25spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPI AGspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución 2.5 Colombia (CC BY 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/co/*
dc.subjectComplexity analysis-
dc.subjectEntropy measures-
dc.subjectHidden Markov models-
dc.subjectPrincipal curve-
dc.titleEntropies from Markov Models as Complexity Measures of Embedded Attractorsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSimulación de Comportamientos de Sistemas (SICOSIS)spa
dc.identifier.doi10.3390/e17063595-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitleEntropyspa
oaire.citationstartpage3595spa
oaire.citationendpage3620spa
oaire.citationvolume17spa
oaire.citationissue6spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeSuizaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
AriasJulian_2015_EntropiesMarkovModels.pdfArtículo de investigación729.91 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons