Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/7662
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Hincapié, José David-
dc.contributor.authorCastellanos Domínguez, César Germán-
dc.contributor.authorBarnes, Gareth Robert-
dc.contributor.authorBaker, Adam-
dc.contributor.authorWoolrich, Mark W.-
dc.date.accessioned2017-07-14T20:26:32Z-
dc.date.available2017-07-14T20:26:32Z-
dc.date.issued2016-
dc.identifier.citationMartínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366spa
dc.identifier.issn1662-4548-
dc.identifier.urihttp://hdl.handle.net/10495/7662-
dc.description.abstractABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.spa
dc.format.extent8spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherFrontiers Mediaspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución 2.5 Colombia (CC BY 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/co/*
dc.subjectMEG inverse problem-
dc.subjectCo-registration-
dc.subjectHidden Markov Model-
dc.subjectNon-stationary brain activity-
dc.subjectBayesian comparison-
dc.titleNon-linear parameter estimates from non-stationary MEG dataspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.3389/fnins.2016.00366-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn166-2453-
oaire.citationtitleFrontiers in Neurosciencespa
oaire.citationstartpage1spa
oaire.citationendpage9spa
oaire.citationvolume10spa
oaire.citationissue366spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeSuizaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LopezJose_2016_NonlinearParameterEstimates.pdfArtículo de investigación3.38 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons