Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/7662
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | López Hincapié, José David | - |
dc.contributor.author | Castellanos Domínguez, César Germán | - |
dc.contributor.author | Barnes, Gareth Robert | - |
dc.contributor.author | Baker, Adam | - |
dc.contributor.author | Woolrich, Mark W. | - |
dc.date.accessioned | 2017-07-14T20:26:32Z | - |
dc.date.available | 2017-07-14T20:26:32Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366 | spa |
dc.identifier.issn | 1662-4548 | - |
dc.identifier.uri | http://hdl.handle.net/10495/7662 | - |
dc.description.abstract | ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. | spa |
dc.format.extent | 8 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Frontiers Media | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | Atribución 2.5 Colombia (CC BY 2.5 CO) | * |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | https://creativecommons.org/licenses/by/2.5/co/ | * |
dc.subject | MEG inverse problem | - |
dc.subject | Co-registration | - |
dc.subject | Hidden Markov Model | - |
dc.subject | Non-stationary brain activity | - |
dc.subject | Bayesian comparison | - |
dc.title | Non-linear parameter estimates from non-stationary MEG data | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) | spa |
dc.identifier.doi | 10.3389/fnins.2016.00366 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 166-2453 | - |
oaire.citationtitle | Frontiers in Neuroscience | spa |
oaire.citationstartpage | 1 | spa |
oaire.citationendpage | 9 | spa |
oaire.citationvolume | 10 | spa |
oaire.citationissue | 366 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.publisher.place | Suiza | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
LopezJose_2016_NonlinearParameterEstimates.pdf | Artículo de investigación | 3.38 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons