Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/7668
Título : | Thermochemical equilibrium model of synthetic natural gas production from coal gasification using aspen plus |
Autor : | Salazar, Carlos Pérez Bayer, Juan Fernando |
metadata.dc.subject.*: | Thermochemistry Chemical equilibrium Synthetic natural gas Gas industry Mathematical models Coal gasification |
Fecha de publicación : | 2014 |
Editorial : | Hindawi Limited |
Citación : | R. de J. Barrera, C. Salazar and J. F. Pérez, "Thermochemical equilibrium model of synthetic natural gas production from coal gasification using aspen plus", International Journal of Chemical Engineering, vol. 2014, p. 1-18, 2014. DOI: 10.1155/2014/192057 |
Resumen : | ABSTRACT: The production of synthetic or substitute natural gas (SNG) from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P) for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process. |
metadata.dc.identifier.eissn: | 1687-8078 |
ISSN : | 1687-806X |
metadata.dc.identifier.doi: | 10.1155/2014/192057 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
BarreraRolando_2014_ThermochemicalEquilibriumModel.pdf | Artículo de investigación | 1.77 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons