Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/7912
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGaviria Gómez, Natalia-
dc.date.accessioned2017-08-10T19:58:25Z-
dc.date.available2017-08-10T19:58:25Z-
dc.date.issued2016-
dc.identifier.citationBotia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17.spa
dc.identifier.issn1687-5680-
dc.identifier.urihttp://hdl.handle.net/10495/7912-
dc.description.abstractABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (RandomNeural Networks) is applied to evaluate the subjective qualitymetrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategy Diffserv.The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.spa
dc.format.extent16spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHindawi Publishing Corporationspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución 2.5 Colombia (CC BY 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/co/*
dc.subjectQuality of service-
dc.subjectComplex networks-
dc.subjectMean square error-
dc.subjectNeural networks-
dc.subjectQuality control-
dc.subjectVideo signal processing-
dc.subjectCalidad del servicio-
dc.subjectControl de calidad-
dc.subjectProcesamiento de señales-
dc.subjectRedes neurales-
dc.titleNonintrusive method based on neural networks for video quality of experience assessmentspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
dc.identifier.doihttp://dx.doi.org/10.1155/2016/1730814-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1687-5699-
oaire.citationtitleAdvances in Multimediaspa
oaire.citationstartpage1spa
oaire.citationendpage17spa
oaire.citationvolume2016spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeReino Unidospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Gaviria_Natalia_2016_NonintrusiveMethod.pdfArtículo de investigación2.94 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons