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Chapter 1

Introduction

Globular Clusters are old acquaintances for Astrophysics, but the interest in them
remains unchanged. It has been established that a globular cluster is a stellar
system consisting of between 104 to 106 gravitationally bound stars, spherically
distributed around the center of mass of the cluster (see Figure 1.1). The number
of belonging stars and spatial distribution are precisely two of the parameters that
di�erentiate globular from open clusters, which are less numerous and their stars
are distributed in less-de�ned shapes in space [Binney 2008]. In addition, for the
Milky Way (MW), open clusters are found only in the galactic disk, unlike the vast
distribution of globular clusters present both in the vicinity of the disc and all over
the galactic halo [Carroll 2007]. With regard to this spatial distribution, globular
clusters are divided in two distinct populations, being the metallicity and the ages
of the clusters the main two features that di�erentiate them. Usually expressed
in terms of the [Fe/H] abundance, the metallicity of a globular cluster around -0.5
places that cluster within the metal-rich clusters (MRGC) and clusters with values
below -1 are the metal-poor ones (MPGC) [Harris 1999].

(a) Globular Cluster M13 (b) Open Cluster M52

Figure 1.1: (a) M13 is a 50 light-years in diameter globular cluster enclosing around
105 stars. Image Credit: T.A. Rector (University of Alaska Anchorage) and H.
Schweiker (WIYN and NOAO/AURA/NSF). (b) M52 is an open cluster located
7000 light-years away from the Sun in the constellation of Cassiopeia. Image Credit:
NOAO/AURA/NSF
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Figure 1.2: Metallicity distribution function for the globular clusters in the Milky
Way. The metal poor clusters are more abundant in the Milky Way galaxy with
mean of -1.56. For the metal rich, the median is approximately -0.52. This histogram
was reconstructed from the data avaliable in [Harris 1996].

Figure 1.2 shows the distribution of clusters' metallicities. The two subpopulations
are clearly identi�ed and this fact constitutes the �rst clue to propose that each
subpopulation has its proper origin. To reinforce the previous claim, the subpopu-
lations are segregated by spatial distribution and kinematic properties. MRGC are
axially symmetric distributed near the disc and the galactic bulge: those close to
the disc are rotating with it and those near to the bulge have kinematics similar to
the random motions of bulge stars. MPGC are distributed spherically symmetric
through the stellar galactic halo with random velocities, some of them near the
galactic disc and some of them so much far away [Harris 1999]. Figure 1.3 shows
the projected position in the sky, in galactic coordinates, of the two subpopulations.
The spread in galactic latitude is clearly higher for metal poor subpopulation since
they are found in all directions.

Besides the strong correlation between metallicity and spatial distribution, there is
another remarkable correlation between the metallicity and the age of the clusters.
When the ages of the two subpopulations are compared, a signi�cant number of
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Figure 1.3: Location on the sky in galactic coordinates of the subpopulations of
globular clusters in the Milky Way galaxy. This plot was constructed using data
of [Harris 1996].

MRGC are signi�cantly younger than most of the MPGC [Shapiro 2010].

However, there is a not negligible number of clusters that break the trend, extremely
old with relatively high metallicities. Figure 1.4 illustrates the pair of features dis-
cussed in the previous paragraph, extending the discussion to the Andromeda (M31)
spiral galaxy where extremely young clusters (∼1 Gyr) have the higher metallicity
of all the clusters in Andromeda. Moreover, segregation by metallicity between pop-
ulations of clusters is not an exclusive peculiarity of the Local Group. Spectroscopic
observations of the galaxies in the Virgo Cluster strength the idea that segregation
by metal content is a universal characteristic of the globular cluster systems as a
natural consequence of the hierarchical galaxy formation process (see [Shapiro 2010]
and references therein). It is worth mentioning that this observations are biased by
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the technological limitations concerning to the spectroscopic and photometric study
of distant objects. More accurate observations can reveal more correlations in glob-
ular clusters systems in Andromeda and in galaxies beyond the Local Group. All
these facts point directly to conclude that there must be at least two di�erent phys-
ical mechanisms by which a globular cluster can be born. For the Old MPGC
subpopulation the widely accepted hypothesis is that they come from primordial
density �uctuations in the density �eld at very high redshift, when the universe ex-
panded and cooled to a temperature of about 4000K and the baryonic density was
approximately 104 atoms cm3. Under this conditions, the only density �uctuations
that can grow with time has wavelength in excess of the critical Jeans length of
about 5 pc [Peebles 1968].
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Figure 1.4: Age vs Metallicity plot for Globular Cluster Systems of the principal
galaxies of the Local Group. For the Milky Way there is a clear tendency of in-
creasing metallicity with decreasing age, except for the old metal rich clusters in
the upper right corner. Andromeda shows that the youngest clusters are the metal
rich ones, which metallicities are higher even than the metallicity of the Sun. Data
from [Forbes 2010] and [Cezario 2013].

The bound protoglobular gas cloud would eventually reach a mass of about 105M�
to became Jeans unstable, collapsing and fragmenting into the clump that will
conceive the individual stars.
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The previous model �ts quite accurately the lack of heavy elements in the ancient
clusters, also suggesting that those clusters that are old and metal-rich must
increase their metallicities after its formation, by some external source or by
supernovae of very massive stars in its interior [Peebles 1968]. Today many people
believe that all old globular clusters in the MW and in any other galaxy originated
in this way.

The formation of the young subpopulation still remains as an open issue. Models
have been proposed but it appears that there is not a single mechanism that can
form all existing MRGC in a given galaxy. One of the main models suggests that a
signi�cant fraction of the metal-rich subpopulation may have originated in interact-
ing galaxies, both minor and major mergers [Ashman 1992]. Major mergers cause
several starburst episodes in the gaseous component of each galaxy, and globular
clusters can be formed in regions with high gas density [Li 2004]. Minor mergers
may also contribute to the young population with clusters formed within the small
satellite galaxy from the interaction with the larger galaxy [Zepf 1993] Also, the
globular cluster system of the minor galaxy would eventually be accreted by the
largest galaxy, also contributing to the MPGCs subpopulation [Forbes 2010]. The
minor merger scenario can be seen in the Magellanic Clouds, where there is obser-
vational evidence of ongoing cluster formation and an ancient cluster system bound
to the clouds [Harris 1998]. It was further suggested that a satellite galaxy can
generate globular clusters by tidal stripping caused by the larger galaxy, along the
orbital motion of the satellite the tidal forces will despoil the stars of the outermost
layers of the satellite, �nally leaving the core of the satellite galaxy, the new globular
cluster [Bekki 2002].

(a) Stream in NGC 5907 (b) The Field of Streams

Figure 1.5: (a) Inverted color image of the streams of stars and gas around the
spiral galaxy NGC 5907 seen edge-on [Martinez-Delgado 2010]. (b) The Field of

Streams. Spatial density of SDSS stars with g − r < 0.4 around the north galactic
pole. Stand out clearly Sagittarius, Monoceros and Orphan streams and some other
overdensities in the MW halo. [Belokurov 2006]
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Another model proposed to explain the origin of the metal rich subpopulation
argues that super star-forming clumps had optimal conditions to form metal-rich
globular clusters. These clumps are massive associations of gas (109M�) formed
in turbulent gas-rich discs that spiral to the center of the galaxy via dynamical
friction, forming the primeval bulge and leaving gas dispersed all across the disc
which would form the new clusters [Shapiro 2010].

While all previous models really help to explain the origin of many of the metal-rich
clusters, they do not account for the origin of all of them. Major mergers are
unable to explain the range in ages and metallicities of the metal-rich clusters
since a very large fraction of these events would be required to explain the number
of metal-rich clusters, which is why neither minor merger hypothesis is entirely
satisfactory [Harris 1998]. On the other hand, only a small number of clusters
have the range in stellar ages and metallicities that resemble the core of a satellite
galaxy. Star forming clumps are a particular episode of galaxy formation in a
very speci�c time of the evolution of each galaxy, therefore they are inconsistent
with the dispersion of cluster's age and also restricts the MRGCs to the galactic disc.

Despite the objections of the model of minor mergers, the purpose of this work is to
revisit it and complement it in order to achieve a complete picture of the formation
of the metal-rich subpopulation. Here we propose consideration of tidal streams as
progenitors of young, metal rich globular clusters. When a satellite galaxy interacts
with a larger galaxy, the gravitational potential of the second one acting over the
extended body of the �rst one, slowly removes stars, gas and dust from the satellite
that will orbit the larger galaxy in a new stellar structure known as a tidal stream.
The gas may eventually agglomerate into di�erent parts of the stream, forming
clumps that satisfying some conditions could ultimately form globular clusters at
di�erent moments of the galaxy evolution and with a wide range in metallicities, as
observed.

This manuscript is organized as follows: Chapter 2 summarizes the main observa-
tional and theoretical concepts involved in the formation and evolution of globular
clusters and tidal streams, as well as a review of the numerical techniques used to
simulate those astrophysical systems. Chapter 3 is the exposure of numerical ex-
periments performed and the procedures used for the analysis of the computational
simulations carried out in this work. Finally, Chapter 4 contains the main results
obtained in this work, in other words, the principal characteristics of the objects
that were identi�ed to be or to form young globular clusters.
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Theoretical Framework
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The purpose of this chapter is to present the general existing facts and concepts
on all the components involved in this work. The �rst two sections are devoted
to globular clusters and tidal streams and are organized as follows: The �rst part
of each section shows the most important observational facts of each stellar sys-
tem, while the second part is devoted to the di�erent theoretical aspects concerning
the origin and evolution of them. Finally, we describe the computational methods
implemented for the simulation of the astrophysical systems studied here.

2.1 Globular Clusters

As it was exposed in the Introduction, the main interest of this reserch are the
globular clusters that orbit a galaxy. In this section we summarize the principal
results in the research �eld of globular cluster. We began by describing the overview
of the Globular Cluster System besides the observations for individual clusters. The
theoretical aspects that govern the dynamics of an individual cluster are reviewed
below.
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2.1.1 Observations

2.1.1.1 Color-Magnitude Diagrams

The fundamental observational tool for the study of the clusters is the color photom-
etry, through which can be built Color-Magnitude Diagrams (CM diagrams). These
diagrams are constructed measuring the color indexes and the absolute magnitudes
of each star in the cluster. CM diagrams present all evolutionary stages of the stars
in each particular cluster. In the bottom of the diagram, are the main sequence
stars (MS) with small masses that burn hydrogen in their cores. Going from the
bottom end of the diagram to the top-left, more blue, hot and massive stars are
located, up to the point where the stars exhaust the hydrogen in their cores, rapidly
passing to the subgiant branch (SGB) expanding its outer layer due to the energy
liberated by the collapse of the star under its self gravitation [Harris 1998].

Figure 2.1: Color-magnitude diagram for the globular cluster M15. Plot extracted
from [Durrell 1993].

The point of hydrogen exhaustion is known as the turno� point (MSTO) which is
fundamental for age estimates of the clusters as it will be discussed soon.
Once a star has reached the subgiant branch, it transit rapidly upwards to the right
into the red giant region, becoming redder and cooler, with a diameter that can be
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of the order of 1000 times its initial radius.
In the red giant stage, the nucleus of the star becomes increasingly dense and hot
(Up to 105 g cm−3 and 5×107 K), igniting the triple alpha process converting helium
into carbon. Consequently, the central region expands and the envelope contracts,
locating the star in the horizontal branch. RR Lyrae are distinctive stars of the hori-
zontal branch of each cluster characterized for undergoing pulsations approximately
every half a day due to radial instabilities in their envelopes [Lightman 1978].

2.1.1.2 Metallicity

As it has been noticed so far, to determine the contents of heavy elements in the
stars of a cluster is a measure of fundamental importance in the current view of
the formation and evolution of its constituent stars, the cluster themselves, their
host galaxies and even the large-scale structure. Through metallicity, the age of the
clusters is estimated, it is used too to de�ne the characteristics of stellar populations
in the clusters, the metallicity distribution function of the Globular Cluster System
(GCS) is a key element in the evolution of the galaxy that hosts the System. The
metal poor subpopulations of the GCSs may retain traces of the Big Bang nucle-
osynthesis, making their metallicities unique cosmological tests [Carney 1998].
Metallicity Z is de�ned as the fraction of mass of an astrophysical object of all
elements heavier than helium, with mass fraction denoted by Y . Hydrogen mass
fraction is represented by X, so that X +Y +Z = 1 [Binney 2008]. Usually, metal-
licity is expressed as the logarithm of the ratio of metal abundance compared to the
metal abundance of the Sun. In the case of iron, for example

[Fe/H] = log

(
NFe

NH

)
F
− log

(
NFe

NH

)
�
, (2.1)

where NFe and NH are the number of iron and hydrogen atoms per unit volume
respectively [Rowlett 2005]. Iron is not the most abundant heavy element, but is
the easier to determine through spectroscopic measures in the visible spectrum. Iron
abundance is also related with the abundance of all elements heavier than helium
by the expression

log

(
ZF/XF

Z�/X�

)
= A× [Fe/H], (2.2)

with A taking values between 0.9 and 1 [Rowlett 2005]. Measure of abundances
can be performed through several methods from spectroscopic or photometric data.
Perhaps the most widespread method is the so-called "∆S" method based in the
comparison of the strenghts of ionezed calcium K line with the hydrogen line at the
visual light minimum of the RR Lyrae pulsating stars. Then, the ∆S is de�ned
as the di�erence between the two line types reckoned in units of tenths of spectral
class, denoted as Sp(X) with X any element of interest

∆S = 10[Sp(H)− Sp(K)]. (2.3)

Hydrogen spectral line is independent of heavy element contents, therefore it is
practically unchanged throughout the stars in the cluster, while the K line is highly
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sensitive to metallicity [Carney 1998]. Using high resolution spectra it can be ob-
tained a relationship between [Fe/H] and ∆S

[Fe/H] = (−0.211± 0.013) ·∆S − (0.065± 0.078), (2.4)

di�erent calibrations of ∆S vs. [Fe/H] yields di�erent relationships, although all of
them remain very similar [Carney 1998].

2.1.1.3 Distances

There are several methods to estimate the distances to globular clusters from pho-
tometric data. The �rst technique consists in the �tting to a �ducial branch of
nearby stars of known distance and luminosity. Speci�cally, the main-sequence of
the cluster is �tted to local halo subdwarfs with known metallicities and accurate
parallaxes. Given a collection of subdwarfs, the visual magnitude MV of each star
in the set is adjusted by an amount ∆MV for several sample corrections as the
binary nature of some of the subdwarfs or the e�ects on the parallax measurement
from distant stars. Next, the color index is adjusted by ∆(B − V ) to eliminate the
metallicity and reddening di�erence between the cluster and the subdwarfs sam-
ple [Harris 1998]. The distance modulus of the cluster is obtained by averaging the
shift of a cluster �ducial sequence made to match with the MV of the subdwarf
sample [Durrell 1993]. The distance d of the cluster from Earth is given in parsecs
by

d = 10(m−M)V +1. (2.5)

RR Lyrae are also widely used for distance determination given that its intrinsic
luminosities cover a narrow range of 40-50L�. Be standard candles have revealed
that the RR Lyrae variables have a brightness that depends on the fractions Y and
Z through the following expression [Carney 1998]

MV (RR) = α[Fe/H] + β. (2.6)

There is a set of methods to determine the coe�cients α and β (statistical parallax,
GC MS Fitting among others), by means of which the distance modulus of the
cluster can be computed [Durrell 1993].

2.1.1.4 Ages

The age of a globular cluster is determined via spectroscopic and photometric data
of the stars of the clusters. The relation between cluster age and abundances and
the luminosity of the turn-o� point LTO is obtained by tracing isochrones on the
CMD, these isochrones are constructed from models of stellar evolution and given
that all cluster stars were formed about the same time, the age of the cluster Tg is
calculated by the interpolation equation [Sandage 1970]

log Tg =
logLTO/L� + (0.92 + 0.11 logZ)Y + 0.219 logZ − 0.789

0.10 logZ − 0.59
. (2.7)
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The luminosity of the turn-o� point is estimated from the visual absolute magnitude
MTO
V in the CMD. This magnitude has to be corrected to obtain the bolometric

magnitude of the turn-o� point MTO
bol from which it can be found the bolometric

luminosity of the turn-o� point LTO

logLTO/L� = (M�bol −MTO
bol )/2.5. (2.8)

Helium abundance can also be estimated from the CMD through another formula
obtained by interpolation [Sandage 1970]

Y = 1.6(B − V )BE − 0.34M/M� − 0.16MV + 0.901, (2.9)

with (B − V )BE the color at the blue edge of the RR Lyrae strip, MV and M
are respectively the corresponding absolute magnitude and mass at the edge. The
blue horizontal edge masses are approximately related with its metallicities by the
relation [Sandage 1993]

logM = −0.059[Fe/H]− 0.288, (2.10)

thereby, the recipe to estimate the age of the clusters is completed.

2.1.2 Formation

2.1.2.1 Gravitational Collapse and Fragmentation

The formation of stellar clusters begins when molecular clouds meet the conditions
for giving birth to a new group of stars. Therefore, the �rst step is to understand
how the star formation process operates in this clouds.
Interstellar molecular clouds can be regarded as stable, gravitationally bound sys-
tems. The average kinetic energy 〈K〉 of the cloud and the average potential energy
〈U〉 of each particle satisfy the virial theorem. In its simplest version, the virial
theorem can be written as [LeBlanc 2010],

2〈K〉+ 〈U〉 = 0. (2.11)

This virial equilibrium can be broken by di�erent mechanisms, causing the trans-
formation of the cloud into a new astrophysical object. If the main kinetic energy
is large enough to overcome the gravitational balance between the particles of the
cloud, two scenarios are possible. In the �rst the cloud will expand but will �nd
the virial equilibrium after some time. In the second, improbable scenario, the ki-
netic energy of the particles will be so large that de�nitely depart from each other
enough to become unbounded, destroying the cloud. If, however, the movement of
the particles is not large enough to counteract the gravitational forces, the cloud will
collapse. This means that the gravitational collapse occurs when the cloud mass has
exceeded a certain critical value, which is known as the Jeans mass, which in turn
depends on the temperature T and density ρ of the particular cloud. Considering
that the cloud can su�er external pressures, the Jeans mass can be written as

MJ =

(
3

4πρ

)1/2( 5kBT

µmHG

)3/2

, (2.12)
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where kB is the Boltzmann constant,mH is the mass of the hydrogen atom, assuming
a cloud mostly made of H and µ is the cloud mean molecular weight [Draine 2011].
As the cloud collapses, its density increases and thus the Jeans mass decreases. The
collapse process is isothermal because the energy is radiated away from the collapsing
cloud and the temperature is maintained approximately constant. As a result, any
inhomogeneity within the cloud outweigh the increasingly smaller Jeans mass and
begin to collapse themselves. At some point, the cloud becomes opaque, radiation
can not scape the cloud and then the collapse of the cloud is stopped because the
process becomes adiabatic, storing all the energy and allowing the temperature to
grow [Carroll 2007].
Equation 2.12 indicates thatMJ ∝ ρ−1/2 in the isothermal regime. When the regime
becomes adiabatic and the temperature starts to grow with the increasing pressure
P of the cloud, T ∝ P 2/5. Through the equation of state, P ∝ ρT , it can be
concluded that the temperature depends on the density as T ∝ ρ2/3, resulting in a
growing Jeans mass given that in this regime MJ ∝ T 3/2ρ−1/2 ∼ ρ1/2. Then, when
the rate of binding energy which heat the gas during the collapse is approximately
equal to the rate of radiation loss by the gas, the fragmentation stops. Under the
foregoing conditions, the mass Mfrag when the fragmentation has reached its limit
is found to be

Mfrag ≈ 0.02M�
T 1/4

f1/2
, (2.13)

with f a radiation emission e�ciency factor less than 1 since the cloud always emit
less radiation than a black body. Assuming reasonable ranges for T (∼ 1000K)
and f (∼ 0.1), it is concluded that fragmentation terminates if the fragments are
of the order of the solar mass, independent of the redshift or chemical composi-
tion [Kippenhahn 2012].
Nonlinear phenomena present in the dynamics of the molecular clouds (turbulence,
radiative MHD shocks and others) also play a role in the stellar formation, it prevents
the global collapse of the clouds to create instead a collapse in highly anisotropic �la-
ments. These �laments form dense cores with large density contrasts [Chabrier 2003]
in which stars could form. The environment of the molecular giant clouds is decisive
for the resulting post-collapse structure. The mass of the clouds and the pressure
exerted by the surrounding environment directly a�ects the e�ciency of star for-
mation. High pressure environments as galactic halos, interacting galaxies, and the
dense cores of molecular clouds in dwarf galaxies should end up dense and gravita-
tionally bound, like globular clusters. Clusters that form in moderate to low pressure
environments end up as unbound expanding stellar associations [Elmegreen 1997].

2.1.2.2 Initial Mass Function

It is essential to know how many regions can then collapse in a cloud of a given mass.
To do this we can adapt the Press-Schecter formalism for this non-cosmological
scenario. Roughly speaking, the number of elements of mass with a mass larger
than the Jeans mass, could be calculated assuming that the inhomogeneities in
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the density of the cloud are gaussian distributed and adopting the ansatz that at
any given point the probability that an inhomogeneity is larger than the Jeans
mass is equal to the fraction of regions that have masses greater than the Jeans
mass [Mo 2010]. The overdensity �eld is de�ned as

δ(r, t) =
ρ(r, t)− ρ

ρ
, (2.14)

with ρ the mean density of the cloud. If we construct a smooth gaussian density
�eld δs , the probability that at some point δs has a value larger than the associated
Jeans density δJ at that point is given by

P (δs > δJ) =
1

(2π)1/2σ(M)

∫ ∞
δJ

exp

[
− δ2

s

2σ2(M)

]
dδs, (2.15)

where the mass dispersion σ(M) needs to be speci�ed in this case. Once the value
of the dispersion is found, the Press-Shechter ansatz ensures that if F (M > MJ)

is the fraction of masses greater than the Jeans mass, its value will be F (M >

MJ) = P (δs > δJ) and the number of objets with masses between M and M + dM ,
N(M)dM at a given time can be calculated with the expression

N(M)dM = − ρ

M

∂F

∂M
dM (2.16)

= 2
ρ

M

∂P

∂σ

∣∣∣∣ dσ

dM

∣∣∣∣dM. (2.17)

N(M) is known as the mass function. As stars evolve along the main sequence, the
mass function evolves from its initial form or initial mass function φ (IMF). The
present day mass function ξ (PDMF), that is, the number density distribution per
mass interval at the present time is determined directly by the observed present day
luminosity function, and the number of stars formed per time interval along galactic
evolution, the star formation rate b(t) (SFR) satis�es the condition [Chabrier 2003]

φ(logM) =
ξ(logM)

τG

∫ τG

τG−τMS

b(t)dt, τMS < τG, (2.18)

where τG is the age of the cluster and τMS is the lifetime of Main Sequence stars.
Observational studies have concluded that the PDMF for globular cluster is consis-
tent with a lognormal distribution peaked at Mc = 0.33 ± 0.03M� with standard
deviation σ = 0.34± 0.04 [Chabrier 2003]:

ξ(M) ∝M−1exp

{
−(logM − logMc)

2

2σ2

}
. (2.19)

2.1.3 Internal Dynamics

As for any bound stellar system, the dynamical evolution is determined by the
gravitational scatterings between stars within the system. The motion of the stars
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is therefore determined by the close encounters between stars and the e�ect of more
distant stars of the clusters. Close encounters produce large de�ections and velocity
changes, but still remain signi�cantly smaller than the acceleration produced by the
complete particle distribution, as will be seen below.

2.1.3.1 Characteristic Timescales

The relaxation time tr measures the time required for collisions to produce large
changes in the initial velocity distribution. After a time interval tr, the N -body
bound, gravitating system would reach quasi-Maxwellian equilibrium in its interior.
Assuming that all of the N stars in the cluster have equal mass m, with mean
square velocity v2

m and local star density n, the relaxation time is estimated by the
expression

tr =
v3
m

πG2m2n ln(0.5N)
, (2.20)

where G is the gravitational constant. The dynamical timescale td is usually de�ned
as the elapsed time during the displacement of a star with the rms velocity over a
characteristic scale length, as for instance, the radius containing half of the cluster
mass, Rh. Namely, td is simply given by

td =
Rh
vm

=

√
2R

3/2
h

(GM)1/2
, (2.21)

where M is the total mass of the cluster. By employing the virial theorem, we can
write the relation vm = GM/2Rh, which combined with the de�nitions m = M/N

and n = N/(4πR3
h/3) allows the comparison between the two time scales, ie

td
tr
≈ 3 ln(0.5N)

N
. (2.22)

For globular clusters 104 ≤ N ≤ 106, this is, the relaxation time is several orders of
magnitude greater than the dynamical time, therefore, a star can orbit the stellar
system several hundreds of times at least before its energy and angular momen-
tum change appreciably. Furthermore, the age of the clusters is larger than the
relaxation times, making the clusters relaxed N -body systems by two-body encoun-
ters, ultimately resulting in the equilibrium velocity pro�les observed in globular
clusters [Lightman 1978].

2.1.3.2 Core and Tidal Radii

Globular clusters have a core-halo structure with a highly concentrated core, with
densities up to 106M�/pc3. The density decreases signi�cantly in the surrounding
halo. To characterize this structure for a given cluster, two distances for each cluster
are generally used, besides the half-mass radius de�ned in the previous section, one
usually de�nes the core rc and tidal rt radii.
Core radius corresponds to the radius at which the density drops to one third of its
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central value (ρc). Observationally it is equivalent to the radius at which the surface
brightness drops to half of its central value. The virial theorem applied to the core of
the globular cluster de�nes the core radius through the equation [Benacquista 2013]

v2
c =

4πG

3
ρcr

2
c , (2.23)

where v2
c is the mean-squared central velocity.

On the other hand, rt is related to the place where the gravitational �eld of the host
galaxy becomes larger than the self-gravitation of the cluster distribution, there the
tidal radius rt has been reached. Taking into account several considerations, as the
point masses approximation and the cluster circular orbit, a rough estimate of the
tidal radius of a cluster of mass M is [Spitzer 1987]

r3
t =

M

2MGAL
R3

GAL, (2.24)

where MGAL is the total mass of the galaxy enclosed by the galactocentric distance
of the cluster RGAL, including host halo's dark matter.

2.1.3.3 Violent Relaxation and Mass Segregation

Once the cluster is recently formed, the nature of the system is permanently
changed. The primordial cloud is now an association of less, more massive bodies,
as large amounts of gas particles have become stars due to fragmentation. The
relaxation time of the system is therefore signi�cantly reduced. As a result of
this situation, the positions, velocities and masses of the stars will be initially
uncorrelated. This initial phase of the cluster evolution is known as the violent

relaxation in which the energy of each star changes in a mass-independent manner.

The system will undergo damped oscillations of the total energy, after which the
systems reaches a violently relaxed quasiequilibrium con�guration [Lightman 1978].

Meanwhile equilibrium is established in the system, equipartition of energy
causes the transference of kinetic energy from the most massive stars to low mass
stars through two-body encounters. Most massive stars consequently fall to the core
of the cluster leaving the less massive stars in the periphery. This mass segregation
process is accomplished in roughly one relaxation time [Spitzer 1987].

2.1.3.4 Gravothermal Instability

Gravitationally bound systems have negative heat capacities as a consequence of
its virialization. Virial theorem 2.11 ensures that 〈K〉 = −〈U〉/2, secondly, the
dynamical temperature of the cluster is de�ne by

〈K〉 =
3

2
NkBT, (2.25)
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with kB the Boltzmann constant. Therefore, the total internal energy for the cluster
will be

〈E〉 = −3

2
NkBT, (2.26)

thereby de�ning the heat capacity as

C =
d〈E〉
dT

= −3

2
NkB. (2.27)

Self-gravitating systems lose energy when heated. In the core of the cluster, the
massive stars are concentrated making it a much more strong self-gravitating sys-
tem than the halo. Halo can therefore be considered as a heat bath for the
core [Spitzer 1987]. Eventually, any external perturbation will cause a loose of
energy of the core to the outer regions, heating up and contracting in the pro-
cess. The increasing kinetic energy will cause additional �ow of heat from the
core to the surrounding regions, shrinking the core even more in a runaway pro-
cess called gravothermal catastrophe. The contraction of the cluster is know as core
collapse [Benacquista 2013]. The central density of the cluster increases for several
orders of magnitudes due to the accelerated collapse. The formation and evolution
of binaries and their three-body interactions would be more frequent and stronger
as the collapse is carried out and eventually their binary heating does start to in�u-
ence the collapse rate, quickly thereafter reversing the collapse in an expansion of
the central region [Cohn 1989]. As the core expands, its outer layers will be in con-
tact again with the cool halo and the instability will be back, contracting the core
until binary heating reverse the process over again. These gravothermal oscillations
will be present during most of the lifetime of the cluster.

2.1.4 External Dynamics

The evolution of a globular cluster as a whole will be determined by the environment
in which it is formed. The components of the host galaxy to which the cluster is
bound dictate the movement of the cluster and also in�uence the internal dynamics
of its stars and gas. In the following, we review the main mechanisms involved in
the orbital motion of the clusters around its host galaxy.

2.1.4.1 Tidal Stripping

Globular clusters orbit the host galaxy under the in�uence of the host gravitational
potential. During their journey, clusters experience the action of the potential over
the entire length of their bodies. The additional acceleration upon each star could
eventually overcome the gravitational �eld of the cluster at the position of the star,
releasing it of the cluster to become a star of the galactic halo. As discussed in
section 2.1.3.2, stars that are farther away from the tidal radius would be the ones
stripped out. Along the orbital motion of the cluster, tidal radius changes with the
distance of the cluster to the center of the galaxy, being minimal at the perigalacticon
where the host potential over the cluster is the strongest.
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The stars that remain bound to the cluster are also distributed by the galactic
potential. The change in energy due to the external potential is known as the tidal
heating of the cluster. The total heating is the contribution of the heatings generated
by the components of the galaxy, each manifesting as the cluster orbits the galaxy.
Disk heating dominates when the cluster passes through the galactic disk and bulge
heating is the predominant when the cluster passes close to the galactic center.
There is several analytical calculations for the tidal heatings of each component,
but in general, tidal heating ∆E of a N -body system due to an external potential
is estimated by [Binney 2008]

∆E =
1

2

N∑
i

mi|∆vi|2, (2.28)

where the sum is extended over all cluster particles of mass mi and velocity vi.

2.1.4.2 Dynamical Friction

The Globular Cluster System is embedded in the dark matter halo of the host
galaxy. While each cluster traverses its orbit, transfers orbital kinetic energy to the
dark matter by which the cluster is going through. In other words, the dark matter
left behind the cluster gravitationally attracts it causing a gradual slowndown. The
deceleration is re�ected in the orbital decay of the cluster to the galactic center in
a spiral trajectory.
If the cluster of mass M is traveling with velocity v through the dark matter halo
with particles of mass mi (mi � M) and isotropic velocity distribution f(vi), the
drag force can be obtained from the Chandrasekhar's dynamical friction formula.
Here we enunciate the drag force for the case of relaxed dark matter in which
the velocity distribution of the dark matter particles is Maxwellian with dispersion
σ [Binney 2008].

dv

dt
= −4πG2Mρ ln Λ

v3

[
erf(χ)− 2χ√

π
e−χ

2

]
v, (2.29)

where ρ is the mass density of the scattered bodies and χ ≡ v/(
√

2σ). The Coulomb
logarithm ln Λ for a extended spherical body orbiting a host galaxy of mass MGAL

and radius RGAL is

ln Λ = ln

(
bmax

max(Rh,MRGAL/MGAL)

)
, (2.30)

Rh is the half-mass radius of the cluster and bmax is the maximum impact parameter.
Averages values for clusters are Rh = 3pc and bmax = 1Kpc, yielding ln Λ = 5.8.
Chandrasekhar's formula allow the estimation of the time tsp spent by the cluster
to reach the center of the galaxy from a distance ri [Binney 2008]

tsp = 64Gyr
σ

200kms−1

(
ri

1kpc

)
. (2.31)
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2.1.4.3 Ram pressure stripping

The galactic halo contains also large amounts of gas, leftover of the galaxy formation
process and amounts are added later by accretion of intergalactic gas or satellite
galaxies. This halo gas exerts pressure Pram over the interstellar medium of the
traversing bodies. If ρgas is the density of the halo gas, v is the velocity through the
gas of a cluster with gas density ρ and velocity dispersion σ, then, for ram-pressure
stripping to occur, it must be satis�ed that [Gunn 1972]

Pram = ρgasv
2 >

σ2ρ

3
. (2.32)

When the previous condition is met, ram-pressure will strip out a large fraction of
the cluster gas and dust.

2.2 Formation Scenarios of Metal-Rich Globular

Clusters

2.2.1 Globular Cluster from Galaxy Interactions

Globular clusters seem to be much more frequent in elliptical galaxies than spiral
ones, the speci�c frequency is typically a factor of two higher around ellipticals.
Ashman & Zepf [Ashman 1992] proposed that while halo cluster population forms
during protogalactic collapse, the disk globular clusters in spirals and the excess
around ellipticals are product of accretion or merger events. Speci�cally globular
cluster forms from the available gas mass in the merging galaxies, the star formation
is triggered by gas collisions or shocks during the merger. If ε is the e�ciency of
globular cluster formation, then, the number Nnew of clusters that form during a
galaxy merger is

Nnew ≈ 50
( ε

10−3

)( Mclus

2× 105M�

)−1( Mgas

1010M�

)
, (2.33)

where Mclus is the characteristic mass of globular clusters and Mgas is the available
gas mass in the interacting galaxies. Thus, the excess in ellipticals is explained
considering that they come from the merger of spirals with high gas contents.

2.2.2 Globular Cluster from Minor Mergers

Using numerical simulations of minor mergers, Bekki & Chiba [Bekki 2002] showed
that the conditions to form compact clusters of stars can be met at central regions
of the satellite galaxies tidally interacting with larger host galaxy. They concluded
that if the the satellite is a gas-rich one, the pressure in its central region can become
so high to induce global collapse of giant molecular clouds. If Pg is the interstellar
gaseous pressure, in order to collapse pressure-con�ned, magnetized, self-gravitating
molecular clouds, it has to be larger than the surface pressure Ps of the clouds

Pg ≥ Ps ∼ 2.0× 105kB cm−3K, (2.34)
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where kB is the Boltzamnn constant in the cgs unit system. A main result of the
model is that the newly formed metal rich clusters are centrally concentrated de-
pending on the orbital initial con�guration of the satellite, depending on eccentricity
of the satellite galaxy, its relative mass, the inclination and relative direction of ro-
tation. In a subsequent study [Bekki 2003], it was proven that massive clusters like
ω-Centauri could form from ancient dwarf galaxies merging within the host galaxy.
Numerical simulations showed that the outer stellar envelopes of the dwarf galaxies
get almost completely stripped out by tidal forces and ram pressure exerted by the
host galaxy, while the nucleus of the core survives to the stripping by its strong
self-gravity. This system shows a wide spread in the metallicities and ages of its
constituent stars, what appears to be a common feature of the more massive clus-
ters. The conclusion is, therefore, that some young, metal-rich, massive clusters
come from nucleated dwarf galaxies.

2.2.3 Globular Cluster from Super Star Formation

Clumps

Super star forming clumps (SSFC) are vast bodies of gas and dust (R ∼ 1− 3 kpc;
M ∼ 109M�) with high star formation rates (10-200 M�yr−1). Around 5-10 of these
clumps formed in each galaxy preferably in turbulent gas-rich discs in the clump-
driven phase at z ∼ 2. Dynamical friction caused them to spiral into the center
of the galaxy to form a primeval bulge, leaving a fraction of their masses in the
star-forming disc. The SSFC form gravitational unstable structures that will form
cluster by gravitational collapse. Thus, larger bulges will be indicators of a larger
number of clusters, as observed [Shapiro 2010]. The SSGC form 700 structures of
10−3 times the mass of the original cloud, this is, stellar systems up to 106M�. Of
the initial 700, about 10 survive until z = 0, giving a total of 50-100 young clusters
per galaxy [Shapiro 2010].

2.2.4 Globular Cluster from Turbulent Molecular

Clouds

In contrast to the other models, Elmegreen & Efremov argued there is only
one universal mechanism by which both the old and young globular clusters are
formed [Elmegreen 1997]. The formation of globular cluster is triggered when super-
sonic turbulence divides the Giant Molecular Clouds into a fractal web structure of
density �uctuations that depending in the mass and pressure of the region will trans-
form the clouds in a globular cluster, an open cluster or an association of unbound
stars. This mechanism applies for all epochs or cloud's geometries since depends
only in the formation e�ciency which is nearly constant for clouds under similar
conditions. Particularly, globular clusters form in high-pressure environments as
the protogalactic halo which originates the old halo clusters. In the same way, the
young clusters associated with the galactic disc and bulge form from the high pres-
sure environments created by galactic collisions and interactions [Elmegreen 1997].
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2.3 Tidal Streams

2.3.1 Observations

Tidal streams are relatively recently discovered structures because detecting them
in the vast �eld of stars on the sky require high observational performance in
order to distinguish them from the enormous amount of foreground native stars of
The Galaxy. Chronologically, the �rst method used was the determination of the
direction of motion of a group of stars and compare it with the direction of galactic
rotation [Eggen 1971].

The identi�cation of the �rst groups of stars with particular kinematics and
chemical properties laid the foundation to study the origin and evolution of
tidal streams. Recently most streams are detected through spectroscopic and
photometric methods, for instance, measuring kinematic anomalies of bulge K
giants or measuring u, g, r, i, z photometry to map regions of the sky looking for
star color overdensities. The application of this technique is depicted in �gure 1.5
(b) [Belokurov 2006].

Observations with modest-sized telescopes have been used to study tidal features
in spiral galaxies beyond the Local Group. These observations were performed
luminance �lter and the resulting images clearly show the stellar substructures in
the halo of the studied spirals [Martinez-Delgado 2010].

2.3.2 Formation and Evolution

When the gravitational �eld of a host massive galaxy acts over the extended body
of a satellite galaxy, the gravitational force generated varies in di�erent points of
the satellite. Therefore, some stars will be accelerated more and eventually become
bound to the host galaxy, orbiting it in an orbit similar to that described by the
satellite galaxy. With the passing of time, the number of stars undergoing this
transition will be longer, forming a large arc-shaped structure around the host
galaxy, the tidal so-called stream.

Considering that the halo is distributed spherically, with density ρ(r) where r is the
distance to the halo center and with certain approximations, the acceleration over
a single star due the host potential can be expressed as, with r the position of the
satellite star relative to the halo center

v̇ = − G

R3

[
(3M −RṀ)

R · (r−R)

R2
R +M(r−R)

]
, (2.35)

where M = M(R) is the mass enclosed in a sphere of radius R and Ṁ its derivative
with respect to R, the distance of the satellite center of mass to the halo center.
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The interaction with the halo is the main factor that produces the tidal stream and
is also the one that drives the stream evolution over the majority of its lifetime.
But, when the satellite galaxies approaches to the galactic disc, it generates strong
accelerations that become important in the evolution of the stream. During disc
passage, the path of the satellite could be approximated as a straight line path,
with mean velocity Vz.

On the other hand, from Poisson's equation, the potential generated by the disc Φd

of density ρd is
d2Φd

dZ2
= 4πGρd, (2.36)

with which it can be obtained the change of energy produced by the disc passage.
If the satellite crossing radius through the disc is R, the disc heating is found to
be [Binney 2008]

∆Es =
8

3

π2G2Σ2
d

V 2
z

R2, (2.37)

where Σd(R) surface density of the disc.

The heating is strongest at the outer parts of the satellite and is just in this regions
of the satellite where the impulse approximation holds because in the inner part,
the orbital time may be less than the encounter time. Thus, the disc shocks are an
important mechanism for untie the stars of the satellite.
Also, satellite can cross through the galactic bulge. However, the time of the en-
counter is very large and the impulse approximation is not strictly valid.

2.4 Simulations

2.4.1 N-Body Simulations

The computational simulations in this work are performed using the open source
code known as GADGET2 [Springel 2005]. The dynamics of collisionless particles
(Dark matter and stars) is described by the hamiltonian

H =
∑
i

p2
i

2mia(t)
+

1

2

∑
ij

mimjϕ(ri − rj)

a(t)
, (2.38)

where ri are the coomoving vectors with conjugated canonical momentum given by
pi = a2miṙi. The temporal dependency is included in the evolution of the scale
factor a(t) given by the Friedman-Lamaitre model. In our case, the simulations will
be non-cosmological, with a(t) = 1 and newtonian �at geometry. The gravitational
potential ϕ(r) satis�es the Poisson equation:

∇2ϕ(r) = 4πGρ(r). (2.39)
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For the collisional particles (gas), the evolution of the hydrodynamical features
is performed by the Smoothed Particle Hydrodynamics formalism. The density is
estimated as

ρi =
∑
j

mjW (rij , hi), (2.40)

according to the kernel function W (r, h) which depends in turn of the smoothing
length h. The equation of motion for the collisional particles is writen in terms of
W

dvi
dt

= −
N∑
j=1

mj

[
fi
Pi
ρ2
i

∇iWij(hi) + fj
Pj
ρ2
j

∇iWij(hj)

]
, (2.41)

where

fi =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1

, (2.42)

with pressures Pi = Aiρ
γ
i . Without heat sources or shocks, the �ux is reversible and

the entropy Ai of each particle remains constant.
Temporal evolution of the particles is carried out by a Leap-Frog algorithm with
temporal evolution operator U(∆t) given by

U(∆t) = D

(
∆t

2

)
K(∆t)D

(
∆t

2

)
, (2.43)

whose operators "kick", K(∆t) and "drift", D(∆t) are given by

Dt(∆t) :

{
pi 7→ pi

xi 7→ xi + pi

mi

∫ t+∆t
t

dt
a2

(2.44)

Kt(∆t) :

{
xi 7→ xi

pi 7→ pi + fi
∫ t+∆t
t

dt
a

(2.45)

and

fi = −
∑
j

mimj
∂φ(xij)

∂xi
(2.46)

is the force over a particle.
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Formation and evolution of globular clusters are astrophysical processes ocurring
in cosmological timescales. Therefore, to observe any change in a tiny fraction of
these processes for our human limited time scales is practically impossible, becoming
essential to study the origin and evolution of globular clusters using computer simu-
lations. In this chapter we present the numerical methods adopted in this work. In
section 3.1 the numerical techniques used to set up initial conditions for the galaxies
involved in the simulation are discussed, including a description of the aspects con-
cerning the gaseous component of the satellite galaxies in the simulations. Then, in
section 3.3 we show the methodology followed to choose the initial relative location
of the interacting galaxies and to con�gure the mergers. In the subsequent sections,
we show the di�erent techniques implemented to identify potential globular cluster
candidates from the substructures formed in the N−Body hydrodynamical simu-
lations. Finally, this chapter ends with the methods applied to the candidates to
characterize them and diagnose the kind of astrophysical objects formed.

3.1 Realization of the isolated galaxies

The entire set of simulations consists in the interaction ot two systems, a Milky Way
type galaxy or host galaxy and a typical spheroidal satellite galaxy. The center of
mass of the host galaxy is always located at the origin of coordinates, while the
satellite is located in di�erent initial positions and has no rotation.

3.1.1 The Host Galaxy

The host galaxy was built based on the CLUES project [Gottlober 2010]. This
means that we generate a disc galaxy specially conditionated to relive the real Milky
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Way in the Local Group according with the ΛCDM model of structure formation.
Therefore, the values of the virial mass and radius for the dark matter halo are
obtained from the Most Massive Projenitor of the MW at z ≈ 2 in one of CLUES
simulations. The mass distribution of this halo is given by the truncated Hernquist
density pro�le [Hernquist 1993]

ρhalo(r) =
Mh

2π

ah
r(r + ah)3

, (3.1)

where Mh is the halo mass and ah is the halo's radial scale length which is related
with the scalelength rs of the Navarro-Frenk-White pro�le via the concentration
index c through the expression

ah = rs
√

2[ln(1 + c)− c/(1 + c)], (3.2)

with c = r200/rs and r200 is de�ned as the radius in which the mean density of the
enclosed dark matter is exactly 200 times greather than the critical density of the
universe [Springel 2005]. The values for all the haloes in the simulations we have
the following values: Mh = 7.9× 1011M�, r200 = 63.29 Kpc, c = 4.15.

The choice of an Hernquist halo instead of a NFW halo stems basically from two
facts. The �rst one is that the total mass in the Hernquist pro�le remains �nite
in the outer parts while the total mass in NFW is divergent. The second one is
the equivalence of the pro�le 3.1 and the NFW pro�le in the inner regions of the
halo [Springel 2005]. The embedded disc has a stellar mass equivalent to the 0.4%
of the dark matter halo according to the literature reported values [Moster 2010].

The density distribution for the galactic disc is a combination of the bright distri-
bution in vertical and radial directions [Hernquist 1993]

ρdisc(R, z) =
Md

4πr2
dz0

sech2(z/z0) exp(−R/rd), (3.3)

withMd the disc mass, rd and z0 are the radial scale length and vertical scale thick-
ness respectively. The election of the dark matter halo determines the parameters
of the disc embedded within it. Several studies have been developed with objective
of determine the parameters for realistic stable discs [Mo 1998]. The values adopted
for the disc based on this previous investigations where rd = 1.53 Kpc, z0 = 0.31

Kpc and Md = 3.3 × 109M�. The host galaxy, halo and disc, is the same for all
simulations.
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Figure 3.1: Left panel : Projected spatial distribution in the x − y plane of a dark
matter Henrquist's halo. Right panel : Velocity pro�le in the spherical radial coor-
dinate of the Hernquist's halo. Rvir = 46.44Kpc, Vvir = 177.64 Km/s.

3.1.2 The Satellite Galaxy

The satellite galaxy was modelled as an spherical symmetric distribution of particles
that follow the Hernquist pro�le [Hernquist 1993]

ρsatellite(r) =
Ms

2π

a

r(a+ r)3
, (3.4)

where Ms is the satellite mass and a is the satellite scale radial length which cor-
responds with the Second Most Massive Progenitor in the CLUES simulation used
for this work. As it will be explained in the next chapter, the satellite galaxies in
the di�erent experiments have the same mass and size, with the
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(a)

(b)

Figure 3.2: Upper panel : Galactic disc seen face on. Bottom panel : Galactic disc
seen edge on.

variation of other parameters as resolution and orbital con�guration. The parame-
ters for the satellite galaxy are r200 = 21.38 Kpc, Ms = 2.5× 1010M� and c = 4.26.
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We ran two type of simulations; the �rst type did not include any gas in the satellite
galaxy, that is, a pure dark matter satellite. The second type were performed with
a satellite galaxy with a fraction of its mass added as gas particles, this procedure
is described below.

Figure 3.3: Left panel : Projected spatial distribution in the x − y plane of a disc
planar to the x − y plane. Right panel : Velocity pro�le in the cilindrycal radial
coordinate of the exponential disc.

3.1.2.1 Including Gas

The collisional component was included only in the satellite galaxy, since it is in
the satellite galaxy where we want to study the evolution of the gas and its e�ects
on the formation of globular cluster candidates. The gas was originated following
exactly the same distribution than the satellite galaxy, with the same spatial
parameters but with di�erent number of particles.

The mass of the gas was chosen as the 16.6% of the total mass of the satellite
galaxy in order to have the maximun amount of gas available permitted by the
Λ-CDM model. The merger are therefore wet mergers. To generate the gas supplied
satellite, we simply attach the pure gaseous satellite described in the previous
paragraph to the original pure dark matter satellite, this is, we locate the two
distributions in the same spatial location and the two distributions thus form the
satellite galaxy.

The gas is in hydrostatic equilibrium inside the satellite gravitational potential with
an isotropic temperature pro�le

T (r) =
mp

kB

1

ρ(r)

∫ ∞
r

ρ(r)
GM(r)

r2
dr, (3.5)

where mp is the proton mass and M(r) is the cumulative total mass and
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ρ(r) = ρsatellite(r) [Mastropietro 2005].

3.2 Numerical Realizations

Using the density pro�les expressed in the formulae of the previous paragraphs,
we can write the corresponding expressions for number density of each component.
Namely, for the host halo

nhalo = 2ahNh
r

(r + ah)3
, (3.6)

is the aforementioned number density with Nh the number of particles of the dark
matter halo. For the stellar disc, we have

ndisc =
Nd

2πr2
dz0

Rsech2(z/z0) exp(−R/rd), (3.7)

in which Nd is the number of particles of the disc. Given our construction of the
satellite and its gaseous component, the number density expression for the stellar
and gaseous components of the satellite di�ers only on the number of particles, like
mass density changes only in the total mass of each component. In compact form,
this is

nsatellite,gas = 2aNs,g
r

(r + a)3
, (3.8)

where Ns and Ng are the number of particles of stars and gas in the satellite
respectively. The ensemble of particles �nally distributed according to the distri-
butions shown are obtained using an algorithm of Acceptance/Rejection. Roughly
speaking, a set of points is randomly generated in a certain region of the space.
Then, the point generated is evaluated using the Von Neumman algorithm to
accept or reject the point as a realization of the corresponding distribution function.

The generation of velocities was also performed with the Acceptance/Rejection tech-
nique. To assign velocities to each particle, the moments of the Collisioneless Boltz-
mann Equation are used and the rejection select the correct realization for the
corresponding velocity distribution, Maxwellian in the case of the spherical systems
and normal for the �attened systems [Hernquist 1993]. Figures 3.1 and 3.4 show
the result of the initial conditions generation process for the host dark matter halo
and for the pure dark matter satellite. The plots include the velocity pro�le of both
halos. Figure 3.2 is the initial generated disc, seen face-on and edge-on. This plot
was done with the disc of higher resolution.
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Figure 3.4: Left Panel Projected spatial distribution in the x− y plane of a satellite
spheroidal satellite galaxy. Right Panel : Velocity pro�le in the spherical radial
coordinate of the Herquist's satellite. Rvir = 21.38Kpc, Vvir = 59.76 Km/s.

3.3 Initial Positions

The initial position of the host galaxy was chosen as the origin of coordinates and the
initial position of the satellite was chosen according to the following procedure. The
initial position r0 and velocity v0 of the satellite galaxy were chosen by determining
the most probable orbital parameters that the subhalos infalling a host halo will
have. According to [Wetzel 2011], the circularity η and the pericentre rp depend on
the host halo mass Mhost and redshift z and are distributed at the moment of their
passage through the host's virial radius in the following way

df(Mhost, z)

dη
= C0(Mhost, z)η

1.05(1− η)C1(Mhost,z), (3.9)

df(Mhost, z)

drp
= R0(Mhost, z) exp

{
−[rp/R1(Mhost, z)]

0.85
}
. (3.10)
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αi βi γi gi(z)

C0 3.38 0.567 0.152 1
C1 0.242 2.36 0.108 1
R0 3.14 0.152 0.41 (1 + z)−4

R1 0.45 -0.395 0.109 (1 + z)−4

Table 3.1: Parameters for the functional �ts of the orbital distributions
from [Wetzel 2011]
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Figure 3.5: Circularity distribution for the infalling satellites. The small vertical
line indicates the average for z = 2

Where the coe�cients Ci(Mhost, z) and Ri(Mhost, z), i = 0, 1 encapsulate the host
halo mass and the redshift dependence that the orbital parameters exhibit. M∗(z)
is the characteristic halo mass scale of collapse at z. The coe�cientes have the
functional form found in [Wetzel 2011]:

Ci, Ri = αi

(
1 + βi

[
gi(z)

Mhost

M∗(z)

]γi)
. (3.11)

The parameters αi, βi, γi are summarized in table 3.1 and g(z) is a function with the
explicit dependence on redshift. An usefull approximation to the relation between
M∗(z) and z is also given by [Wetzel 2011], namely

log
[
M∗(z)/h−1M�

]
= 12.42− 1.56z + 0.038z2, (3.12)
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and we use it to calculate the orbital parameters of our satellite galaxy. From
table 4.1, the mass of the host isMhost = 4.6×1011M� at z = 2. Then, equation 3.12
allows us to calculate the relationMhost/M∗(z) and equations 3.9 and 3.10 determine
the distributions of pericenters and circularities at infall for our simulations. Figures
3.5 and 3.6 shows the calculated distributions for our host halo and redshift. Orbit
circularity has a nearly constant small rate of decrease with redshift while pericentre
distance exhibits a decrease in its average values with z. In particular, at z = 2 we
obtain an average pericentric distance of 0.27Rvir, with Rvir the virial radius of the
host halo. For this halo Rvir ≈ r200 = 63.29Kpc. The average circularity at z = 2 is
0.54. With this two values we calculate the eccentricity e and apocentric distance
ra using the two body approximation as

e =
√

1− η2, (3.13)

ra =

(
1 + e

1− e

)
rp. (3.14)

For our system the numerical values are e = 0.84 and ra = 198.34Kpc. Finally,
making use of the vis-viva equation, the velocity at apogalacticon is simply

va =

√
2
GM

ra
(1− e), (3.15)

which is 34.9 Km/s.
Based on the satellite parameters given in the previous paragraph, the merger was
disposed in �ve di�erent con�gurations. Its main di�erences are their location rela-
tive to the disc plane and its orbital movement direction relative to the disc rotation.
The con�guration parameters are shown in table 3.2 and a schematic illustration of
all of them are represented in �gure 3.7

Name Nomenclature r0 (Kpc) v0(Km/s)

Perpendicular p (0,0,198.34) (0,34.9,0)
Planar Corrotating pcr (0,198.34,0) (-34.9,0,0)

Planar Contrarotating pct (0,198.34,0) (34.9,0,0)
Inclined Corrotating icr (99.6,99.6,140.25) (-24.67,24.67,0)

Inclined Contrarotating ict (99.6,99.6,140.25) (24.67,-24.67,0)

Table 3.2: Simulations' orbital con�gurations
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Figure 3.6: Pericentre distribution for the infalling satellites, redshift dependence is
explicitly noted. The small vertical line indicates the avarage value for z = 2.

3.4 Gravitational Potential Evaluation

As a �rst approximation tool to explore the possible substructures in the stream
at the output of the simulations, we use the gravitational potential over a star
belonging to the stream, due only to the rest of stars in the stellar stream. The �rst
issue here is to distinguish between the particles that actually belong to the stream
and those that remain bound to the satellite. This procedure will be exposed
in detail in section 4.1.1; here we just show the main goal to perform such calculation.

The potential over the star j generated by the distribution of particles of the stream
is calculated by

Φj
Stream = −G

NStream∑
i 6=j

mi

rij
, (3.16)

where NStream is the number of particles of the stream in every snapshot. This
potential was calculated using a tree code, described below.

The tree algorithm begin constructing a cubic cell containing the entire system of
particles, which is the root node. If the node has more than one particle, the cell
is divided into eight identical cubic cell, called daughter cells. This procedure is
recursively performed until all the daughter resulting cells have exactly one particle
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regardless several cell could, in fact, be empty.

The potential evaluation of a given particle is carried out recursively depending
on the open tolerance θ. If l is the size of the cell under consideration and D is
the distance from the cell center of mass to the particle then, if l/D > θ the cell
is subdivided into eight cells and each one of them is examined again, repeating
the division until all the particles have been included. The potential is calculated
directly, through 3.16. Otherwise, if l/D > θ, the contribution to the potential
of this whole cell is estimated as the potential generated by a pseudo-particle. To
increase the accuracy of this approximation, the potential of the particle distribution
in the cell is estimated using the multipole gravitational moments of the distribution,
usually until the quadropole term

Φ(r) = −G
(
M

r
+
Qijrirj

2r5

)
, (3.17)

where the repeated indices are summed from 1 to 3. The position vector r is ex-
pressed with respect to the center of mass of particles in the cell. The monopole M
and the quadrupole Q are

M =
∑

mk, (3.18)

Qij =
∑

mk(3xi,kxj,k − |xk|2δij). (3.19)

The dipole term vanishes since r is expressed relative to the center of mass of the
distribution [Aaerseth 2003].

The calculation is performed in every snapshot. The gravitational potential is plot-
ted in �gure 3.8 for the radial coordinate with the clump in the potential stream
still visible.

3.5 Density Computation

The best way to identify substructure that could potentially be associated to a
globular cluster in our simulations is through the computation of the spatial mass
density of stars in the body of the stellar stream [Diemand 2008]. We evaluate
the density of the discrete set of points using the EnBiD(Entropy Based Binary
Decomposition) algorithm [Sharma 2006]. In this algorithm, the tesselation of the
space is performed estimating the Shannon Entropy for each dimension, namely

S = −
Nb∑
i=1

pi log pi, (3.20)
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Figure 3.7: Schematic representation for all the initial con�gurations of the simula-
tions speci�ed in table

with pi being the probability that a particle is in the ith bin of the equal sized bins
in which each dimension is divided. Nb is the number of bins and ni is the number of
particles within the ith bin. Minimum entropy guarantees maximum density vari-
ation in that dimension, allowing better recognition of clustered structures within
the global distribution of particles. The probability pi is therefore equal to ni/N
since N is the total number of particles. The dimension that will have minimum
entropy will be selected to be splited by a hyperplane perpendicular to it, leaving
half of the particles in each resulting subspace. The position of the hyperplane will
correspond to the median of the points in the dimension. The process is repeated
recursively until each subspace contains only one particle.
To not understimate the densities at the boundary of the subspace due to irregular
distribution of the particles within the subspace, the algorithm performs a boundary
rede�nition of the subspace boundary in order to avoid that the irregular distribu-
tion a�ects the density estimation given that for a particle near the boundary, the
nearest neighbors could be truncated by the boundary. Let the maximum and min-
imum coordinates of a subspace be lmax and lmin in a given dimension. Namely,
boundary correction is:

lmax → xmax +
xmax − xmin

nb − 1
, (3.21)

lmin → xmin −
xmax − xmin

nb − 1
, (3.22)

with nb being a threshold of particles greater than 7, xmax and xmin the correspond-
ing maximum and minimum coordinates of the particles inside the subspace. The
correction is applied when if applied if simultaneously
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Figure 3.8: Potential projection in the radial direction for the satellite without gas.
Φ has units of UnitEnergy/1010M� × 103

lmax − xmax > fb
xmax − xmin

nb − 1
, (3.23)

xmin − lmin > fb
xmax − xmin

nb − 1
, (3.24)
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where fb is a constant factor related to the number of dimensions of the space d
through fb = 2N1/d.

Figure 3.9: Satellite density projected in the radial coordinate. ρ is in 1010M�/Kpc3

Finally, the density estimation for this work was calculated using the kernel smooth-
ing technique, selecting a �xed number of nearest neighbours around the particle
of interest. The kernel could be of two types: Isotropic or Anisotropic. For the
isotropic case, the kernel density at a point x is given by

ρ(x) =

nngb∑
i

miW (xi − x, h). (3.25)
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In di�erent tests, the Epanechikov spherical symmetric kernel gives the better re-
sults [Sharma 2006]:

W (u) =

 (1− u2) 0 ≤ u ≤ 1

0 otherwise
, u =

√√√√ d∑
j=1

(
xj
hj

)2

. (3.26)

The smoothing parameter h is chosen such that it encloses the �xed number of
neighbours nngb, thus varying in space and time in order to re�ect the variations of
the local interparticle separation.
The spherical kernel is �nally written as a product one-dimensional kernels as

W (x,h) =
fdWd(u)∏d

i=1 hi
, (3.27)

where fd is a normalization constant given by

fd =

(∫ 1

0
W (u)Sdu

d−1du

)−1

, (3.28)

the computation involves the surface of a unit hypersphere in d-dimensions, namely:

Sd =
2πd/2

Γ(d/2)
, (3.29)

where Γ is the Delta function.
The smoothing length de�nes a region of in�uence for each particle. This region is
then a sphere of radius l × h, with 2 ≤ l ≤ 3 containing the nearest neighbours,
that is, the kernel is isotropic. As the surroundings of each particle change in space
and time, the value of h also vary for each particle and for di�erent times, in such
a way that the number of neighbors remain the same. In some situations, the
heighbours of a given particle could agglomerate along certain direction, causing
the isotropic kernel to understimate the density of the particle. Anisotropic kernels
are build to adapt to those anisotropic clumps of particles, re�ecting the di�erent
interparticle separation in the vecinity of the particle along di�erent directions. This
approach de�nes an ellipsoid around each particle instead of a spherical region as
in the isotropic case. The ellipsoid built to take into account the anisotropy of
the particle distribution. The anisotropic formalism made use of the anisotropic

smoothing tensor H to de�ne the axes of the the triaxial ellipsoid around a particle
i.

H =

 h1x h2x h3x

h1y h2y h3y

h1x h2z h3z

 , (3.30)

with each column de�ning one of the three axis vector hk. The ellipsoid de�ned
by hk accommodates according to the instantaneous motion of the �uid around a
particle located at the point x. In general terms, the motion is characterized by
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the velocity v(x, t) and the di�erent spatial rates of change in those velocities is
accounted in the deformation tensor

σij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (3.31)

If the length of the k, (k = 1, 2, 3) axis of the ellipsoid at time t is hk(t), the value
of this length will change to a value of hk(t + δt) due to contractions or dilations
during the interval δt. If λk are the eigenvalues of σij , the length of the axis at t+δt

is given by:
hk(t+ δt) = hk(t)(1 + λkδt). (3.32)

The initial values of the axis lengths are chosen to be the smoothing length of
the isotropic kernel de�ning a sphere of in�uence for each particle, and then, each
length evolves in the way described previously. The anisotropic kernel is written as
[Sharma 2006]:

W (x, h) =
fd

|D|1/2|H|W (|D1/2EH−1x|). (3.33)

Where E is the eigenvalue matrix that diagonalizes the covariance matrix C at the
point x′ = H−1x and D is the corresponding diagonal eigenvalue matrix.
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In order to evaluate the possibility of formation of globular clusters from the mate-
rial striped during a minor merger, we performed in the �rst instance, simulations
without the collisional component, i.e. simulations with satellite galaxies totally
devoid of gas. In this chapter the design of such simulations, their properties and
the main results of this experiment are described.
In the second part of this chapter we describe the simulations performed with gas,
star formation and cooling in the satellite galaxy and the subsequent analysis done
on them in order to identify gas clouds that potentially host progenitors of globular
clusters and present the results of these analyzes.

4.1 Simulations without Gas

The main purpose of these experiments consists in verify if a pure collisionless stream
could contain particles that eventually cluster and form some bound system, without
the in�uence of gas. We performed two sets of simulations, varying the resolution of
the experiment, this is, for the same satellite galaxy the total mass remains constant,
but the number of constituents particles was duplicated. The total masses, number
of particles and mass per particle are summarized in tables 4.1 and 4.2
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Mass (M�) Number of particles Mass per particle (M�)

Satellite 3.2× 1010 1× 105 3.2× 105

Disc 3.3× 109 5.6× 104 6× 104

Halo 7.9× 1011 7.3× 105 1.1× 106

Table 4.1: Masses and number of particles for the satellite halo and each component
of the host galaxy for the lowest resolution simulation without gas.

The analysis starts with the identi�cation of the stream of material stripped out
from the satellite during the merger, then we calculate the potential and the density
using the methods shown in the previous chapter to identify any structure that could
be formed during the interaction. These structures may provide hints on the places
where gas can collapse, form stars and globular clusters.

Mass (M�) Number of particles Mass per particle (M�)

Satellite 3.2× 1010 2× 105 1.6× 105

Disc 3.3× 109 5.6× 104 6× 104

Halo 7.9× 1011 7.3× 105 1.1× 106

Table 4.2: Masses and number of particles for the satellite halo and each component
of the host galaxy for the highest resolution simulation without gas.

In total we ran ten collisionless simulations, two for each orbital con�guration de�ned
in table 3.2. The �rst set of simulations consisted in one run from each con�guration
with number of particles speci�ed in table 4.1 while the second set used the values
in table 4.2. The reason of simulate the same simulation with two di�erent satellite
number of particles was to evaluate the impact of resolution in the behavior of the
particles in the merger, for instance, to study if the possible potential wells of the
potential cluster progenitor change in deep with resolution.

4.1.1 Identification Of Streams

We de�ne the tidal stream as composed by the particles that have escaped from the
gravitational in�uence of the satellite galaxy. In other words, it is made of particles
who became unbound from its original host potential and pass to orbit the main
galaxy potential. To identify the stream's particles, we proceeded as follows:

• In the initial con�guration, t = 0 we calculate the position and velocity of the
center of mass of the satellite respect to the origin of coordinates. If ri and vi
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are the position and velocity of a particle of mass mi, for the center of mass:

rcm =
1

M

N∑
i

miri, (4.1)

vcm =
1

M

N∑
i

mivi, (4.2)

where M is the total mass of the satellite.

• In order to calculate the mechanical energy Ei of each particle at this initial
time respect the center of mass of the satellite, we translate the center of
coordinates to the center of mass recently calculated by the simple transfor-
mations of positions r′i = ri− rcm and velocities v′i = vi−vcm. Therefore, the
mechanical energy of each particle respect to the center of mass of the satellite
is

Ei =
1

2
miv

′2
i −G

N∑
i<j

mimj

r′ij
, (4.3)

where r′ij = |r′j − r′i|.

• The set of particles having the lowest energies are stored in a new set, named
the more bounded particles. The number of particles of this more bounded
set is arbitrary �xed but we assume at this point that this initial set of more
bounded particles remains as the more bounded particles to the satellite across
the entire simulation.

• At each timestep of the simulation, we track the more bounded particles iden-
ti�ed at t = 0 and compute the center of mass for them. This center of mass
is assumed to be the center of mass of the satellite itself, since it has been as-
sumed that this more bound particles remain being the most bound particles
of the satellite galaxy throughout the simulation. This can be veri�ed in �g-
ure 4.1 showing that indeed, assuming that the set of most bounded particles
can be used to track the movement of the satellite during the simulation. As
a �rst step to verify the operation of the stream identi�cation procedure, we
track the center of mass of the satellite for each simulation checking that in-
deed the center of mass follows a smooth orbit that spirals toward the galactic
disk.



42

Chapter 4. Streams, Clusters and Substructures of the

Satellite Galaxies

0 1 2 3 4 5 6 7

t(Gyr)

0

50

100

150

200

R
(K

p
c)

center of mass distance
ict icr pct pcr p

Figure 4.1: Evolution of the radial distance of the satellite center of mass in time
for each orbital con�guration.

• Once the position and velocity of the center of mass of the galaxy for each
timestep are determined, the mechanical energy of each particle is recalculated
relative to the new center of mass by means of 4.3.

• With a de�nite value of the binding energy, the stars are then segregated into
those who still belongs to the satellite galaxy (Ei < 0) and those who are not
bounded anymore to it (Ei > 0). The last ones are said to be part of the tidal
stream.

The separation scheme allows a clear identi�cation of structure formed by the par-
ticles stripped away from the satellite galaxy. In �gure 4.2 it is shown the projected
positions on the z − y plane of the stellar stream and the satellite galaxy separated
with the previous criterion at di�erent times of the merger with the host galaxy.
Tidal features known as umbrellas can be clearly appreciated in the late phase of
the stream evolution when the satellite galaxy is almost fully disrupted.
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Figure 4.2: Satellite (red) and Stream (black) projected positions on the z−y plane
for 4.25, 5.5, 6.75 and 8.0 Gyr

From our simulations it can be seen that the tidal forces tear apart increasingly par-
ticles of the satellite, greatly increasing the spatial extent and mass of the stream.
Figure 4.3 shows the rate of mass gain/loss for the stream/satellite in the di�erent
satellite orbits. The orbital con�guration is not important until the �rst perigalac-
ticon passage at t ≈ 2 (compare with �gure 4.1), thereafter, the mass loss is more
signi�cant for the satellite whose orbit is in the same direction of rotation of the
disk, indicating that tidal shocks by the disk are stronger in this situation, which
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was expected since the transference of momentum is greater in this con�gurations
where the angular momentum of the disk and the orbital momentum of the satellite
are in resonance [Binney 2008].
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Figure 4.3: Comparative mass gain/loss by the stream/satellite for all initial orbital
con�gurations of the satellite. Relative rotation to the disc become important after
the �rst passage through the galactic disc. Disc shock are more pronounced in
corrotating con�gurations.

4.1.2 Stream Substructures

The particles of the stream can eventually experience some perturbation or insta-
bility that could bound nearby particles in a new stellar subsystem. Depending on
the stability of this new born structure, it could evolve to an autonomous structure
independent of the satellite. There are several types of stellar structure that the
new stellar system could form, as spikes or umbrellas (see �gure 4.2), but the aim
of this work is evaluate the probability that the new system is, indeed, a globular
cluster.
As a substructure forms inside a tidal stream, the particles that now belong to the
new born stellar system will be located in the same region of space further shar-
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ing similar velocities respect to some observer increasing the density in both the
con�guration and phase spaces.

Figure 4.4: Left Panel: Real space projection on the z−y mapped with the potential
intensity. Right Panel: Phase space projection on the r − vr plane with same
potential color mapping. There is not decentralized potential wells in which a bound
structure could develop.

Substructures embedded in the distribution of stream particles then manifest as
overdensities in both spaces. If the substructure is large enough, the potential
well of the overdensity would become deeper than the potential of the stream. In
�rst instance we proceeded looking for the potential wells in the stream particles
generated by the clustering of stars. Figure 4.4 summarizes the results of this
task. Distances and velocities are measured from the center of the satellite for
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�gures 4.4 and 4.5. Color mapping allows to establish that caustic regions are
under approximately the same potential, which is expected for an umbrella-like
structure since its particles are at similar distance from the center of the satellite
galaxy.

Figure 4.5: Left Panel: Real space projection on the z − y mapped with density.
Right Panel: Phase space projection on the r − vr plane with same density color
mapping. The density contrast is specially high in the tidal sparks, but still do not
exhibit the morphology of a globular cluster.

The color map does not highlight any regions, apart from the central region, in which
the clustering of particles produce a deeper potential well than its surroundings, that
is because the clumps do not have a deep enough potential to stand out over the
stream potential. This conclusion does not rule out the possibility that particle
associations can actually be bounded structures.
The estimation of the potential in the stream to identify the clumps proved to
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be inconclusive. Density maps, conversely, clearly shows the regions in which the
spatial density is signi�cantly high relative to the stream density. However, these
high density structures did not exhibit a morphology or a velocity dispersion pattern
similar to those of a globular cluster, as can be seen in �gure 4.5. The structures
were not remained for signi�cant periods of time, leading us to conclude that, in
absence of collisional matter, the formation of a cluster-like structure has a very low
probability to form.
Structures arising in the collisional simulations are not stable in the sense that
their morphology changes dramatically over time and disappear relatively quickly.
However, the structures formed are regions of high density in which gas could cool
and collapse, thus catalyzing the formation of globular clusters.

4.2 Simulations with Gas

In last section we showed that in non-dissipative simulations it could be possible to
form transient structures but they do not live longer enough to be called clusters.
However they can provide the potential well where gas can cool and condense to form
deeper potential wells and form a bound system. These set of simulations depict
a more realistic scenario by adding gas particles to the satellite galaxy. Basically,
the initial con�gurations of the simulations with gas were exactly the same as those
without gas, that is, equal masses for the host and the satellite galaxy and the
same initial orbital con�guration. The gas in the satellite was added as a spheroidal
distribution according with 3.4 whose mass was taken as the 16.6% of the total mass
of the satellite, totaling a mass of 3× 1010M� for the satellite galaxy.

Mass (M�) Number of particles Mass per particle (M�)

Gas 5× 109 2× 104 2.5× 104

Satellite 2.5× 1010 4× 104 6.2× 104

Disc 3.5× 109 5.6× 104 6.4× 104

Halo 7.9× 1011 7.3× 105 1.6× 106

Table 4.3: Total masses and particle numbers of the di�erent components in the
simulations with gas. This simulation corresponds to the lowest resolution of the
set of the three simulation with a satellite galaxy with gaseous content or HR1.

The simulations run include dissipative e�ects as star formation, radiative cooling
and supernovae feedback with SPH parameters of maximum number of neighbors
and temperature set to 28 and 1000 K respectively. In this way we incorporate
the main physical processes to evaluate the formation of clusters within the tidal
streams.
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4.2.1 SPH Artificial Fragmentation

The numerical scheme used to simulate the hydrodynamics of the gas could im-
pact the formation of clumps within the molecular clouds in an arti�cial way. The
resolution of a SPH simulation involving gravity is therefore a critical quantity in
order to obtain realistic results from physical process rather than arti�cially induced
mechanisms by numerical �uctuations.
For SPH particles, the smoothing lengths h are constrained to contain approxi-
mately a number of particles Nngb in a sphere of radius h, since the gravitational
softening is set equal to h, the mass contained in the sphere can not be roughly
equal to the local Jeans mass, otherwise the collapse is inhibited by the softening of
the gravitational forces.

Mass (M�) Number of particles Mass per particle (M�)

Gas 5× 109 4× 105 1.25× 103

Satellite 2.5× 1010 8× 105 3.1× 104

Disc 3.5× 109 5.6× 104 6.4× 104

Halo 7.9× 1011 7.3× 105 1.6× 106

Table 4.4: Total masses and particle numbers of the di�erent components in the
simulations with gas. This simulation corresponds to the medium resolution of the
set of the three simulation with a satellite galaxy with gaseous content or HR2.

Thus, the called minimum resolvable mass, Mres must always be less than the local
Jeans mass 2.12. Taking Mres as the mass of 2Nngb particles, it can be estimated
as [Bate 1997]

Mres = Mgas

(
2Nngb

Ngas

)
, (4.4)

where Mgas and Ngas are the total mass and particle number of the gas. The previ-
ous expression explicitly shows that for a larger number of particles, the minimum
resolvable mass decreases and the collapse and fragmentation will be less a�ected
for the numerical implementation.
In order to take into account these arti�cial clustering e�ects induced by SPH we
have therefore performed various simulations, with exactly the same orbital con�gu-
ration of the pure collisionless simulations and also equal masses but with signi�cant
increase in resolution. Tables 4.3, 4.4 and 4.5 contain all the information about the
masses and the resolutions of the collisional simulations performed.
The three experiments were run with Nngb = 128 for all the simulations. The con-
dition 4.4 is tested for the clumps in the satellite galaxy gas that we selected as
globular cluster potential progenitors. The strategy adopted for the identi�cation
of the progenitors and the results obtained of such strategy are depicted in the next
two sections. Hydrodynamic simulations have much greater computational cost than
pure collisionalless simulations, hence we ran one of the possible 5 initial con�gu-
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rations, the referred in table 3.2 as p or perpendicular to the plane disc given that
is one of which is experiencing greater mass loss (see �gure 4.3). For this unique
orbital con�guration we then change the resolution of the experiment, the lowest
resolution simulation is called HR1 for high resolution �rst experiment. With the
increasing resolution we have HR2 and �nally, the highest resolution simulation of
this work is called HR3.

Mass (M�) Number of particles Mass per particle (M�)

Gas 5× 109 1× 106 5.0× 103

Satellite 2.5× 1010 3× 106 8.3× 103

Disc 3.5× 109 5.0× 105 7× 103

Halo 7.9× 1011 1× 107 7.9× 104

Table 4.5: Total masses and particle numbers of the di�erent components in the
simulations with gas. This simulation corresponds to the highest resolution of the
set of the three simulation with a satellite galaxy with gaseous content or HR3.

4.2.2 Globular Clusters Candidates

The possible progenitors for the clusters were selected basically from the phase space
density maps. As we have concluded in section 4.1.2, the density maps can highlight
the clumps in real space from the phase space estimation of density. The density
maps for the gas in the satellite are shown in �gure 4.6. Figure 4.8 is simply an
agmentation of �gure 4.6 to appreciate the clumps in more detail.
Contrary to what happened in the pure collisionless simulations, the gas is clearly
clustered in regions with high density which apparently persist for a considerable
amount of time. Those clumps in the satellite gas are the primary candidates to
form star clusters. The candidates were extracted for the distribution of particles
through their high density contrast, following the strategy described below

• First the candidates are identi�ed by performing a selection of particles
through a phase space density threshold ρth. Particles with phase-space den-
sities below the density threshold are de�nitely ruled out as potentially be-
longing to some candidate clump. The value of ρth was chosen examining the
values of the density of the simulation using, for instance, a plot of the type
of �gure 4.7 in which we clearly distinguish between particles of high and low
density. In particular, in �gure 4.7 we have the density of gas particles accom-
modated in the interval 0 to 254835 at the x axis, halo dark matter particles in
the interval 254836 to 986212, disk particles ranged from 986213 to 1042222,
satellite particles go from 1042223 to 1842222 and new stars formed in the gas
comprising the interval between 1842223 to 2222800.

• With the candidates identi�ed, for each one of them, we determine the center
of the distribution of particles in a particular snapshot of the simulation.



50

Chapter 4. Streams, Clusters and Substructures of the

Satellite Galaxies

Figure 4.6: Left Panel: Real space projection on the z − y mapped with density.
Right Panel: Phase space projection on the r − vr plane with same density color
mapping. R and V are the virial radius and velocity respectively. Can clearly be
seen in the plot the clumps of high density with spheroidal morphologies that seem
to orbit the center of the galaxy. This corresponds to a couple of snapshots of HR2.
Density units are 1010M�/Kpc3

• Then, gas particles that are within a sphere of a reasonable radius R0, cen-
tered in the center determined in the previous step were selected to track the
candidate along the simulation.

• With the identi�cation number of each particle in candidate, we track the po-
sition and velocities of that particles in the snapshots preceding and following
the one in which the identi�cation was made. In this point, we look for par-
ticles of any kind that lie within a sphere or radius Rth that time, including
dark matter particles from the host and the satellite haloes, disk particles or
new stars born during the interaction.
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Figure 4.7: Density values for the particles in HR2 p−simulation against the iden-
ti�cation particle number. This plot correspond to the snapshot at 3.75 Gyr after
simulation start. Density units are 1010M�/Kpc3

• For every snapshot, we compute the properties of the clump in order to com-
pare the evolution of the visually identi�ed gas clouds with an astrophysical
observed system.

The strategy for the identi�cation of the clumps was applied to the three simulations
with the same density threshold. Increasing the resolution results in increasing
the density, which is evidenced by a larger number of clumps with high density
contrast exhibiting some degree of structure. Figure 4.9 is a comparison of the three
simulations at the same simulation time. The number of candidates identi�ed is
clearly larger for the high resolution simulation but the relevant fact is that some
candidates appear in similar locations in the three simulations, indicating that the
formation of this candidates is not due to numerical �uctuations. In the same
�gure it is also visible structures scattered through space, corresponding to tidally
disrupted candidates at this stage of the simulations.
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Figure 4.8: Left Panel: Real space projection on the z − y mapped with density.
Right Panel: Phase space projection on the r − vr plane with same density color
mapping. This plot is exactly �gure 4.6 but zooming to the internal region near the
galactic disc for HR2. ρ is in 1010M�/Kpc3.

4.2.3 Analysis and Conclusions

Once candidates where identi�ed, we proceeded to characterize its internal and
orbital dynamics. As simulation HR3 o�ers abundant candidate clumps and also
is the most realistic simulation of the performed three, we emphasize the analysis
on it. The orbital decay of the candidates are depicted in �gures 4.10 (a) and (b)
which show the typical spiral decay by dynamical friction of a system embedded in a
dark matter halo. Both plots were constructed by estimating the components of the
center of mass position relative to the center of the host halo. The �rst one is the
magnitude of the center of mass vector while the second one are projections of the
three-dimensional orbits in the xy-plane. The candidate therefore naturally tend
to orbit near the galactic disc, contributing to the young subpopulation because is
recently formed and the kinematics tend to be, by spiral decay, the kinematics
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Candidates identi�ed with the algorithm described in this section. The
number of clumps increase with increasing resolution. All the plots correspond to
3 Gyr simulation time. (a) Candidates in HR1 with the disc seen face on. (b)
Candidates in HR1 with the disc seen edge on. (c) Candidates in HR2 with the disc
seen face on. (d) Candidates in HR1 with the disc seen edge on. (e) Candidates in
HR3 with the disc seen face on. (f) Candidates in HR3 with the disc seen edge on.
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observed in young disc clusters. The previous conclusion is reinforced by the
fact that the galactic disc has a diameter of approximately 20 Kpc comparable
with the size of the orbits when the candidate had lose the majority of its orbital
energy 4.10 (b). It can also be noted in sub�gure (a) that the candidates appear at
di�erent epochs of the minor merger, some of them are faster disrupted and others
survive several perigalacticon passages. Thus, we can argue that the candidates are
stable structures in time that can survive for more than 1 Gyr as a consequence
of the physical processes involved in their evolution, not just due to numerical
�uctuations. Several candidates exhibit irregularities in their trajectories that
could be due to multiple causes, including the stripping away of many or all of
the particles with which it was identi�ed. The evolution of the candidates follows
until they are about to merge with galactic disc after several perigalacticon passages.

Sub�gure 4.11 (a) shows the time evolution of of the minimun resolvable mass for
each cluster according to 4.4, which remains much smaller than the local Jeans
mass for the clumps depicted in �gure 4.12. Thus it can be ensured that the
structures obtained come from physical processes rather than numerical artifacts
due to SPH fragmentation. Figures 4.11 (b), (c) and (d) shows the internal
dynamical evolution of the candidates, subplot (b) shows the contraction and
expansion of the outer boundaries of the clumps as a consequence of the interaction
with the host galaxy. The estimation of the tidal radius for each candidate was
done via equation 2.24. The values of the tidal radii are mainly greater than the
observed values of the tidal radii of the globular clusters by an order of magnitude,
suggesting that the clumps corresponds with the observed cores in Giant Molecular
Clouds [Harris 1999]. The moments of greater contraction, that is, when the tidal
radii are the smallest, occur in the passage of the candidate through the galactic
disc as can be noted by the comparison of �gures 4.11 (a) and 4.10 (a).

The tidal heating ∆E was estimated by the equation 2.28 by comparing the changes
in velocities of the candidates due to the interaction of the galaxy. Tidal heating
are prominent when the clumps are passing through the galactic disc (Figures 4.11
(c) and 4.10 (a)), moments in which the tidal radii are minimum. Disc shocks are
therefore a disruptive factor rather than promote the development of compact cores
via gravitational instabilities. This transfered energy to the candidate will heat the
gas within it, suppressing the star formation process.

The central density 2.23 shows that innermost region of each clump exhibit a
central density oscillation as can be seen in �gure 4.11 (d). The central density
oscillates independently of the passages through the galactic disc, evidencing that
the central region of the clumps are stable structures, but its oscillations are not
gravothermal ones, they are induced by the interaction with the host halo given
their short life times.

Figure 4.13 shows the mass evolution of each candidate in HR3. For all the candi-
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dates, the principal constituent is gas. The high picks of host dark matter content
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Figure 4.10: Orbit structure of the candidates identi�ed in HR3. (a) Magnitude of
the galactocentric vector position as a function of time. (b) Projection of the orbits
in the yz plane.

present in the candidates are circumstantial particles that are counted by the
algorithm when the candidate traverses the central region of the dark halo where
the density is su�ciently high to cause the miscounting of host dark particles as
candidate particles.
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The candidate labeled as Candidate 0 was the only formed by gas and particles of
another species. Figure 4.13 (a) clearly shows that the predominant mass component
is the dark matter of the satellite from where it comes. This dark matter component
is not circumstantial, and is an integral part of this candidate during its lifetime.
The rest of the candidates are basically cores of gas, without dark matter or disc
stars, and even more striking, no new stars formed within the candidate. Without
stars, the candidate will never become a cluster, it will remain as a compact core of
gas with high density.
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Figure 4.11: Evolution of the orbital and structural parameters in HR3. (a) Minimun
resolvable mass of the candidates in time. (b) Evolution of the tidal radii of the
candidates (c) Tidal heating evolution for each candidate. (d) Evolution of the
central densities for each candidate.

In this simulations in particular, the lack of new stars is attributed to the isothermal
gas sphere model adopted for the gas in the satellite galaxy. The temperature is so
high that will inhibit the star formation in the candidates. The exploration of other
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more realistic model for the distribution of temperatures in the gas is an issue that
will be explored in the future.

(a) (b)

(c) (d)

Figure 4.12: Gas thermodynamic state variables for the candidate 4 for in HR3 3.75
Gyr after simulation start at snapshot 300. (a) Temperature [K] vs density loga-
rithm. (b) Temperature [K] vs Pressure [UnitEnergy/Kpc3]. (c) Density logarithm
vs Pressure [UnitEnergy/Kpc3]. (d) Jeans mass vs Pressure.

However, the formation of new stars in the candidates is determined by the numerical
mechanism adopted in the code to generate new stars from the gas. Thus, the cores
may still satisfy the physical conditions for collapse, fragment and give birth to a
stellar cluster. Figure 4.12 summarizes the thermodynamical state variables of the
gas particles in the clump and their relation with the Jeans mass. While many
particles are subjected to low pressure with high Jeans masses that do not lead to
collapse and star formation, several other particles posses the necessary attributes
to lead to star formation in the clumps.
Therefore, we can conclude that the cores formed in a tidal stream could become
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Figure 4.13: Mass as a function of time for each candidate, segregated by type. The
prominent peaks in the plots are due to the pass of the cluster through the central
region where the algorithm take into account particles of the dark halo that actually
do not belong to the candidate (a) Candidate 0. (b) Candidate 1. (c) Candidate 4.
(d) Candidate 5. (e) Candidate 6. (f) Candidate 7.
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Jeans unstable in at least a region of it, thereby forming a new star system. The
cores have masses of the order of 105M�, the resulting stellar system would be
around 103M� which is consistent with the young clusters observed in the galaxy.





Chapter 5

General Conclusions

In this work, we ran a series of N -body simulations of satellite galaxies undergoing
minor mergers with a larger host galaxy, looking for globular cluster-like systems
in the tidal stream formed by the tidally stripped material from the satellite. The
work was divided in two main parts: The �rst part was performed to explore the
possibility of a completely devoid of gas satellite as progenitor of the cluster-like
structures while the second part was dedicated to simulations with isothermal gas
in the satellite galaxy.

Then we performed several estimations in the simulations to identify the stream
and the possible globular cluster candidates inside it. The two approaches adopted
to identify candidates were the estimation of the gravitational potential in order
to found potential wells generated by cluster-like structures and the estimation of
the phase-space density which will reveal the presence of cluster-like candidates as
density picks.

The analysis with the gravitational potential does not reveals any potential well
apart from the potential of the satellite itself. By contrast, the density estimation
clearly identi�es overdensity regions in which a cluster-like structure could be
formed. As a �rst conclusion we argue that without gas, no cluster-like candidates
could be formed as none of the overdensities show a de�nite morphology or stability
over time. When the gas was included, several cluster-like clumps appear.

Running with gas physics results are remarkably di�erent. The candidates obtained
proved real physical structures that lived for a considerable amount of time and
whose orbital evolution leads them to be objects in the surroundings of the
galactic disk. The total absence of stars formed within the clumps is mainly
due to the thermodynamic setup of the gas as an initially isothermal sphere
and probably due to the implementation/parameters of star formation we use.
However, examining the thermodynamic evolution of the clump, the probability
of a collapse under real physical conditions seems plausible since quantities as
the pressure and the Jeans mass within the candidates could favor cluster formation.

Thus, the exploration of realistic temperatures distributions and another more real-
istic hydrodynamical parameters of the gas is the path to follow in order to complete
the �nal conclusion of this work; globular clusters can be formed in tidal streams
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of gas rich satellites. The validity and scope of this main conclusion should be
tested by running simulations with higher resolutions with the above considerations
in the physical modeling of the problem. This is the roadmap for future work that
contributes to improving and supplementing the results presented here.
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