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The exact solutions for the two-dimensional motion of a
conduction band electron in a disc shaped quantum dot
under the effect of an external magnetic field and parabolic
and inverse square confining potentials are used to calcu-
late the linear and nonlinear optical absorption as well as
the linear and nonlinear corrections to the refractive index
in the system. It is shown that this kind of structure may
work well as a model for a quantum ring. Using the basic
parameters typical of the GaAs, the results show that the
influence of the normally oriented magnetic field induces
a blueshift in both the first and third order peaks of the
calculated optical quantities. In addition, total peak ampli-
tudes are shown to be growing functions of the magnetic
field strength. The increase in the strength of the inverse
square potential function enhances significantly the con-
tribution from the nonlinear third-order terms in both the
absorption and the relative correction to the refractive in-
dex.

1 Introduction

The description of the parabolic – and semi-parabolic –
confinement of charge carriers in quantum nanostruc-
tures has been put forward in a rather large number of
reports in the last two decades. To mention just a few, we
may refer here to earlier works dealing with the study of
optical properties [1–3], and hydrogenic impurity bind-
ing energies [4] in quantum wells. Moreover, one may
find more recent studies dealing with the particular fea-
tures of the optical properties in this kind of parabolically
confined systems [5–7].

The use of self-assembly techniques has made pos-
sible the fabrication of quantum dot (QD) and quan-
tum ring (QR) semiconductor structures by using the so-

called self-assembly techniques (see, for instance, the ref-
erence [8]). Both QD and QR systems are a subject of
great interest due to their prospective applications in the
design and production of optoelectronic devices [9–12].
On the other hand, if the subject goes beyond the case
of single nanostructures, the artificial molecules consist-
ing of coupled QDs or QRs are particularly attractive be-
cause they show great promise for quantum information
processing [13] and terahertz device production [14].

By extending the semiclassical theory of Balian and
Bloch, Tatievski et al. [15] have determined the elec-
tronic shell structure resulting from the interference of
closed orbital paths for mesoscopic systems like spheri-
cal clusters, discs and rings. They have obtained analyti-
cal results for the shell structure in the density of states,
an useful tool to calculate oscillations in the binding-
energy and ionization potentials. Tan and Inkson [16]
have used an exactly soluble model to study magneti-
zation and persistent currents of electrons confined in
two-dimensional mesoscopic rings and dots which al-
lows the calculation of magnetization and persistent cur-
rents for a range of device geometries containing a large
number of electrons. They showed that in the weak-
magnetic-field limit, the persistent current is simply pro-
portional to the magnetization, presenting Aharonov-
Bohm type oscillations. In the same direction, the inves-
tigation of equilibrium electron currents and magnetiza-
tion in an ideal two-dimensional disk under the presence
of a strong magnetic field has been carry out by Avishai
and Kohmoto [17].
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The investigation of linear and nonlinear optical re-
sponse in parabolic QDs has also given rise to a number
of reports, among which we can mention those in refer-
ences [18, 19]. In addition, there is a particular type of
quasi-zero-dimensional system known as quantum disc
(QDC) – or disc-shaped quantum dot – , which has also
attracted some attention [20–22]. That is precisely the
type of system we are dealing with in the present work.

This article is devoted to the study of the electronic
states in quantum discs under the combined influence of
two distinct confining profiles: a parabolic-type, and the
one provided by a potential energy function with inverse
square dependence. All this is complemented with the
presence of an externally applied magnetic field. The in-
verse square potential function appeared as a model for
the inter-particle interaction in the study of the quantum
problem of N particles in a two-dimensional parabolic
potential under a magnetic field [23]. We discuss here
that its inclusion, together with the other two potential
fields, might lead to a rather direct modeling for the
states of carriers confined in a two-dimensional semi-
conducting QR. It will be shown that the single electron
eigenstates of the corresponding Schrödinger-like con-
duction band effective mass equation can be exactly de-
scribed via analytical expressions in this case. Then, we
shall apply the obtained energy levels and wavefunctions
in order to calculate the linear and nonlinear optical ab-
sorption and relative refractive index variation in a GaAs-
based system bearing such a geometry. The paper is or-
ganized as follows. In Sect. 2 we describe the theoretical
framework. Section 3 is dedicated to the discussion of the
obtained results, and our conclusions are given in Sect. 4.
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Figure 1 A cross-view showing the potential energy profile along
the directionϕ= 0.

2 Theoretical framework

Consider the motion of a confined electron in a disc
shaped quantum dot (DSQD). Then, the polar system

(r, ϕ) is a suitable set of coordinates for the description
of the allowed quantum states. Taking into account the
presence of a static magnetic field B, oriented along the
positive normal to the plane (here named as z-direction),
the Hamiltonian of the system, within the framework of
the effective mass approximation, is given by

H = 1

2m∗
[

p+ q

c
A
]2

+V (r), (1)

where q , m∗ and c are the absolute value of the electron
charge, the electron effective mass, and speed of light
respectively. A = (Ar = 0, Aϕ = Br

2 , Az = 0) is the vector
potential of the static magnetic field. We are assuming
here the presence of a confining potential, V (r), which
combines a parabolic and inverse squared potential func-
tions;

V (r) = 1

2
m∗ω2

0 r 2 + ħ2

2m∗
λ

r 2 , (2)

where ω0 represents the confinement frequency and the
dimensionless parameter λ characterizes the strength of
the the external field, with λ< 0 describing an attractive
potential and λ ≥ 0 a repulsive one. In the present work,
we take λ≥ 0 which enables us to calculate solutions for
the lower energy bound since the attractive potential has
no lower energy bound.
Now, if use the Coulomb gauge (∇.A = 0), and use the fact
that ∇.(Aψ) = A.(∇ψ)+ (∇.A)ψ= A.(∇ψ) the Schrödinger
equation in polar coordinates has the form

[
− ħ2

2m∗

(
∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂ϕ2

)

+ 1

2
m∗Ω2r 2 + ħ2

2m∗
λ

r 2 + ωc

2
Lz

]
ψ= Eψ, (3)

where ωc = qB
m∗c is known as the cyclotron frequency, Ω=√

ω2
0 +

ω2
c

4 is the total confinement frequency in the mag-
netic field, E is the energy eigenvalue, and Lz is the or-
bital angular momentum operator along the z-direction,
respectively. To find the solution of (3) that corresponds
to a two-dimensional eigenstate ψ, it is customary to pro-
pose

ψ(r,ϕ) = χ(r )�
r

ei mϕ

�
2π

, (4)

where m is an integer usually named as magnetic quan-
tum number. The combination of (3) and (4) allows to ob-
tain an equation for χ(r ) in the form

d2χ

dr 2 +
[

2m∗E

ħ2 − m∗Ω2

ħ2 r 2 − m2 +λ−1/4

r 2

]
χ= 0, (5)

328 www.ann-phys.org © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Ann. Phys. (Berlin) 524, No. 6–7 (2012)
O
riginalPaper

with

E = E − mħωc

2
. (6)

Now, we may perform two more typical changes: l (l +
1) = m2 +λ− 1/4 and ρ = r 2. With this, it is possible to
rewrite the differential equation (5) as follows;

d2χ

dρ2 + 1

2ρ

dχ

dρ
−

[
1

4
+ l (l +1)

4ρ2 − m∗E

2ħ2ρ

]
χ= 0, (7)

where the only solution of the quadratic equation for l
with physical meaning is:

l =−1

2
+

√
λ+m2. (8)

Defining

η=
√

ħ
m∗Ω

, κ= E

2ħΩ , sm = l +1

2
= 1

4
+
�
λ+m2

2

and setting ρ = η2z, Eq. (7) can be written as

d2χ

d z2
+ 1

2z

dχ

d z
−

[
1

4
+ sm (sm −1/2)

z2
− κ

z

]
χ= 0. (9)

Taking into account the asymptotic behavior at the
origin and at the infinity for the wave function, we can
propose the following ansatz for the well-defined solu-
tions at those two limits:

χ(z)= zsm e−z/2F (z), (10)

leading us to the equation

z
d2F

d z2 + (b − z)
dF

d z
−aF = 0, (11)

known as Kummer’s differential equation, whose solu-
tion is the confluent hypergeometric function [25]. Here
b = 2sm +1/2 and a = sm +1/4−κ. The solutions of this
equation that guarantee that χ(z) remains finite require
the parameter a to become a negative integer, −n. In this
case, the confluent hypergeometric function reduces to a
polynomial of n-th degree. Here, we are going to use the
representation

F (−n,b; x)= Γ(1+n)Γ(b)

Γ(b +n)
Lb−1

n (x), (12)

where Γ(c) is the Euler gamma function, and Lb−1
n (x) are

the so-called associated Laguerre polynomials.
With the aid of (4) and (10) we can write

ψ(r,ϕ)mn = Nmn�
r

r 2sm e−r 2/2η2
L2sm−1/2

n (r 2/η2)ei mϕ, (13)

where the normalization constant is determined by means
of the orthonormality condition

∫∞

0
xαe−x Lα

n (x)Lα
m(x)d x = Γ(n +α+1)

n!
δnm (14)

as

Nmn =
√

n!

πΓ(2sm +n +1/2)η4sm+1 . (15)

By using n = E
4ħΩ − sm − 1

4 and E = E − mħωc
2 , we can

obtain the energy spectrum of the confined states as

Emn = (2n +1+
√

λ+m2)ħ
√

ω2
0 +

ω2
c

4
+ mħωc

2
(16)

As it can be seen from the Fig. 1, if λ �= 0, there will
be a spatial region in the disc shaped quantum dot in
which the repulsive potential barrier centered at the ori-
gin is significantly high, and strong enough to keep the
electrons far from reaching values of the radial compo-
nent close to r = 0. This means that the behavior of the
carrier system will largely resemble that of the electrons

Figure 2 (online color at: www.ann-phys.org) The probability den-
sity corresponding to the ground state wave function obtained
from Eqs. (13), (15), and (16). The values of ω0 and λ are the same
used in the Fig. 1.
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Figure 3 (online color at: www.ann-phys.org) The same as in Fig. 2,
but for the case of the wave function that corresponds to the first
excited electron state.

confined in a quantum ring. This is confirmed by observ-
ing the Figs. 2 and 3, where we are depicting the prob-
ability density corresponding to the ground and first ex-
cited electron states in the system under study. There, the
shape of |ψ|2 indicates that the radial region around the
origin is forbidden for the carriers given the repulsive ef-
fect of the inverse square barrier. Then, the use of the
present model, with a suitable combination of both ω0

and λ could be useful for the simulation of actual quan-
tum rings, provided the advantages of having analytical
expressions for both the wave functions and eigenvalues
of the problem.

Among the many applications that these states may
have, we choose in this work to apply them in the calcula-
tion of linear and nonlinear optical coefficients in DSQD
(or – as commented above – parabolic 2D QR) provided
this kind of systems are attracting much interest in op-
toelectronics. Given that some intersubband energy in-
tervals, together with their corresponding dipole matrix
elements, will be used to calculate the absorption coeffi-
cients, we will choose here the energy levels and the wave
functions participating in the transition as

E1 = E00, E2 = E11, ψ1 =ψ00, ψ2 =ψ11, (17)

hence, the energy difference E21 between E2 and E1, is
expressed as:

E21 = (2+ 1�
λ+1+�

λ
)ħ

√
ω2

0 +
ω2

c

4
+ ħωc

2
. (18)

Finally, the electric dipole transition matrix elements
are written as

M21 =
∣∣q 〈

ψ2
∣∣r cosϕ

∣∣ψ1
〉∣∣

= qπ

2
N00N11λ

2(s0+s1+1) (s1− s0 −1/2)!

(s1− s0 −3/2)!
Γ(s0+ s1 +1), (19)

and taking into account the electric dipole selection rules
we have

M22 = M11 = 0. (20)

We shall also give in this section a brief derivation of
the linear and third-order nonlinear optical absorption
coefficient due to intersubband transitions in a DSQD by
the compact density matrix method and the iterative pro-
cedure. The approach assumes the interaction of polar-
ized monochromatic electromagnetic radiation with the
DSQD. The electric field of this optical wave is

E(t )= E0 cos(ωt )= Ẽ exp(−iωt )+ Ẽ exp(iωt ) . (21)

Let us denote ρ as the one-electron density matrix for
the system. Then the evolution of the density matrix op-
erator ρ obeys the following time-dependent equation

∂ρi j

∂t
= 1

iħ [H0 −qxE(t ),ρ]i j −Γi j (ρ−ρ0)i j , (22)

where H0 is the Hamiltonian of the system in the ab-
sence of the electromagnetic field Ẽ (t ), ρ(0) is the unper-
turbed density matrix, and Γi j is the phenomenological
relaxation rate, caused by the electron-phonon, electron-
electron and other collision processes. Here we select
Γi j =Γ0 = 1/T0 when i �= j for simplicity.
It is possible to solve (22) by using an iterative method
that incorporates the different orders of the dielectric
susceptibility response to the electric field wave. This im-
plies proposing a solution in the form

ρ(t )=∑
n
ρ(n)(t ), (23)

which, after substitution in Eq. (22) allows to write the
following set of relations between the n-th and (n +1)-th
order terms [24]:

∂ρ(n+1)
i j

∂t
(24)

= 1

iħ {[H0,ρ(n+1)]i j − iħΓi jρ
(n+1)
i j }− 1

iħ [qx,ρ(n)]i j E(t ) .
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Considering terms up to third order in the electronic
polarization of the DSDQ, due to the electric field, we can
write

P(t ) = ε0χ
(1)
ω Ẽ eiωt +ε0χ

(3)
ω Ẽe3iωt + c.c , (25)

where ε0 is the vacuum permittivity, χ(1)
ω and χ(3)

ω are
the linear and third-order nonlinear susceptibility coeffi-
cients, respectively. The electronic polarization of the n-
th order electronic polarization is given as

P (n)(t ) = 1

V
Tr (ρ(n)qx), (26)

where V is the volume of interaction and Tr denotes the
trace or summation over the diagonal elements of the
matrix ρ(n)ex.

After taking into account (20), the expressions for the
linear and third-order nonlinear optical absorption coef-
ficients are, respectively,

α(1)(ω) =ω

√
μ

εR

|M21|2σvħΓ0

(E21 −ħω)2 + (ħΓ0)2 (27)

and

α(3)(ω) =−
√

μ

εR

(
4Iω

2ε0nr c

) |M21|4σvħΓ0[
(E21 −ħω)2 + (ħΓ0)2

]2 , (28)

where σv is the electron density of the DSQD,μ is the per-
meability of the system, εR = ε0n2

r (nr is the refractive in-
dex) is the real part of the permittivity, ħω is the incident
photon energy, and I = 2ε0nr c |Ẽ |2 is the incident opti-
cal intensity. Therefore, the total optical absorption coef-
ficients can be written as

α(ω) =α(1)(ω)+α(3)(ω). (29)

In a similar manner it is possible to obtain the lin-
ear and third-order nonlinear relative refractive index
change whose expressions are, respectively,

	n(1)(ω)

n
= σv |M21|2

2n2ε0

E21 −ħω
(E21 −ħω)2 + (ħΓ0)2 (30)

and

	n(3)(ω)

n
=−σvμc I |M21|4

n3ε0

E21 −ħω[
(E21 −ħω)2 + (ħΓ0)2

]2 , (31)

where (20) was again taken into account. Finally the total
relative refractive index change can be calculated as

	n(ω)

n
= 	n(1)(ω)

n
+ 	n(3)(ω)

n
. (32)

3 Results and discussion

In this section we present our calculations for the opti-
cal absorption and refractive index change in the type of
2D-quantum dot under study. The prototypical system
considered consists of a GaAs-based DSQD, and the val-
ues of the confining potential input parameters are those
reported in the caption linked to Fig. 4. Moreover, the
different constants appearing in the expressions above
are: σv = 5× 1022 m−3, Γ0 = 1/(0.14 ps), c = 3 × 108 m/s
(the speed of light in vacuum), ε0 = 8.85 × 10−12 F/m,
μ = 1.256,×10−6 T m/A, nr = 3.2, q = 1.6 × 10−19 C, and
m∗ = 0.067m0, where m0 is the free electron mass.

In the Fig. 4(a) one can observe the behavior of the
linear, third-order nonlinear and total optical absorption
coefficients, calculated as functions of the photon energy.
Several distinct values of the applied static magnetic field
have been taken into account, as it may be seen from the
different curves presented. From the results depicted it
is possible to conclude that, as it should be expected, the
the main contributions come from the linear term since
the third-order coefficient just induces a comparatively
small contribution. There is a resonant peak located in
ħω = E21 which suffers a blueshift as there is a raising
in the magnetic field intensity. By considering the expres-
sion (16) for the energy levels, one sees that E21 directly
depends onωc ; that is, with the field amplitude, B . There-
fore, when there is an increase of the field intensity, the
effect is to move the resonant energy towards higher en-
ergy values.

On the other hand, in the Fig. 4(b) we notice the varia-
tion of the maximum peak intensity of the coefficients as
a function of the magnetic field. Here, the combination of
two main reasons can explain the variation in the peak in-
tensities: On one side, we have the variation associated to
changes in the value of the electric dipole matrix element
|M21|. This quantity tends to decrease with the the mag-
netic field intensity until it reaches an asymptotic value,
in which case it is not possible to keep a progressive con-
fining of the electron in the system. In such a way, the
wave functions of the system stop varying which leads to
a constant value of |M21|. On the other side, we realize
that the peak intensities vary as a result of the magnetic
field provided that the coefficients are proportional to
the frequency of resonance, E21, and this quantity grows
linearly for sufficiently high magnetic field strengths, as
can be deduced from the Eq. (18). Such energy difference
does not have an upper limit value, therefore we may
characterize it as the most influent factor in the
behavior of the peak intensities. This is true because it
affects mainly the dependence of the linear optical ab-
sorption coefficient, which dominates in the overall re-
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Figure 4 (online color at: www.ann-phys.org) Linear (black line),
third-order nonlinear (red line) and total (blue line) optical absorp-
tion coefficients as a function of the photon energy (a) and mag-
netic field (b) with ω0 = 1.2×1013 s−1, λ = 0.5, and I = 1.5×
1010 W/m2 for Fig. (a). In Fig. (b) we use the same parameters as
well as ħω= E21.

sult. The third-order coefficient contributes more signifi-
cantly in the region of small field intensities, in which the
increase of the energy difference E21 is the main factor in
the variation. Then, for larger field strength, the decreas-
ing tendency of the dipole matrix elements becomes the

10 20 30 40 50 60 70
-0.010

-0.005

0.000

0.005

0.010

0 10 20 30
-0.002

0.000

0.002

0.004

0.006

0.008

(a)

15 T10 T
5 T

Δn
 / 

n

photon energy (meV)

Δn(1)

Δn(3)

Δn

B = 0

Δn(1)

Δn(3)

Δn

(b)
Δn

 / 
n

magnetic field (T)

Figure 5 (online color at: www.ann-phys.org) Linear (black line),
third-order nonlinear (red line) and total (blue line) relative refrac-
tive index change as a function of the photon energy (a) andmag-
netic field (b) with ω0 = 1.2×1013 s−1, λ = 0.5, and I = 1.5×
1010 W/m2 for Fig. (a). In Fig. (b) we use the same parameters as
well as ħω= E21 −ħΓ0.

leading effect in the monotony of the nonlinear optical
absorption coefficient. It is possible to see that the first
and total coefficients tend to have the same behavior but

it is more visible as we reach sufficiently high magnetic
fields due to the fact that at such large values of B , the
contribution of α(3) is practically negligible.
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The outcome of an analogous calculation but for the
relative change in the refractive index is the one pre-
sented in the Fig. 5. Figure 5(a) contains the linear and
third-order nonlinear contributions as well as total rela-
tive change, all depicted as functions of the incident pho-
ton energy. Again, a set of different values of the magnetic
field strength are used as input parameters. According to
the discussion made above, augmenting the field inten-
sity leads to a blueshift in the positions of the
peaks since, as can be seen from Eqs. (30) and (31), these
quantities are directly related with the difference E21 −
ħω. Also, one readily observes that, contrary to the case
of the optical absorption coefficients, the growth in the
magnitude of B has the consequence of a reduction in
the Δn/n peak amplitudes. Looking once again at the
same two equations we realize that the variation respon-
sible for such a dependence is that of |M21|vsħω = E21.
Now, there is no factor proportional to ω that can in-
fluence on the value of the coefficients. Therefore, the
monotonous evolution of the dipole matrix elements
towards a smaller limiting value for high enough field
strengths dictates the observed behavior. One may read-
ily notice that by observing the Fig. 5(b). There, the mag-
nitude of the linear, nonlinear and total resonant peak
amplitudes are shown as decreasing functions of B ; thus
confirming the above made discussion.

The Fig. 6(a) shows our results for the linear, third-
order nonlinear and total optical absorption coefficients
as functions of the photon energy. In this case we keep
the magnetic field to remain constant, and vary the di-
mensionless parameterλ. As a consequence of this, there
is observed a non perceptible redshift of the resonant
peak but the sizes of the peaks do present significant vari-
ations. At a first glance, it is possible to see that when λ

increases its value, not only the first-order peak increases
its size but also the third-order peak does it. This behav-
ior allows us to conclude that when the inverse square po-
tential parameter acquires sufficiently large values, the
confinement potential is strong enough as to prevent us
from neglecting the contribution of the third order coeffi-
cient – even if the first order contribution is significantly
stronger. The variation of the peak intensities can be ex-
plained on the basis of the arguments presented in the
comments about Fig. 4. But this time we must clarify that
the matrix element |M21| tends to grow as we increase
λ, whereas the energy difference E21 decreases with λ

given that it has an inverse dependence on it. However, it
should be stressed that, in this situation, the role of dom-
inant quantity is represented by |M21|; which explains
why also in this case, the peaks tend to increase their in-
tensities with larger values ofλ. From Fig. 6(b) we can cor-
roborate our previous arguments since one may see that
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Figure 6 (online color at: www.ann-phys.org) Linear (black line),
third-order nonlinear (red line) and total (blue line) optical absorp-
tion coefficients as a function of the photon energy (a) and the
dimensionless parameter λ (b) with ω0 = 1.2×1013 s−1, B = 0,
and I = 1.5×1010 W/m2 for Fig. (a). The direction of the arrows
determines in which direction is raising λ for the optical absorp-
tion coefficients. In Fig. (b) we use the same parameters as well as
ħω= E21.

with the increase in the value of λ, the third-order coef-
ficient starts to provide an important contribution to the
total coefficient. In fact, it shows a linear increment after

© 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org 333



O
rig

in
al
Pa
pe
r

C. M. Duque et al.: Quantum disc plus inverse square potential

certain value of λ that is nearly the same value at which
the linear and total optical absorption coefficients begin
to show different behaviors.

A similar procedure of calculation, in this case for the
relative change in the refractive index of the system, leads
to the results shown in the Fig. 7. It can be seen that,
in this case, the first and third order contributions have
similar behaviors in regard of the variation of the peak
amplitudes, as a consequence of the increment in the
value of the inverse square potential parameter λ. As in
Fig. 6(a), there is a non perceptible redshift in the curves.
The first-order peak amplitude augments in the positive
direction whilst the third-order peak amplitude dimin-
ishes (grows along the negative direction) [Fig. 7(a)]. The
curves shown in the Fig. 7(b) confirm such features. One
notices that the influence of augmenting the intensity
of the inverse square potential reflects differently for the
first- and third-order contributions of this quantity. The
explanation for the variations exhibited by Δ(1)/n and
Δ(3)/n follows the same arguments presented in the dis-
cussion of the results in Fig. 6. However, it is possible to
observe that the third-order coefficient Δ(3)/n is signifi-
cantly
less sensitive to the variation of λ if compared with the
first-order correction as well as with the corresponding
dependence of the third-order optical absorption coeffi-
cient. We may see from Eqs. (18), (30), and (31) that Δn/n
is, in first-order, proportional to λ1/2, whereas it becomes
proportional to λ3/2 in the case of the third-order contri-
bution. Given that the values considered for the inverse
square parameter are less than unity, this dependence ex-
plains the lowest rate of changing for the latter.

In addition, the Fig. 8(a) contains the results of the cal-
culation for the total optical absorption coefficient as a
function of the photon energy. In this figure, we have cho-
sen to vary the intensity of the incident light and keep all
the remaining parameters fixed. As we can see, the effect
of augmenting the light intensity is apparent with regard
to both the peak’s height and symmetry. The height of the
resonant peak is notoriously reduced if the incident light
intensity increases. The particular features of the peak’s
asymmetry, which is practically unnoticeable for small
intensities, now become more visible as long as the value
of I grows. These facts can be explained by first notic-
ing that the linear contribution to the optical absorption
coefficient does not depend on the incident light inten-
sity. Thus, its values remain unchanged if we modify the
value of such input quantity. however, the third-order co-
efficient has a linear dependence with I which implies
that as we increase the intensity, the magnitude of this
coefficient grows, with – given the negative sign of this
contribution – the consequent reduction of the total ab-
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Figure 7 (online color at: www.ann-phys.org) Linear (black line),
third-order nonlinear (red line) and total (blue line) relative refrac-
tive index change as a function of the photon energy (a) and the
dimensionless parameter λ (b) with ω0 = 1.2×1013 s−1, B = 0,
and I = 1.5×1010 W/m2 for Fig. (a). The direction of the arrows
determines in which direction is raising λ for the the correspond-
ing coefficients. In Fig. (b) we use the same parameters as well as
ħω= E21 −ħΛ0.

sorption peak height. It comes a moment when the value
of the incident light intensity is so high that the total re-
sponse at the frequency value of resonance turns to zero,
as we may observe in the lowest curve of Fig. 8(a). More-
over, as the effect of increasing the intensity is more ap-
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Figure 8 (online color at: www.ann-phys.org) Total optical ab-
sorption coefficient as a function of the photon energy. In both
figures we use λ = 0.5, and B = 0. In Fig. (a) we use ω0 =
1.2×1013 s−1 and vary the intensity I through a parameter χ as
I = χ× 1010 W/m2. In Fig. (b) we use I = 1.5× 1010 W/m2 and
varyω0 through a parameter ϑ asω0 =ϑ×1013 s−1.

parent, two different peaks begin to appear, in each case
with different heights. This is a consequence of the dom-
inant role played by the third-order coefficient, under
such conditions.

In the Fig. 8(b) we are representing the curves for
the total optical absorption coefficient, obtained by only
varying the confinement frequency of the system, ω0. It is
possible to observe a blueshift in the resonant peak. Such
an effect can be understood by looking at the expression
for E21 given in the Eq. (18). The increase in ω0 directly
reflects in a raising of the energy difference. The second
observed effect is the increasing of the peak intensity as-
sociated with the growth of the ω0 value. This is mainly
due to the fact that both the first- and third-order coef-
ficients have a linear dependence on the energy of reso-
nance, ħω= E21, which is quantity that, as we already dis-
cussed, increases with the confinement potential energy.
In this particular case, the electric dipole matrix element
|M21| tends to decrease as a function of augmenting ω0,
leading us to conclude that, under the conditions present
in the evaluation, the term proportional to the energy dif-
ference is the leading one, with dominance over the ef-
fect introduced by the term proportional to the electric
dipole moment.

Under the same conditions taken into account to de-
rive the results shown in the Fig. 8, we have obtained the
corresponding variations of the relative change in the re-
fractive index. They are presented in the Fig. 9. The in-
fluence of the variation in the incident light intensity ap-
pears in Fig. 9(a), which depicts the total Δn/n as a func-
tion of the photon energy. In this case, one observes that
augmenting the value of I results, in a progressive reduc-
tion in the resonant peak amplitudes. Once again, this
can be explained by considering the increasing contri-
bution coming from the third-order correction, which is
the only one term depending on the light intensity – in
a linear form. This term is always opposite in sign to the
first-order one; thus its weight is progressively carrying
importance into the total relative change. However, as
we can see, the influence of this nonlinear term is – at
least for the values of I considered here – not sufficient
to invert the overall monotony of the quantity of inter-
est, which is imposed by the dominance of the – inten-
sity independent – linear contribution and Δn/n keeps
the same functional shape obtained for a fixed value of
the incident intensity, and shown in Figs. 5 and 7.

The Fig. 9(b) presents the calculated relative change
of the refractive index as a function of the incident pho-
ton energy with the variation of the degree of confine-
ment posed by the parabolic potential term amplitude.
We see now that, together with the blueshift of the res-
onant peaks, due to the direct dependence of the zero-
correction frequency ω = E21/ħ on the value of the con-
finement frequency, ω0. Nonetheless, the peak ampli-
tudes are reduced by the influence of a higher degree
of confinement because, in the case of this quantity,
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Figure 9 (online color at: www.ann-phys.org) Total relative re-
fractive index change as a function of the photon energy. In both
figures we use λ = 0.5, and B = 0. In Fig. (a) we use ω0 =
1.2×1013 s−1 and vary the intensity I through a parameter χ as
I = χ× 1010 W/m2. In Fig. (b) we use I = 1.5× 1010 W/m2 and
varyω0 through a parameter ϑ asω0 =ϑ×1013 s−1.

the magnitude is dominated by the contribution of the
dipole moment matrix element, which is an all the way
decreasing function of ω0.

4 Conclusions

In this article we have shown that the problem of finding
the one-electron conduction states in a two-dimensional
disc-shaped quantum dot with parabolic confinement,
under the combined influence of an external magnetic
field and an inverse square repulsive potential, has an ex-
act analytical solution in the effective mass approxima-
tion. According to the symmetry of the obtained eigen-
states, this particular potential energy configuration can
be used to model the situation of parabolically confined
quantum rings in 2D via a suitable choice of the involved
parameters.

We have taken advantage of the states and energies so
calculated to evaluate the intersubband linear and non-
linear contributions to the optical absorption coefficient
as well as to the relative change in the index of refraction
in the system under study. The results obtained reveal
that the influence of the distinct input elements leads
to different behaviors of these two quantities. In general,
the augmenting values of both the magnetic field inten-
sity and the parabolic confining amplitude have reper-
cussions in the form of a blueshift of their resonant peaks.
On the other hand, the increment in the amplitude of the
inverse square potential reflects in an increment of the
peak intensities for both coefficients. Finally, augment-
ing the intensity of the incident light, while remaining the
other input elements with fixed values, makes the contri-
bution coming from the third-order nonlinear terms to
become more relevant, which causes an overall decrease
in the resonant peak amplitudes in both the optical ab-
sorption and the refractive index relative variations.

The geometry of the system we have considered and
the presence of the magnetic field perpendicular to the
plane of the heterostructure makes this an excellent can-
didate for the calculation of other properties in the sys-
tem such as: i) the presence of persistent currents and
their dependence on geometry, which in this case by
appropriate choice of the parameters of potential may
be modulated from quantum disks to narrow quantum
rings through wide quantum rings, ii) the absorption and
photoluminescence spectra associated to magnetoexci-
tons, iii) the calculation of donor and acceptor proper-
ties for impurities confined in the heterostructure, and
finally, iv) the effects of in-plane applied electric fields
and hydrostatic pressure which can be used to amplify
by several orders of magnitude the amplitude of the res-
onant peaks associated with the different nonlinear opti-
cal properties. Some of these works are currently under
development and will be published elsewhere.
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