Análisis por confiabilidad de pantallas de pilas en voladizo

Autor:
Álvaro José Mattos Olivella

Universidad de Antioquia
Facultad de Ingeniería, Escuela Ambiental
Medellín, Colombia
2019
Análisis por confiabilidad de pantallas de pilas en voladizo

Álvaro José Mattos Olivella

Trabajo de investigación como requisito para optar al título de:
Magíster en Ingeniería

Director:
Juan Pablo Osorio Salas, PhD

Codirector:
Juan Camilo Viviescas Restrepo, PhD (c)

Universidad de Antioquia
Facultad de Ingeniería, Escuela Ambiental
Medellín, Colombia
2019
DEDICATORIA

A mis padres, Álvaro y Nora, por su amor y apoyo constante.
AGRADECIMIENTOS

Quiero expresarles mis agradecimientos a los profesores Juan Pablo Osorio y Juan Camilo Viviescas, quienes a través de los años han compartido conmigo su tiempo y experiencia en investigación; especialmente en el desarrollo de este trabajo.
Contenido

1. Introducción .. 12
2. Objetivos ... 13
 2.1. Objetivo general .. 13
 2.2. Objetivos específicos ... 13
3. Estado del arte .. 14
4. Marco teórico .. 19
 4.1. Conceptos y clasificación de muros de contención .. 19
 4.2. Definición de pantallas de pilas .. 19
 4.3. Metodologías aplicadas al diseño de pantallas de pilas .. 20
 4.3.1. Métodos de diseño basados en análisis de equilibrio límite 20
 4.3.1.1. Método de Krey (1932) .. 21
 4.3.1.2. Método de Blum (1931) .. 22
 4.3.1.3. Método de Rowe (1951) ... 22
 4.3.1.4. Método de Hansen (1953) ... 22
 4.3.2. Teorías de presión de tierra ... 22
 4.3.2.1. Estado activo y estado pasivo .. 22
 4.3.2.2. Coeficientes de presiones laterales de tierra ... 23
 4.3.3. Factores de seguridad ... 24
 4.3.3.1. Factor de seguridad en los parámetros de resistencia del suelo, F_s 25
 4.3.3.2. Factor de seguridad en el coeficiente de presión pasiva de tierra, F_p 25
 4.3.3.3. Factor de seguridad en las relaciones de momentos, F_r 25
 4.3.3.4. Factor de seguridad en las presiones pasivas netas, F_{np} 25
 4.3.3.5. Factor de seguridad en la profundidad de empotramiento, ΔD 26
 4.3.4. Factores de seguridad equivalentes .. 26
 4.3.5. Fricción y adhesión en la interfase suelo/muro ... 27
 4.3.6. Separación de las pilas ... 27
 4.3.7. Valores típicos de empotramientos de pantallas de pilas 28
 4.4. Métodos de diseño basados en análisis por confiabilidad ... 28
 4.4.1. Variabilidad de las propiedades del suelo .. 28
 4.4.2. Método de Monte Carlo ... 29
 4.4.3. Criterio de Información Bayesiano ... 29
4.4.4. Probabilidad de falla de diseño ... 29
4.5. Métodos de diseño basados en análisis de elementos finitos 30
 4.5.1. Discretización de elementos finitos .. 30
 4.5.1.1. Geometría de la malla ... 30
 4.5.1.2. Densidad y uniformidad de la malla ... 30
 4.5.2. Aproximación de desplazamientos ... 31
 4.5.3. Ecuaciones de los elementos ... 32
 4.5.4. Ecuaciones globales .. 33
 4.5.5. Condiciones de frontera ... 34
 4.5.6. Solución de ecuaciones globales ... 34
4.6. Método de elementos finitos basado en la reducción de la resistencia al corte del suelo 34
 4.6.1. Método de no-convergencia ... 34
5. Metodología .. 36
 5.1. Análisis por confiabilidad ... 36
 5.1.1. Pantallas de pilas continuas en voladizo ... 36
 5.1.2. Pantallas de pilas discontinuas en voladizo 37
 5.1.3. Criterio de información bayesiano .. 38
 5.2. Análisis de elementos finitos ... 39
 5.2.1. Análisis de elementos finitos basados en la reducción de la resistencia al corte del suelo ... 39
 5.2.2. Mecanismos de falla del muro .. 41
 5.2.3. Factores de seguridad equivalentes ... 41
6. Resultados y discusión ... 43
 6.1. Relación entre los métodos de análisis de equilibrio límite y simulaciones de Monte Carlo en los diseños de pantallas de pilas .. 43
 6.2. Relación entre las metodologías propuestas por códigos, manuales y libros geotécnicos y simulaciones de Monte Carlo en los diseños de pantallas de pilas 44
 6.2.1. Análisis basados en por simulaciones de Monte Carlo para COV ϕ’=10% 44
 6.2.2. Análisis basados en simulaciones de Monte Carlo para COV ϕ’=2%, 5%, 10% y 15% 47
 6.3. Relación entre profundidad, esbeltez y espaciamiento de pantallas de pilas discontinuas en voladizo a través de simulaciones de Monte Carlo. 49
 6.3.1. Análisis basados en simulaciones de Monte Carlo para COV ϕ’=10% 49
6.4. Relación entre profundidad, diámetro, factores de seguridad y mecanismos de falla de pantallas de pilas discontinuas en voladizo a través de análisis de elementos finitos. 50
 6.4.1. Relación entre profundidad, diámetro y factores de seguridad 50
 6.4.2. Relación entre profundidad, diámetro y mecanismos de falla.................... 52
 6.4.3. Relación entre factores de seguridad calculados por métodos de equilibrio límite y análisis de elementos finitos.. 55
7. Conclusiones ... 57
8. Investigaciones futuras .. 60
9. Anexos ... 61
 9.1. Anexo A: Ecuaciones de equilibrio límite .. 61
 9.1.1. Método de Krey .. 61
 9.1.2. Método de Blum: ... 63
 9.1.3. Método de Rowe ... 64
 9.1.4. Método de Hansen ... 65
 9.2. Anexo B: Coeficientes de presión lateral de tierra .. 66
 9.2.1. Rankine (1857) ... 66
 9.2.2. Coulomb (1776) ... 66
 9.2.3. Janbu (1957) .. 67
 9.2.4. Caquot & Kerisel (1948) .. 67
 9.3. Anexo C: Calibración del modelo numérico ... 68
10. Referencias ... 70
Listado de figuras

Figura 4-1. Clasificación de las estructuras de contención. .. 19
Figura 4-2. Métodos de equilibrio límite de muros en voladizo en suelos arenosos (Mattos, Viviescas, & Osorio, 2019). ... 23
Figura 4-3. Comportamiento de los muros de contención (Clayton et al., 2014). 23
Figura 4-4. Definiciones de factores de seguridad (Simpson & Powrie, 2001). 24
Figura 4-5. Aplicación del método de Broms para el cálculo de presiones activas (P_a) y pasivas (P_p) en elementos de contención discontinuos... 28
Figura 4-6. Elemento finito de tres nodos. .. 32
Figura 4-7. Ejemplo de resultado de cálculos iterativos por el método de no-convergencia para una pantalla de pilas (Ukritchon et al., 2016). ... 35
Figura 5-1. Procedimiento utilizado para realizar análisis por confiabilidad de pantallas de pilas en voladizo. 38
Figura 5-2. Etapas de diseño de pantallas de pilas en voladizo en PLAXIS: a) procedimiento K_0; b) activación del muro y de la interfase; c) suelo excavado. 41
Figura 5-3. Procedimiento de aplicación del método de no-convergencia para el diseño de pantallas de pilas en PLAXIS... 42
Figura 6-1. Relación entre profundidad y probabilidad de falla de acuerdo con los métodos de equilibrio límite (Mattos et al., 2019). ... 43
Figura 6-2. Profundidades estimadas por medio de simulaciones de Monte Carlo (p_f=0.001) (Mattos et al., 2019). ... 44
Figura 6-3. Distribuciones de probabilidad para cada referencia de diseño para COV_\phi' =10%. 45
Figura 6-4. Relación entre profundidad y probabilidad de falla para cada referencia de diseño para COV_\phi' =10%. 46
Figura 6-5. Profundidades evaluadas para cada referencia de diseño para p_f=0.001 y COV_\phi' =10%... 46
Figura 6-6. Relación entre profundidad e índice de confiabilidad de acuerdo con: a) USACE; b) AIS (2014). ... 48
Figura 6-7. Relación entre profundidad e índice de confiabilidad de acuerdo con todas las referencias de diseño para p_f=0.001. ... 48
Figura 6-8. Relación entre profundidad, esbeltez, separación y probabilidad de falla de pantallas de pilas discontinuas de acuerdo con a) USACE; b) AIS (2014) para COV_\phi' =10%. 49
Figura 6-9. Relación entre profundidad y factor de seguridad F. ... 51
Figura 6-10. Relación entre diámetro vs Factor de seguridad F.. 52
Figura 6-11. Mecanismo de falla donde $B/H=0.33$; $D/H=1.0$; a) desplazamiento incremental, b) puntos plásticos, c) esfuerzo cortante incremental……………………………………………………………53

Figura 6-12. Mecanismo de falla donde $B/H=0.33$; $D/H=2.50$; a) desplazamiento incremental, b) puntos plásticos, c) esfuerzo cortante incremental……………………………………54

Figura 6-13. Esfuerzo cortante incremental donde $D/H=1.5$; a) $B/H=0.25$; b) $B/H=0.3$; c) $B/H=0.40$. ………………………………………………………………………………………55

Figura 6-14. Relación entre los factores de seguridad F_s y F. ………………………………………56

Figura A-1. Diagrama de presiones laterales de Krey (Murthy, 2002)………………………………61

Figura A-2. Diagrama de presiones laterales de Blum, modificado de Murthy (2002) …………63

Figura A-3. Distribución de presiones laterales propuesta por Rowe para el cálculo de momentos flectores, modificado de Bica & Clayton (1989)……………………………………64

Figura A-4. Diagrama de presiones laterales de Hansen (Murthy, 2002)…………………………65

Figura B-1. Comparación de valores de K_p.……………………………………………………………68

Figura C-1. Resultados de la calibración del modelo numérico……………………………………69

Figura C-2. Cálculos iterativos por el método de no-convergencia en PLAXIS. …………69
Listado de Tablas

Tabla 4-1. Métodos de diseño de pantallas de pilas en voladizo basados en análisis de equilibrio límite. .. 21
Tabla 4-2. Propiedades de los métodos de equilibrio límite para el cálculo de presiones de tierra. ... 24
Tabla 4-3. Factores de seguridad equivalentes (Gaba et al., 2003). 26
Tabla 4-4. Valores mínimos de fricción de la interfa suelo/muro…………………………………… 27
Tabla 4-5. Relación entre probabilidad de falla, índice de confiabilidad y nivel de desempeño esperado (USACE, 1997). ... 29
Tabla 4-6. Geometría de la malla empleada en los diseños de pantallas de pilas por análisis de elementos finitos. .. 31
Tabla 5-1. Parámetros de diseño utilizados en PLAXIS. 39
Tabla 6-1. Diferencias entre las profundidades calculadas por simulaciones de Monte Carlo y métodos de equilibrio límite. ... 44
Tabla 6-2. Medidas de asimetría y curtosis de las curvas de diseño para COVϕ’=10%..... 45
Tabla 6-3. Diferencias entre las profundidades calculadas por simulaciones de Monte Carlo y métodos de equilibrio límite para cada referencia de diseño.. 47
Tabla 6-4. Variación de las profundidades frente a cambios en COVϕ’ tomando en cuenta las referencias de diseño geotécnico para pf=0.001... 49
Tabla 6-5. Relación entre profundidad y espaciamiento de las pilas de acuerdo con USACE y AIS (2014) para pf=0.001 y COVϕ’=10%... 50
Tabla 6-7. Relación entre profundidad, diámetro y factor de seguridad F. 51
Tabla 6-8. Factores de seguridad Fs obtenidos por métodos de equilibrio límite. 55
Tabla 6-9. Factores de seguridad equivalentes de Fs usando la teoría de Rankine. 56
Tabla B-1. Valores de Kp de calculados. ... 67
Tabla C-1. Resultados de la calibración del modelo numérico. 69
Resumen
En geotecnia, las pantallas de pilas son diseñadas considerando métodos de análisis basados en equilibrio límite. Estas soluciones están fundamentadas en el uso de factores de seguridad \(FS \) para establecer un margen contra la falla; sin embargo, la aplicación de los \(FS \) conlleva a sobrestimar o subestimar las estructuras. En consecuencia, las simulaciones de Monte Carlo y los análisis de elementos finitos basados en la reducción del esfuerzo cortante del suelo han sido adoptados para hacer frente a las limitaciones de los análisis basados en equilibrio límite. En esta investigación, se busca caracterizar una metodología para evaluar la relación entre métodos de análisis basados en equilibrio límite, simulaciones de Monte Carlo y análisis de elementos finitos basados en la reducción del esfuerzo cortante del suelo en los diseños de pantallas de pilas en voladizo considerando múltiples condiciones geométricas del muro en un suelo arenoso.

Palabras claves: Pantallas de pilas, equilibrio límite; simulaciones de Monte Carlo; análisis de elementos finitos.

Abstract
Bored-pile walls are designed based on limit equilibrium methods. These solutions are supported on the use of factors of safety \(FS \) to establish a margin against failure; however, the application of \(FS \) leads to overestimate or underestimate structures. Consequently, Monte Carlo simulations and finite element analysis based on soil shear reduction have been adopted to address the limitations of limit equilibrium methods. In this research, a methodology is characterized to evaluate the relationship between analysis methods based on limit equilibrium, Monte Carlo simulations and finite element analysis based on soil shear reduction in the design of cantilever bored-pile walls taking into account multiple geometric conditions of the wall in a sandy soil.

Keywords: Bored-pile walls; limit equilibrium; Monte Carlo simulation; finite element analysis.
1. Introducción

En la ingeniería geotécnica, los problemas clásicos de diseño de estructuras son solucionados con base en juicios y experiencias de casos exitosos reportados en la literatura (Whitman, 2000). En los diseños de pantallas de pilas, se utilizan métodos de análisis de equilibrio límite que involucran el estudio de presiones lineales de tierra movilizadas parcial o completamente en la falla (i.e., equilibrio plástico) para determinar el empotramiento considerando un muro rígido. Las soluciones propuestas por los métodos de equilibrio límite están fundamentadas en el uso de coeficientes para establecer un margen de seguridad contra la falla, sin embargo, el uso de estos coeficientes denominados “factores de seguridad” conlleva a sobrestimar o subestimar las estructuras (Simpson, 2000).

En consecuencia, otras metodologías han sido adoptadas con el propósito de hacer frente a las limitaciones asociadas a los métodos de equilibrio límite. Entre estas metodologías se encuentran los métodos por confiabilidad (e.g., simulaciones de Monte Carlo) y los métodos numéricos (e.g., elementos finitos) (Brinkgreve & Post, 2015; Wang, Schweckendiek, Gong, Zhao, & Phoon, 2016). Las simulaciones de Monte Carlo proporcionan soluciones que involucran análisis estadísticos de las variables de diseño. Principalmente, permiten asociar distribuciones de probabilidad a los parámetros geotécnicos para modelar la variabilidad del suelo (Honjo, 2008). Los resultados proporcionan una medida para la evaluación de la confiabilidad a través de probabilidades de falla e índices de desempeño (e.g., Wang, 2013).

Los métodos numéricos proporcionan soluciones que involucran análisis de la interacción suelo/estructura a través de modelos constitutivos (e.g., modelos elásticos, elastoplásticos). Particularmente, los análisis de elementos finitos basados en el método de la reducción de la resistencia al corte del suelo (Matsui & San, 1992) permiten determinar factores de seguridad en la falla considerando el método de no convergencia (Griffiths & Lane, 1999).

La aplicación que poseen las simulaciones de Monte Carlo y los análisis de elementos finitos basados en el método de la reducción de la resistencia al corte del suelo en investigaciones es amplia; especialmente para el análisis de tablestacas, muros de diafragama y pantallas de pilas (e.g., Do, Ou, & Lim, 2013; Goh, 1990; Goh, Zhang, & Wong, 2019; Honjo, 2008; Wang, 2011; Wang & Cao, 2015).
2. **Objetivos**

2.1. **Objetivo general**

Caracterizar una metodología para evaluar la relación entre métodos de análisis basados en equilibrio límite (i.e., Krey, Blum, Rowe y Hansen), simulaciones de Monte Carlo y análisis de elementos finitos en los diseños de pantallas de pilas en voladizo considerando múltiples condiciones geométricas de los muros en un suelo arenoso.

2.2. **Objetivos específicos**

- Establecer relaciones y diferencias entre metodologías propuestas por códigos, manuales y libros de diseño geotécnico para el cálculo del empotramiento de pantallas de pilas en voladizo a través de análisis basados en simulaciones de Monte Carlo.

- Evaluar la influencia de la variabilidad espacial del suelo en los diseños por confiabilidad de pantallas de pilas continuas y discontinuas en voladizo.

- Identificar variables, condiciones y limitaciones asociadas al cálculo del empotramiento de pantallas de pilas discontinuas en voladizo por medio de simulaciones de Monte Carlo y análisis de elementos finitos.

- Investigar el efecto de la profundidad de empotramiento y el diámetro de las pilas en los factores de seguridad y en los mecanismos de falla del sistema suelo/estructura a través de análisis de elementos finitos basados en el método de la reducción de la resistencia al corte del suelo.
3. Estado del arte

Bica & Clayton (1989): Realizan una revisión de los métodos de equilibrio límite (i.e., Krey, Blum, Rowe y Hansen) utilizados para el cálculo de profundidades de penetración en la falla de muros en voladizo empotrados en material granular. Asimismo, identifican las teorías empleadas para estimar las presiones laterales de tierra (e.g., Rankine, Coulomb, Caquot & Kerisel, etc.) y presentan una descripción de los factores de seguridad aplicados al ángulo de fricción del suelo, de los coeficientes utilizados para el incremento de las profundidades de diseño y de los valores de fricción entre el suelo y el muro propuestos por investigadores y códigos de diseño geotécnico. Además, comparan las profundidades de penetración calculadas por varios métodos de equilibrio límite y datos experimentales, y establecen que los resultados obtenidos por métodos de equilibrio límite presentan sobrestimaciones de la profundidad de diseño que oscilan entre 5% y 50% respecto a los datos experimentales.

Clayton et al., (1993): Describen los principios de presiones laterales de tierra fundamentados en los mecanismos de movimiento, propiedades geométricas y de rigidez de los muros y los parámetros de resistencia del suelo y de la interfase suelo/muro. Presentan una reseña de los estados de falla y rutinas de diseño preliminar de tablestacas en voladizo, y establecen que de acuerdo a Teng (1962) la profundidad de diseño preliminar de estructuras en voladizo es del orden de 0.75, 1.0, 1.50 y 2.0 veces la altura libre del muro considerando un suelo arenoso denso, medio denso, suelto y muy suelto, respectivamente. También, definen que los factores de seguridad aplicados a los parámetros de resistencia del suelo y de la interfase suelo/muro para suelos arenosos y arcillas en condiciones drenadas oscilan entre 1.5-2.0 y 1.2-1.5, respectivamente.

U.S. Army Corps of Engineers (1997): Discute sobre las ventajas y desventajas que involucra la aplicación del método de primer orden segundo momento (FOSM, por sus siglas en inglés), el método de las estimativas puntuales de Rosenblueth (1975) y las simulaciones de Monte Carlo considerando variables aleatorias independientes y correlacionadas para su uso en la ingeniería geotécnica. Clasifica el nivel de desempeño esperado de terraplenes de acuerdo con índices de confiabilidad objetivo y probabilidades de desempeño insatisfactorio. Indica que para un nivel de desempeño clasificado como “por encima del promedio” el índice de confiabilidad y la probabilidad de falla son del orden de $\beta=3$ y $p_f=0.001$, respectivamente.

Suarez-Díaz (1998): Presenta una revisión de los fundamentos teóricos para el análisis de los deslizamientos y estabilidad de los taludes en zonas tropicales y puntualiza en los criterios de comportamiento y diseño de las estructuras de contención. Establece que: “(…) La teoría de Rankine generalmente subvalora la presión pasiva porque en la mayoría de los casos la dirección de la fuerza pasiva es asumida en forma incorrecta, en cambio la teoría de Coulomb sobreestima la presión pasiva, debido al error de asumir un incremento muy rápido con el aumento de valores de δ”, donde δ es el ángulo de fricción suelo/muro. Por tanto, para solucionar los defectos de las teorías de Rankine y Coulomb sugiere utilizar otros métodos como el sistema de tajadas de Janbú. Además, considera para el cálculo de la estabilidad de tablestacas en voladizo el método de Hansen y la aplicación de un factor de seguridad de 1.2 a las propiedades de resistencia al corte de los suelos y de la interfase suelo/muro.
Potts & Zdravkovic (1999): Investigan los efectos de la elección de la geometría de la malla de elementos finitos en la sensibilidad de los asentamientos de la superficie del suelo ubicado detrás de un muro de contención apuntalado, el cual es diseñado tomando en consideración una excavación simétrica de 40 m de ancho y 9.3 m de profundidad. El comportamiento del suelo es modelado de acuerdo con el modelo constitutivo elastoplástico lineal de Mohr-Coulomb y el modelo de rigidez-plástico de pequeñas deformaciones. Los análisis permiten determinar que al variar la profundidad (36 m, 52 m y 100 m) y la extensión de lateral de la malla (100 m, 180 m y 340 m) el modelo elastoplástico lineal presenta diferencias importantes del orden de 10 mm en los asentamientos estimados, en contraste con el modelo de rigidez-plástico de pequeñas deformaciones que muestra una menor dependencia en los cambios de la geometría de la malla, con diferencias menores a 3 mm en los asentamientos calculados. Específican que si el modelo de rigidez-plástico de pequeñas deformaciones es utilizado para representar el comportamiento elástico del suelo, la malla de 100 m de profundidad y 180 m de ancho es suficiente. Por el contrario, si el comportamiento elástico es lineal, una malla de mayor dimensión debe ser usada.

Simpson & Powrie (2001): Discuten sobre los efectos que producen los factores de seguridad aplicados a los parámetros de resistencia del suelo (F_s) y a las presiones pasivas (F_p) en las distribuciones de esfuerzos idealizadas en el colapso. Establecen que la aplicación de factores de seguridad en los parámetros de resistencia del suelo constituye el enfoque más apropiado en el diseño de muros de empatados puesto que el ángulo de fricción del suelo y la cohesión a menudo son los parámetros de mayor incertidumbre. Determinan que la aplicación de factores de seguridad en el coeficiente de presiones pasivas, presiones netas o profundidad de empotramiento conlleva a resultados insatisfactorios y potencialmente peligrosos ya que se equiparan a la aplicación de un factor de seguridad (F_s) ligeramente mayor que la unidad.

Look (2007): Establece valores típicos de profundidades de empotramiento para el diseño preliminar de estructuras de contención de acuerdo con las características de los muros y el tipo de carga. Así, para muros en voladizo sin sobrecarga o agua, con sobrecarga o agua y con sobrecarga y agua las profundidades de penetración son del orden de 1.5, 2.0 y 2.5 veces la altura libre del muro, respectivamente.

Budhu (2011): Discute sobre tres métodos de diseño que involucran la aplicación de factores de seguridad a las variables de diseño geotécnico de tablestacas y pantallas de pilas. En el primer método, denominado método de los momentos factorizados (FMM, en inglés), se aplica un factor de seguridad del orden de $1.5 \leq F_p \leq 2.0$ a la resistencia pasiva del suelo para determinar la profundidad de empotramiento en equilibrio límite. En el segundo método, llamado método de la resistencia factorizada (FSM, en inglés), se emplea un factor de reducción en los parámetros de resistencia del suelo (i.e., ϕ, c, ϕ', c') del orden de $1.2 \leq F_s \leq 2.0$ para limitarlos a valores que se espera que sean movilizados por las cargas de diseño. En el tercer método, denominado método de las presiones pasivas netas (NPPM, en inglés), se utiliza un factor de seguridad del orden de $1.5 \leq F_t \leq 2.0$ para relacionar el cociente entre la sumatoria de los momentos resistentes y la sumatoria de los momentos movilizantes.
Wang (2013): Desarrolla un enfoque probabilístico basado en simulaciones de Monte Carlo para el diseño de tablestacas con el fin de proporcionar un vehículo para investigar el rendimiento de los factores de seguridad parciales en los códigos de diseño actuales. Expone una rutina de diseño de una tablestaca en voladizo sobre suelos arenosos para ilustrar la adecuada implementación del enfoque propuesto con la aplicación del Eurocódigo-7. Analiza los efectos de la incertidumbre en el ángulo de fricción de la interfase suelo/muro, en la variabilidad del peso unitario en profundidad de sobreexcavación de la línea de dragado del suelo con base a la relación entre la profundidad del muro y la probabilidad de falla asociada. Define la probabilidad de falla del muro en voladizo como $P(D > D_f) = 1 - P(D \leq D_f)$, donde D_f es la profundidad final adoptada en los diseños y D es la profundidad de empotramiento mínima requerida. Los resultados indican que el uso de los factores parciales recomendados en el Eurocódigo-7 no garantiza el cumplimiento automático de su probabilidad objetivo ($p_f = 7.2 \times 10^{-5}$). Además, determina que las incertidumbres en la profundidad de sobreexcavación y en el ángulo de fricción de la interfase suelo/muro tienen un efecto significativo en las profundidades de empotramiento de las tablestacas en voladizo. También determinó que, aunque la variabilidad del peso unitario del suelo es relativamente menor, su efecto en las profundidades de diseño es importante, particularmente en niveles de probabilidad relativamente pequeños.

AIS (2014): Especifica que para muros en voladizo empotrados en un suelo granular o roca, se pueden usar las distribuciones simplificadas de presión lateral de tierras propuestas por Teng (1962), las cuales corresponden a una variante del método de equilibrio límite de Blum que involucra modificaciones en el cálculo de las presiones de tierra con el fin de tener en cuenta la inclinación del terreno de excavación y de relleno y la separación de los elementos de contención (pilas o pilotes). Además, señala que el diámetro de los elementos verticales discretos del muro efectivos para movilizar la resistencia pasiva del suelo está basada en el método de análisis desarrollado por Broms (1964a, 1964b) para pilas o pilotes empotrados en suelos cohesivos o no cohesivos. Sugiere que el ancho efectivo para una resistencia pasiva del suelo es del orden de tres veces el diámetro de los elementos debido a que a esa separación el suelo experimenta el efecto arco. Esta norma de diseño permite la aplicación de factores parciales a las presiones laterales de tierra y no a los parámetros de resistencia del suelo bajo el fundamento de que las presiones activas constituyen una fuerza y las presiones pasivas una resistencia, así como lo hacen las normas de diseño basadas en el método LRFD (Load and Resistance Factor Design), en el cual las cargas de diseño se mayoran y las resistencias de diseño se menoran multiplicando por factores mayores y menores que la unidad, respectivamente.

Duncan & Sleep (2015): Calculan la probabilidad de falla (p_f) por capacidad portante y contra el deslizamiento de la base de un muro de contención en voladizo a través de simulaciones de Monte Carlo utilizando los softwares MS Excel y @Risk. Determinan que la precisión en la estimación de la probabilidad de falla deriva de la exactitud con la que los valores de los parámetros y sus desviaciones son calculados y del efecto del número de iteraciones usadas en @Risk. Los análisis indican que un incremento del 20%, 40% y 60% de la desviación estándar de la cohesión no drenada conlleva a aumentos del 83%, 170% y 270% de la
probabilidad de falla por capacidad portante y a incrementos del orden de 79%, 163% y 258% de la probabilidad de falla contra el deslizamiento de la base en una superficie arcillosa. Además, establecen que el número mínimo de iteraciones requeridas para obtener diferencias de 0.2% en las probabilidades estimadas es 10000 para cada modo de falla. Especifican que, aunque el método de Monte Carlo sólo puede ser aplicado a simulaciones computacionales, proporciona un estándar de comparación útil para otros métodos porque no implica supuestos de que el factor de seguridad se distribuye con relación a una distribución normal o lognormal.

Ukritchon et al., (2016): A partir de análisis de elementos finitos, modelan una pantalla de pilas continuas en voladizo en una arcilla homogénea en condiciones no drenadas. El muro de pantalla consiste en pilas de suelo/cemento modeladas en PLAXIS 2D como un sólido con volumen mediante el modelo de Mohr-Coulomb. Usan el método de reducción de la resistencia para simular el estado límite o condición de falla y determinar el efecto que tienen la profundidad y el diámetro en la estabilidad del muro. Establecen que una ligera variación de la profundidad genera un incremento ostensible de los factores de seguridad, en contraste con el diámetro que frente a un gran aumento causa una variación relativamente pequeña. Determinan que el mecanismo de falla del suelo corresponde a una zona de falla profunda con forma de arco circular que se extiende desde un punto situado debajo del extremo inferior del muro hasta la superficie del suelo. También, determinan que los valores de los factores de seguridad poseen una dependencia del enfoque de diseño empleado para modelar el muro. Por ejemplo, ante un incremento del diámetro, los muros modelados como elementos de placa tienden a arrojar factores de seguridad menores con relación a aquellos modelados como elementos sólidos con volumen.

Viviescas et al., (2017): Identifican los procedimientos, tipo de investigación del subsuelo, simulaciones y las áreas de estudio más comunes en los diseños por confiabilidad de muros de contención con base a una revisión de la literatura. Explican que las pantallas de pilas son el tipo de estructura de contención más estudiadas en los diseños geotécnicos basados en la confiabilidad debido a que son frecuentemente empleadas en comparación con otros tipos de muros. En contraste, determinan que no hay estudios de confiabilidad de gabiones puesto que son una opción poco deseable para implementar en los diseños por confiabilidad debido a la variabilidad de las dimensiones, el tipo de relleno y la baja rigidez de este tipo de muros que las hace muy complejas de estudiar. Concluyen que Monte Carlo es el método de simulación más implementado debido a su simplicidad conceptual en comparación con otros métodos, lo que ha llevado a su adopció en diferentes paquetes de softwares comerciales para diseños.

Goh et al., (2019): Examinan a través de elementos finitos (EF) la influencia de la rigidez y profundidad de los muros, el ancho de excavación y la profundidad de un estrato de suelo rígido en la inestabilidad por levantamiento basal de una excavación profunda soportada por muros de diafragma y tablestacas apuntaladas en un suelo arcilloso en condiciones no drenadas. Emplean el método de reducción de la resistencia al cortante del suelo y métodos de equilibrio límite (MEL) para calcular factores de seguridad. Señalan que para los muros de diafragma y las tablestacas los factores de seguridad estimados por elementos finitos (FSFE) decrecen a medida que aumenta el ancho de excavación. Para las tablestacas, el
incremento de la profundidad de penetración resulta en un ligero incremento de los FS_{FE}. Sin embargo, incrementos subsecuentes del empotramiento resulta en un mínimo incremento de los FS_{FE}. Asimismo, determinan que la presencia de un horizonte de suelo rígido cerca a la excavación incrementa significativamente los FS_{FE}. Al comparar los factores de seguridad estimados MEL y EF, se determina que los primeros son ligeramente menores. Identifican el mecanismo de ruptura del suelo, el cual consiste en un movimiento vertical del suelo debajo de la excavación y la contribución de la resistencia al corte entre el suelo y el muro para resistir la inestabilidad por levantamiento basal de los muros de diafragma.
4. Marco teórico

4.1. Conceptos y clasificación de muros de contención

Las estructuras de contención proporcionan soporte lateral de forma temporal o permanente a taludes verticales o cuasi-verticales de suelo, enrocado o macizo rocoso muy fracturados o con discontinuidades muy favorables (AIS, 2010). Estas estructuras han tomado diversas configuraciones construidas con diferentes materiales, tales como: madera, mampostería, piedra, acero, hormigón o materiales poliméricos; geometrías y mecanismos de estabilidad.

Las estructuras conformadas por piedras, mampostería, hormigón en masa o reforzado, que poseen trasdós y derivan su estabilidad a las cargas de suelos retenidas por su propio peso son conocidas como muros de gravedad; los sistemas de contención empotrados estabilizados por apuntalamiento o anclajes en el suelo son denominados muros embebidos y pueden ser construidos in-situ o prefabricados con acero, madera u hormigón; y los muros construidos bajo el principio de la gravedad con materiales granulares o rocas seleccionadas, reforzadas con metal, mallas o telas poliméricas son denominados muros compuestos (AIS, 2014). Existen varias clasificaciones de muros de contención. En la Figura 4-1, se muestra la clasificación propuesta por Clayton et al., (2014).

<table>
<thead>
<tr>
<th>Muros de gravedad</th>
<th>Muros empotrados</th>
<th>Muros compuestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muros de gravedad macizos</td>
<td>Sistemas de trincheras</td>
<td>Muros tipo ataguía</td>
</tr>
<tr>
<td>Muros de gabiones</td>
<td>Muros de tablestacas</td>
<td>MSE</td>
</tr>
<tr>
<td>Muros tipo jaula</td>
<td>Pantallas de pilas</td>
<td>Muros de tierra anclada</td>
</tr>
<tr>
<td>Muros de bloques intermedios</td>
<td>Muros de diafragma</td>
<td>Soporte con tierra anclada</td>
</tr>
<tr>
<td>Muros de mampostería</td>
<td>Muros tipo Berlín</td>
<td>Soil nailing</td>
</tr>
<tr>
<td>Muros de hormigón de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semi-gravedad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros en voladizo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros con contrafuerte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muros de presión</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4-1. Clasificación de las estructuras de contención.

4.2. Definición de pantallas de pilas

Las pantallas de pilas son estructuras de concreto reforzado construidas como un conjunto lineal de pilas que brindan soporte a cargas verticales y horizontales y que permiten realizar un control de las deformaciones impuestas por las presiones del suelo, agua y sobrecargas. Estas estructuras pueden construirse en un amplio rango de secciones transversales y
diámetros que oscilan entre 0.8 m y 2.5 m dependiendo de las condiciones de frontera consideradas en los diseños (Clayton et al., 1993). Las pantallas de pilas se clasifican en secantes, contiguas y discontinuas de acuerdo con la disposición de instalación de las pilas y se dividen en voladizo, apuntaladas y ancladas con base al sistema de estabilidad (Clayton et al., 2014). Las pantallas de pilas contiguas en voladizo están conformadas por pilas que se encuentran en contacto a lo largo de su longitud y basan su estabilidad en la resistencia pasiva del suelo de la base y, por el contrario, las pantallas de pilas discontinuas están constituidas por pilas espaciadas por paredes (o pantallas) de concreto reforzado y basan su estabilidad en la resistencia del sistema de anclajes (Knappett & Craig, 2012).

4.3. Metodologías aplicadas al diseño de pantallas de pilas

En los análisis de pantallas de pilas, se emplean metodologías de diseño que involucran incertidumbres derivadas de teorías y fundamentos enfocados al cálculo de la profundidad de empotramiento a partir del estudio de las presiones laterales y del análisis de la interacción suelo/estructura. Estas metodologías se caracterizan por que cada una de ellas consideran un número diferente de factores y variables relacionadas con las propiedades geotécnicas y con el mecanismo cinemático que rige el modo de falla rotacional de la estructura (Bowles, 1997). Entre estas metodologías están los métodos de diseño basados en análisis de equilibrio límite, en análisis por confiabilidad y en análisis de elementos finitos (e.g., Powrie, 1996; Simpson, 1992; Wang et al., 2016).

4.3.1. Métodos de diseño basados en análisis de equilibrio límite

Los métodos de diseños de equilibrio límite asumen un mecanismo de falla plástico basado en el criterio de ruptura de Mohr-Coulomb, en el cual las presiones activas se desarrollan en el lado del muro donde se encuentra el suelo retenido y las presiones pasivas se movilizan en el terreno frente al muro al nivel de excavación. La estabilidad de las pantallas de pilas en voladizo es evaluada a través del equilibrio de fuerzas horizontales y momentos derivados de las siguientes consideraciones de diseño (Bica & Clayton, 1989):

a) la forma de las distribuciones de la presión de tierra
b) el método de cálculo considerado para el equilibrio del muro
c) las teorías utilizadas en la derivación de los coeficientes de presión de tierra
d) la definición y magnitud de los factores de seguridad
e) la distribución y dirección supuesta de la fricción del muro
f) el método empleado para obtener la fricción del muro

Una revisión de la literatura revela que todas las combinaciones posibles de las variaciones disponibles de las consideraciones de diseño mencionadas están o han estado en uso a través de la aplicación de códigos, manuales y libros de diseño geotécnico, tal y como se muestra en la Tabla 4-1, en la que se presentan referencias que aplican los métodos de diseño de Krey, Blum, Rowe y Hansen para pantallas de pilas en voladizo.
Tabla 4-1. Métodos de diseño de pantallas de pilas en voladizo basados en análisis de equilibrio límite.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>País</th>
<th>Método de diseño</th>
<th>Teoría</th>
<th>Factor de seguridad</th>
<th>Factor de profundidad</th>
<th>Fricción del muro</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CGS, 1978)</td>
<td>Canadá</td>
<td>Blum</td>
<td>R/C&K</td>
<td>Fs = 1.0</td>
<td>1.0 D</td>
<td>δ = 1/2ϕ'</td>
</tr>
<tr>
<td>(USS, 1984)</td>
<td>EE.UU.</td>
<td>Krey</td>
<td>C&K</td>
<td>Fs = 1.0</td>
<td>1.3 D</td>
<td>δ = 17°</td>
</tr>
<tr>
<td>(BSI, 1994)</td>
<td>Reino Unido</td>
<td>Hansen</td>
<td>C</td>
<td>Fs = 1.2</td>
<td>1.2 D</td>
<td>δ_active/δ_passivo*</td>
</tr>
<tr>
<td>(USACE, 1994)</td>
<td>EE.UU.</td>
<td>Krey</td>
<td>C</td>
<td>Fs = 1.5</td>
<td>1.0 D</td>
<td>δ = 17°</td>
</tr>
<tr>
<td>(Suárez, 1998)**</td>
<td>Colombia</td>
<td>Hansen</td>
<td>R/J</td>
<td>Fs = 1.2</td>
<td>1.2 D</td>
<td>δ = 0°</td>
</tr>
<tr>
<td>(GEO, 2000)</td>
<td>Hong Kong</td>
<td>Rowe</td>
<td>C&K</td>
<td>Fs = 1.2</td>
<td>1.2 D</td>
<td>δ = 1/2ϕ'</td>
</tr>
<tr>
<td>(EN, 2004)</td>
<td>U.E.</td>
<td>Hansen</td>
<td>C</td>
<td>Fs = 1.25</td>
<td>1.2 D</td>
<td>δ_active/δ_passivo</td>
</tr>
<tr>
<td>(CGS, 2006)</td>
<td>Canadá</td>
<td>Krey</td>
<td>R/C&K</td>
<td>Fs = 1.0</td>
<td>1.3 D</td>
<td>δ = 1/2ϕ'</td>
</tr>
<tr>
<td>(CMAA, 2008)</td>
<td>Australia</td>
<td>Blum</td>
<td>C/R</td>
<td>Fs = 1.18</td>
<td>1.2 D</td>
<td>δ = 2/3ϕ'</td>
</tr>
<tr>
<td>(AIS, 2014)</td>
<td>Colombia</td>
<td>Blum</td>
<td>C/C&K</td>
<td>1.5Kα; 0.5Kp</td>
<td>1.2 D</td>
<td>δ ≤ 2/3ϕ'</td>
</tr>
</tbody>
</table>

R: Rankine
C: Coulomb
C&K: Caquot & Kerisel
J: Janbú
EE.UU.: Estados Unidos de América
U.E.: Unión Europea
*δ_active = 1/2ϕ' y δ_passivo = 2/3ϕ'
** Libro de Jaime Suárez Díaz

Los métodos de diseño basados en análisis de equilibrio límite también se utilizan para calcular los valores del momento de flexión máximo que debe soportar el muro para poder elegir una sección adecuada. Para más información sobre este tema, se pueden consultar las investigaciones realizadas por Bica & Clayton (1989, 1998).

4.3.1.1. Método de Krey (1932)

El método de Krey asume una distribución rectilínea neta de las presiones laterales de tierra alrededor del fuste de las pilas. Las presiones activas y pasivas ubicadas inmediatamente por debajo del nivel de dragado son consideradas totalmente movilizadas incluso antes de la falla, mientras que las presiones pasivas en el extremo inferior del muro se asumen totalmente movilizadas sólo en el equilibrio límite (Das, 2016). Debido a que se consideran diferentes direcciones para las fuerzas cortantes entre el suelo y el muro a diferentes profundidades, los coeficientes de presiones pasivas de tierra utilizados son mucho mayores inmediatamente debajo del nivel de dragado que en el extremo inferior del fuste (Bica & Clayton, 1989). Sin embargo, en algunos códigos de diseño (e.g., CGS, 2006; USACE, 1994; USS, 1984) se
considera que los coeficientes de presiones pasivas son iguales tanto inmediatamente debajo del nivel de dragado como en el extremo inferior de la pared.

4.3.1.2. **Método de Blum (1931)**

El método de Blum constituye una versión simplificada del método de Krey, al sustituir una fuerza horizontal en lugar de las presiones activas y pasivas que actúan sobre la parte más baja del muro. Se asume una distribución rectilínea neta de las presiones laterales de tierra, y la profundidad de la fuerza horizontal de sustitución se determina asumiendo el equilibrio de momentos tomados sobre la posición de esta fuerza. (Teng, 1962). La distancia entre el nivel de dragado y la fuerza de sustitución es multiplicada por un coeficiente del orden de 1.2 para obtener la profundidad de empotramiento de diseño (Bica & Clayton, 1989).

4.3.1.3. **Método de Rowe (1951)**

El método de Rowe asume una distribución rectilínea neta de presiones de tierra en la que en el extremo inferior del muro se considera una fuerza horizontal para satisfacer las condiciones de equilibrio. La profundidad de diseño es calculada omitiendo la aplicación de factores de seguridad a las presiones pasivas de tierra, al ángulo de fricción del suelo y al empotramiento calculado. Además, asume una movilización completa de las presiones pasivas (calculadas con una fricción del muro igual a $2/3\phi'$) inmediatamente debajo del nivel de dragado, y una movilización parcial para profundidades debajo de la profundidad de presión neta máxima (Bica & Clayton, 1989).

4.3.1.4. **Método de Hansen (1953)**

El método de Hansen considera una distribución rectilínea de presiones laterales de tierra que satisfacen condiciones de equilibrio plano, junto con condiciones de compatibilidad dinámica entre el muro y la superficie de ruptura (Bolton, 1996). La profundidad de empotramiento se obtiene a través del equilibrio de fuerzas horizontales y momentos. Los coeficientes de presión lateral se estiman considerando factores de seguridad aplicados a los parámetros de resistencia al corte (i.e., cohesión c' y al ángulo de fricción $\tan \phi'$), como se detalla más adelante en la Sección 4.3.3.

En la Figura 4-2, se muestran los diagramas de presiones laterales de los métodos de equilibrio límite y, en el Anexo A, se exponen las ecuaciones para calcular el empotramiento.

4.3.2. **Teorías de presión de tierra**

4.3.2.1. **Estado activo y estado pasivo**

Los estados activos y pasivos son definidos con base a los movimientos del muro de contención a partir de una condición de reposo del suelo. El estado activo se presenta en el instante en que el muro rota y se aleja del suelo y, por el contrario, el estado pasivo se produce cuando el muro rota hacia el suelo. Los coeficientes de presión de tierra para el estado activo y pasivo se definen como la relación entre los esfuerzos horizontales y los esfuerzos
verticales efectivos. En el estado activo, los valores de K disminuyen respecto a la condición de reposo y, en el estado pasivo, estos valores aumentan debido a los cambios en el confinamiento del suelo, tal y como se muestra en la Figura 4-3.

Figura 4-3. Comportamiento de los muros de contención (Clayton et al., 2014).

4.3.2.2. Coeficientes de presiones laterales de tierra

Los coeficientes de presión de tierras son calculados con base a teorías basadas en métodos analíticos, como las mostradas en la Tabla 4-2. Estos métodos determinan los coeficientes en función de la inclinación del suelo del lleno (β) y el muro (η), la cohesión (c’), el ángulo de
fricción del suelo (\(\phi'\)) y de la interfase suelo-muro (\(\delta\)), asumiendo que el muro es rígido y se extiende a una profundidad semi-infinita en una masa de suelo seca, homogénea e isotrópica que se encuentra en un estado suelto e inicialmente en estado de reposo (Budhu, 2011). En el Anexo B, se presentan las ecuaciones para el cálculo de \(K_A\) y \(K_p\) de acuerdo las teorías de presión lateral abordadas.

Tabla 4-2. Propiedades de los métodos de equilibrio límite para el cálculo de presiones de tierra.

<table>
<thead>
<tr>
<th>Teoría</th>
<th>Parámetros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta)</td>
</tr>
<tr>
<td>Rankine</td>
<td>0</td>
</tr>
<tr>
<td>Coulomb</td>
<td>(\beta)</td>
</tr>
<tr>
<td>Caquot & Kerisel</td>
<td>(\beta)</td>
</tr>
<tr>
<td>Janbú</td>
<td>(\beta)</td>
</tr>
</tbody>
</table>

*A/P: Activo/Pasivo

4.3.3. Factores de seguridad

Los factores de seguridad aplicados a los parámetros del suelo y a las presiones laterales de tierra tienen una implicación particular en la estimación del empotramiento y del momento flector máximo. Por ejemplo, el uso de un factor de seguridad, o incluso el uso de ningún factor de seguridad, a menudo implica un momento flector máximo calculado relativamente bajo (Bica & Clayton, 1989). En la Figura 4-4, se ilustran las definiciones de los factores de seguridad en pantallas de pilas en voladizo, para las cuales las áreas rayadas y sombreadas corresponden a las presiones añadidas y omitidas en los cálculos, respectivamente.

Figura 4-4. Definiciones de factores de seguridad (Simpson & Powrie, 2001).
4.3.3.1. Factor de seguridad en los parámetros de resistencia del suelo, F_s

El efecto de los factores de seguridad aplicados a los parámetros de resistencia del suelo (i.e., ángulo de fricción y cohesión) es aumentar las presiones activas, reducir las presiones pasivas y modificar las distribuciones de presiones de tierra en relación con las obtenidas utilizando factores de seguridad en el coeficiente de presión pasiva. Esto distorsiona los valores de los momentos en el fuste; en consecuencia, sólo deben utilizarse para calcular la profundidad de penetración (BSI, 1994).

La profundidad de empotramiento requerida se determina en el equilibrio límite de momentos utilizando las presiones laterales de tierra calculadas a partir de los parámetros de resistencia del suelo reducidos. Para análisis de esfuerzos totales y efectivos, la cohesión y el ángulo de fricción del suelo son tomados como $Tan(\phi)/F_s$ y c/F_s, respectivamente. En consecuencia, las profundidades obtenidas son sensibles a los valores del factor de seguridad aplicados, los cuales oscilan entre 1.0 y 1.6 (Simpson, 2000).

4.3.3.2. Factor de seguridad en el coeficiente de presión pasiva de tierra, F_p

El uso de factores de seguridad en el coeficiente de presión pasiva de tierra consiste en reducir el diagrama de presión pasiva para obtener mayores profundidades de empotramiento. Para análisis de esfuerzos totales y efectivos el coeficiente de presión pasiva es tomado como K_p/F_p. Esta metodología es inconsistente para suelos cohesivos con valores del ángulo de fricción del suelo menores que la relación K_p/K_A (e.g., en arcillas en condiciones no drenadas donde $\phi’=0$ y $K_p/K_A=1$), ya que por debajo de una cierta profundidad de penetración el factor de seguridad calculado F_p disminuye al aumentar el empotramiento, porque, en efecto, el peso de la masa de suelo en el lado pasivo del muro es factorizado (Padfield & Mair, 1984). Por esta razón, el valor de $F_p=2.0$ es conservativo (para ángulos de fricción menores que 30°) cuando K_p/K_A no es muy grande; esto aplica particularmente a arcillas rígidas (BSI, 1994).

4.3.3.3. Factor de seguridad en las relaciones de momentos, F_r

Este concepto propuesto por Burland et al., (1981) consiste aplicar un factor de seguridad al cociente de los momentos resistentes y movilizantes con el fin de reducir las presiones activas y pasivas. Teóricamente, este concepto permite restar la región sombreada del lado activo a la distribución lineal de presión lateral del lado pasivo para dar lugar a la distribución pasiva neta mostrada en la Figura 4-4d. En la literatura, F_r es denominado factor de momentos agrupados y su valor oscila entre 1.5 y 2.0 (Budhu, 2011). En contraste, el reglamento AIS (2010) especifica que, para diseños de estructuras de contención en condiciones estáticas y pseudo-estáticas, F_r debe ser mayor o igual que 3.0 y 2.0, respectivamente.

4.3.3.4. Factor de seguridad en las presiones pasivas netas, F_{np}

Los factores de seguridad F_{np} son aplicados a las presiones pasivas netas; este concepto se ha utilizado en el diseño de pantallas de pilas en materiales predominantemente granulares (BSI, 1994). Las presiones pasivas netas se basan en el diagrama de distribución de presiones
laterales, que se deriva al sustraer las presiones de tierra e hidrostáticas activas a las presiones de tierra e hidrostáticas pasivas. El resultado es equivalente a aplicar un factor de seguridad más bajo a las presiones laterales activas y pasivas (Symons & Kotera, 1987). La literatura revela que los valores de F_{np} utilizados en el diseño de muros son del orden de 2.0.

4.3.3.5. Factor de seguridad en la profundidad de empotramiento, ΔD

Los factores de profundidad se conciben como una medida de seguridad para mitigar las incertidumbres derivadas de las parámetros del suelo y de los procesos constructivos, y en la misma medida constituye un parámetro que genera un aumento de los momentos flectores máximos que puede resistir el muro; su valor oscila entre 1.0 y 1.4 (Bica & Clayton, 1991).

4.3.4. Factores de seguridad equivalentes

En la Tabla 4-3, se exhiben factores de seguridad equivalentes derivados de investigaciones de Burland et al., (1981), Potts & Burland (1983) y Carder (1998) para el diseño de pantallas de pilas en suelos cohesivos y sin cohesión. De acuerdo con Gaba et al., (2003), los factores F_p, F_{np} y F_r de la Tabla 4-3 se estimaron a través del equilibrio de momentos para factores de seguridad en los parámetros de resistencia del suelo del orden de $F_s=1.2$ y $F_s=1.5$.

Al tomar equilibrio de momentos respecto al extremo inferior del muro, se obtienen las Ecuaciones 4-1, 4-2 y 4-3 (Gaba et al., 2003), donde las presiones modificadas corresponden a las presiones previamente factorizadas por F_s, y para asegurar que los factores no sean aplicados a las presiones hidrostáticas se calculan los momentos de presión neta de agua.

<table>
<thead>
<tr>
<th>Caso de análisis</th>
<th>Tipo de muro</th>
<th>Condiciones del suelo</th>
<th>F_s</th>
<th>Factores de seguridad equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F_p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.35 - 1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $20^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4 - 1.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $20^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.85 - 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $20^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.45 - 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $20^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.85 - 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $20^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.25 - 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $15^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4 - 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $15^\circ<\phi'<40^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.45 - 2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>errático</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.35 - 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>errático</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5 - 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $Su>75$ kPa $H<6.0$ m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5 - 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>para $Su>75$ kPa $H<6.0$ m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Los valores erráticos dependen de la geometría, por ejemplo, la posición del puntal.
\[
\left(\frac{\text{Momento de presión pasiva de tierra}}{F_p} \right) = \left(\frac{\text{Momento de presión activa de tierra}}{F_p} \right) + \left(\frac{\text{Momentos de presión neta de agua}}{F_p} \right)
\]

\[
\left(\frac{\text{Momento de presión pasiva neta (agua + tierra)}}{F_{np}} \right) = \left(\frac{\text{Momento de presión activa neta (agua + tierra)}}{F_{np}} \right)
\]

\[
\left(\frac{\text{Momento de presión pasiva de tierra modificada}}{F_r} \right) = \left(\frac{\text{Momento de presión activa de tierra modificada}}{F_r} \right) + \left(\frac{\text{Momentos de presión neta de agua}}{F_r} \right)
\]

4.3.5. Fricción y adhesión en la interfase suelo/muro

La fricción en la interfase suelo/muro depende de las propiedades del suelo de lleno utilizado en la construcción del muro. Si la textura de la superficie del muro es más rugosa que el D_{50} del suelo de lleno, las características del suelo de lleno controlarían la fricción de la interfase, por lo que el ángulo de fricción de la interfase puede ser tomado como \(\delta = \phi'\). En contraste, si la superficie del muro es lisa comparado con el D_{50} del suelo de lleno, el valor de fricción en la interfase puede ser asumido, en ausencia de datos de campo y de laboratorio, entre \(1/2 \phi' \leq \delta \leq 2/3 \phi'\) (Budhu, 2011). En la Tabla 4-4, se muestran las relaciones más pequeñas entre \(\delta\) y \(\phi'\) determinadas en una extensa serie de pruebas realizadas por Potyondy (1961). De acuerdo con Padfield & Mair (1984), los valores máximos de adhesión del muro deben ser menores que 0.5S_u ó 50 kPa para el estado activo y 0.5S_u ó 25 kPa para el estado pasivo.

<table>
<thead>
<tr>
<th>Tipo de suelo</th>
<th>Acero</th>
<th>Madera</th>
<th>Concreto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena saturada</td>
<td>(\frac{\delta}{\phi'} = 0.64)</td>
<td>(\frac{\delta}{\phi'} = 0.85)</td>
<td>(\frac{\delta}{\phi'} = 0.89)</td>
</tr>
<tr>
<td>Limo y arcilla</td>
<td>(\frac{\delta}{\phi'} = 0.40)</td>
<td>(\frac{\delta}{\phi'} = 0.55)</td>
<td>(\frac{\delta}{\phi'} = 0.50)</td>
</tr>
</tbody>
</table>

4.3.6. Separación de las pilas

En pantallas de pilas discontinuas en voladizo, la separación de las pilas es determinada con base al método de Broms y el empotramiento es evaluado por medio de los métodos de diseño de Krey, Blum, Rowe y Hansen (AIS, 2014). El método de Broms especifica que la distancia efectiva para movilizar la resistencia pasiva de suelos cohesivos y no cohesivos en pantallas de pilas es del orden de tres veces el diámetro (Broms, 1964a, 1964b). La determinación de esta distancia efectiva máxima sólo puede usarse cuando el material en el que está empotrada la pila no contiene discontinuidades que afecten la geometría de la falla (AIS, 2014).

De acuerdo con AIS (2014), la distancia efectiva debería reducirse si las zonas de resistencia pasiva se superponen, si hay planos o zonas de debilidad que previenen la movilización de la resistencia pasiva, si el elemento está empotrada en arcilla blanda que tiene un número de estabilidad menor que tres o si el elemento está empotrado en roca. Para la tercera y cuarta situación de diseño, la distancia efectiva será igual a la distancia real de las pilas e idéntica al diámetro del elemento, respectivamente. Para la zona activa detrás del muro, se asume que las presiones activas actúan sobre una distancia efectiva igual al diámetro de las pilas.
En la Figura 4-5, se presenta la aplicación del método de Broms a pantallas de pilas discontinuas en voladizo.

![Diagrama de aplicación del método de Broms](image)

Figura 4-5. Aplicación del método de Broms para el cálculo de presiones activas \((P_a) \) y pasivas \((P_p) \) en elementos de contención discontinuos.

4.3.7. Valores típicos de empotramientos de pantallas de pilas

Para un diseño preliminar de pantallas de pilas en voladizo, Look (2007) establece que los empotramientos se encuentran relacionados con las características de los muros y las cargas. Así, para muros de contención sin sobrecarga o nivel freático, con agua o sobrecarga y con agua y sobrecarga la profundidad de diseño típica es 1.5, 2.0 y 2.5 veces la altura libre del muro, respectivamente.

4.4. Métodos de diseño basados en análisis por confiabilidad

En geotecnia, los métodos de diseño basados en análisis por confiabilidad permiten evaluar la variabilidad del suelo a través de funciones de densidad de probabilidad. Los resultados permiten representar el nivel de confiabilidad de las estructuras por medio de probabilidades de falla e índices de desempeño (Baecher & Christian, 2008).

4.4.1. Variabilidad de las propiedades del suelo

La variabilidad geotécnica es un atributo derivado de las incertidumbres producidas por la variación de las propiedades del suelo y las incertidumbres epistémicas (Phoon & Kulhawy, 1999). La variabilidad inherente es modelada por medio de campos aleatorios y puede ser descrita mediante el coeficiente de variación. Las incertidumbres epistémicas se encuentran asociadas a las limitaciones de los métodos analíticos (e.g., equilibrio límite) y es evaluada mediante comparaciones con modelos más sofisticados (i.e., elementos finitos o diferencias finitas), con casos de estudios reportados en la literatura y opiniones de expertos (Lacasse & Nadim, 1998).
4.4.2. Método de Monte Carlo

La simulación de Monte Carlo es un método estocástico que crea modelos de posibles resultados mediante la sustitución de valores aleatorios en las variables del suelo derivados de sus funciones de probabilidad (Honjo, 2008). En la estadística aplicada en la geotecnia, el método de Monte Carlo se complementa con la técnica de muestreo Latino Hipercúbico, que estratifica las distribuciones de probabilidad de entrada en intervalos iguales en la escala de probabilidad acumulativa con el fin de optimizar la evaluación de valores extremos (Chan & Low, 2011).

4.4.3. Criterio de Información Bayesiano

El criterio de información bayesiano (BIC) es un modelo de validación del ajuste que clasifica las distribuciones de probabilidad más idóneas con base al número de parámetros o argumentos que la definen. En los análisis por confiabilidad, se emplea el BIC para ajustar series de datos de parámetros geotécnicos e histogramas resultantes de simulaciones de Monte Carlo a distribuciones de probabilidad teóricas (e.g., Juang et al., 2015; Li & Tang, 2015).

4.4.4. Probabilidad de falla de diseño

El uso de probabilidades de falla definidas por la USACE (1997) para su aplicación en los diseños por confiabilidad de terraplenes ha sido extendido al análisis de muros de contención (e.g., Li et al., 2016; Wang, 2013; Wang et al., 2016). La literatura estudiada revela el uso de probabilidades de falla del orden de $p_f=0.001$ con el fin de obtener un nivel de desempeño esperado clasificado como “por encima del promedio”. Este criterio es considerado relevante porque permite definir niveles de aceptabilidad de riesgos basados en la pérdida de vidas humanas y costos de infraestructura (Baecher & Christian, 2003). En la Tabla 4-5, se muestra la relación entre probabilidad de falla e índice de confiabilidad con el nivel de desempeño esperado.

Tabla 4-5. Relación entre probabilidad de falla, índice de confiabilidad y nivel de desempeño esperado (USACE, 1997).

<table>
<thead>
<tr>
<th>Probabilidad de falla $p_f = \Phi(-\beta)$</th>
<th>Índice de confiabilidad β</th>
<th>Nivel de desempeño esperado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>1.0</td>
<td>Peligroso</td>
</tr>
<tr>
<td>0.07</td>
<td>1.5</td>
<td>Insatisfactorio</td>
</tr>
<tr>
<td>0.023</td>
<td>2.0</td>
<td>Pobre</td>
</tr>
<tr>
<td>0.006</td>
<td>2.5</td>
<td>Debajo del promedio</td>
</tr>
<tr>
<td>0.001</td>
<td>3.0</td>
<td>Encima del promedio</td>
</tr>
<tr>
<td>0.00003</td>
<td>4.0</td>
<td>Bueno</td>
</tr>
<tr>
<td>0.0000003</td>
<td>5.0</td>
<td>Alto</td>
</tr>
</tbody>
</table>

Φ es la función de distribución acumulada normal estándar.
4.5. Métodos de diseño basados en análisis de elementos finitos

En la geotecnia, los análisis de elementos finitos permiten modelar el suelo, las estructuras (e.g., tablestacas, MSE, etc.), la interfase suelo/estructura y los componentes estructurales y geotécnicos (e.g. anclajes, geomallas y drenes) como cuerpos rígidos, a partir de un proceso de solución numérica que involucra las siguientes etapas (Potts & Zdravkovic, 1999b):

4.5.1. Discretización de elementos finitos

Este es el proceso de modelado de la geometría del problema de condiciones de frontera (e.g., una pantalla de pilas en voladizo); los suelos, las estructuras, las interfases y los componentes de diseño de los muros son divididos en subdominios no intersectantes entre sí denominados elementos finitos (Bakker, 2000).

Para construir una malla de elementos finitos para modelar muros de contención empotrados se deben tener en consideración los siguientes aspectos:

4.5.1.1. Geometría de la malla

En la literatura se encuentra que, en el diseño de muros empotrados, el ancho y la profundidad de la malla de elementos finitos se encuentran definidos en función del ancho de excavación del suelo ubicado en la zona pasiva del muro. Las soluciones por análisis de elementos finitos involucran el estudio de problemas de condiciones de frontera en los que se define un eje de simetría para modelar la mitad del caso de diseño. El ancho y la profundidad de la malla de elementos finitos, junto con las propiedades de simetría de los problemas de condiciones de frontera tienen un efecto significativo en los resultados, ya que se ha determinado que las presiones y los desplazamientos de las estructuras varían ostensiblemente frente a cambios del ancho de excavación y de la geometría de la malla de elementos finitos (e.g., Goh et al., 2019; Potts & Zdravkovic, 1999). En consecuencia, se realizó una revisión de la literatura de casos de diseño de pantallas de pilas por análisis de elementos finitos, y se encontró que una extensión superior de los límites presentados en la Tabla 4-6 para la conformación de la malla de elementos finitos no tiene ninguna influencia en los resultados de desplazamientos de los muros y presiones laterales de tierra.

4.5.1.2. Densidad y uniformidad de la malla

La distancia de separación y la distribución de los nodos son importantes porque influyen en la precisión de los cálculos y, por ende, en el resultado final de las soluciones numéricas (Goh et al., 2019). Así que, para estimar con la mayor precisión posible las variables de análisis (i.e., desplazamientos y presiones laterales), es recomendable en primera instancia generar una malla de elementos finitos uniforme (nodos igualmente espaciados) y, posteriormente, realizar un refinamiento de la malla sobre los elementos adyacentes a discontinuidades geométricas de la malla (e.g., elementos alrededor de una excavación) y sobre los elementos en los que se centran los análisis (Potts & Fourie, 1986). El refinamiento de la malla consiste en incrementar el número de nodos en una zona específica de la malla para generar elementos
finitos más pequeños. Este procedimiento es relativamente sencillo para materiales que poseen un comportamiento lineal-elástico, pero para materiales no lineales se vuelve más complejo ya que la solución final depende, por ejemplo, del historial de carga del material analizado (Potts & Zdravkovic, 1999b).

Tabla 4-6. Geometría de la malla empleada en los diseños de pantallas de pilas por análisis de elementos finitos.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Tipo de muro</th>
<th>Condiciones del suelo</th>
<th>Mitad del ancho de excavación (T)</th>
<th>Geometría de la malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potts & Zdravkovic (1999)</td>
<td>Voladizo</td>
<td>Drenadas</td>
<td>20 m</td>
<td>9 T 5 T</td>
</tr>
<tr>
<td>Gaba et al., (2003)</td>
<td>Voladizo</td>
<td>Drenadas</td>
<td>16 m</td>
<td>3 T 3 T</td>
</tr>
<tr>
<td></td>
<td>Voladizo</td>
<td>No drenadas</td>
<td>16 m</td>
<td>3 T 3 T</td>
</tr>
<tr>
<td></td>
<td>Apuntalado</td>
<td>Mixtas**</td>
<td>20 m</td>
<td>3 T 1.25 T</td>
</tr>
<tr>
<td>Bilgin (2010)</td>
<td>Anchado</td>
<td>Drenadas</td>
<td>24 m</td>
<td>2 T 0.75 T</td>
</tr>
<tr>
<td></td>
<td>Anclado</td>
<td>Drenadas</td>
<td>36 m</td>
<td>2 T 0.75 T</td>
</tr>
<tr>
<td></td>
<td>Anclado</td>
<td>Drenadas</td>
<td>48 m</td>
<td>2 T 0.75 T</td>
</tr>
<tr>
<td>Gaba et al., (2017)</td>
<td>Apuntalado</td>
<td>Drenadas</td>
<td>16 m</td>
<td>3 T 3 T</td>
</tr>
<tr>
<td></td>
<td>Apuntalado</td>
<td>No drenadas</td>
<td>16 m</td>
<td>3 T 3 T</td>
</tr>
<tr>
<td>Tang et al., (2018)</td>
<td>Voladizo</td>
<td>Drenadas</td>
<td>12.4 m</td>
<td>5.7 T 2.8 T</td>
</tr>
<tr>
<td>Goh et al., (2019)</td>
<td>Voladizo</td>
<td>No drenadas</td>
<td>20 m</td>
<td>5 T 5.8 T</td>
</tr>
<tr>
<td></td>
<td>Voladizo</td>
<td>No drenadas</td>
<td>30 m</td>
<td>5 T 3.9 T</td>
</tr>
<tr>
<td></td>
<td>Voladizo</td>
<td>No drenadas</td>
<td>40 m</td>
<td>5 T 2.9 T</td>
</tr>
</tbody>
</table>

*La profundidad se refiere a la distancia entre límite superior e inferior de la malla de elementos finitos

**Aplicación de condiciones drenadas y no drenadas en el mismo problema de diseño

4.5.2. Aproximación de desplazamientos

La principal aproximación en el método de los elementos finitos consiste asumir que el desplazamiento de los elementos está en función de las componentes de desplazamiento de los nodos u y v, en las coordenadas x y y, respectivamente (Zienkiewicz, 1977). Sobre cada elemento se asume que las componentes de desplazamiento nodal se encuentran expresadas en términos de una forma polinomial simple, donde el orden del polinomio dependen del número de nodos en el elemento (Zienkiewicz, Taylor, & Zhu, 2013). En la Ecuación 4-4, se muestra cómo se expresan de forma matricial las componentes de desplazamiento nodal de un elemento finito de tres nodos, como el que se muestra en la Figura 4-6.

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix}
= [N]\begin{bmatrix}
 u_i & u_j & u_m & v_i & v_j & v_m
\end{bmatrix}^T = [N]\begin{bmatrix}
 u \\
 v
\end{bmatrix}^T_{nodos}
\]

(4-4)

Donde N se conoce como la matriz de funciones de forma. En la Ecuación 4-4, las componentes de desplazamiento u y v están expresadas en términos de sus valores en los nodos.
4.5.3. Ecuaciones de los elementos

Para determinar las ecuaciones de los elementos para el comportamiento del material, se
aplica el principios de energía potencial mínima. Este principio establece que la posición de
equilibrio estático de un cuerpo elástico lineal cargado es la que minimiza la energía potencial
total (Zienkiewicz, Taylor, & Fox, 2013). La energía potencial total de un cuerpo se define
como:

\[
E_{\text{total}} = E_{\text{deformación}} - L
\]

El principios de energía potencial mínima establece que para el equilibrio:

\[
\delta \Delta E = \delta \Delta W - \delta \Delta L = 0
\]

La energía de deformación, \(\Delta W \), se define como:

\[
\Delta W = \frac{1}{2} \int_{\text{Vol}} \{ \Delta \varepsilon \}^T [M] \{ \Delta \sigma \} \text{dVol}
\]

Donde \(\Delta \varepsilon \), \(\Delta \sigma \) y \(M \) son las deformaciones, los esfuerzos y la matriz del modelo constitutivo
(e.g., modelo lineal elástico isotrópico), respectivamente. Las integraciones son sobre el
volumen del cuerpo. El trabajo realizado por las cargas aplicadas, \(\Delta L \), se pueden dividir en
contribuciones de las fuerzas de cuerpo y las tracciones de superficie, por tanto, puede ser
expresada como:

\[
\Delta L = \int_{\text{Vol}} \{ \Delta d \}^T \{ \Delta F \} \text{dVol} + \int_{\text{Srf}} \{ \Delta d \}^T \{ \Delta T \} \text{dSrf}
\]

Donde:

\(\{ \Delta d \}^T = \{ \Delta u, \Delta v \} = \text{desplazamientos} \)
\[\{\Delta F\}^T = \{\Delta F_x, \Delta F_y\} = \text{fuerzas de cuerpo} \]
\[\{\Delta T\}^T = \{\Delta T_x, \Delta T_y\} = \text{tracciones de superficie (cargas lineales, presiones de sobrecarga);} \]
\(S_{rf} \) es la parte de la frontera del dominio sobre el que se aplican las tracciones de superficie.

Luego de realizar una discretización del problema en elementos, expresar las variaciones de los elementos en términos de valores nodales y minimizar la energía potencial respecto a estos incrementos nodales se obtiene la Ecuación 4-5.

\[\sum_{i=1}^{N'} [K_E]_i ([\Delta d]_n)_i = \sum_{i=1}^{N'} [\Delta R_E] \]

(4-5)

Donde:

\[[K_E] = \int_{Vol} [B]^T [D] [B] dVol = \text{Matriz de rigidez del elemento} \]

\[\{\Delta R_E\} = \int_{Vol} [N]^T \{\Delta F\} dVol + \int_{S_{rf}} [N]^T \{\Delta T\} dS_{rf} \]

\(N' \) es el número de elementos

Por tanto, el problema se reduce a determinar y a sumar por separado las ecuaciones de equilibrio de los elementos:

\[[K_E] = \{\Delta d\}_{nodos} = \{\Delta R_E\} \]

4.5.4. Ecuaciones globales

La siguiente etapa en la formulación de las ecuaciones de elementos finitos es el ensamblaje de las ecuaciones de equilibrio de elementos separados en un conjunto de ecuaciones globales (Rao, 2011):

\[[K_G] = \{\Delta d\}_{nodos\, global} = \{\Delta R_G\} \]

Donde:

\[[K_G] = \text{Matriz de rigidez global} \]

\[\{\Delta d\}_{\text{Nodos\, global}} = \text{Un vector que contiene grados de libertad desconocidos (desplazamientos nodales) para toda la malla de elementos finitos.} \]

\[\{\Delta R_G\} = \text{Vector de carga global} \]

Dado que cada elemento de la matriz de rigidez se forma de acuerdo con el procedimiento descrito en el inciso anterior (Sección 4.5.3.), se ensambla en la matriz de rigidez global. Este proceso de ensamblaje se denomina método de rigidez directa (Zienkiewicz, Taylor, & Zhu, 2013). Los términos de la matriz de rigidez global se obtienen sumando las contribuciones de los elementos individuales teniendo en cuenta los grados de libertad que son comunes entre los elementos.
4.5.5. **Condiciones de frontera**

La etapa final en la configuración del sistema global de ecuaciones es la aplicación de las condiciones de frontera (Potts & Zdravkovic, 1999b). Si en el proceso de diseño por análisis de elementos finitos se prescriben cargas lineales y puntuales, estas pueden incorporarse directamente en el vector \(\{R_G\} \) (Rao, 2011). Si se definen condiciones de frontera de presión, éstas deben expresarse primero como fuerzas nodales equivalentes antes de agregarse a \(\{R_G\} \).

Las fuerzas de cuerpo también contribuyen a \(\{R_G\} \) al igual que las fuerzas de elementos excavados y construidos (Bathe, 1982).

Por otro lado, las condiciones de frontera de desplazamientos afectan al vector \(\{\Delta d\}_{nodos globales} \) (Rao, 2011). En todos los casos, deben prescribirse condiciones de desplazamiento suficientes para retener cualquier modo de deformación del cuerpo rígido, como rotaciones o traslaciones de la malla completa de elementos finitos (Bathe, 1982).

4.5.6. **Solución de ecuaciones globales**

Una vez establecida la matriz de rigidez global y agregadas las condiciones de contorno, se forma matemáticamente un gran sistema de ecuaciones simultáneas. Estas deben ser resueltas para obtener valores de los desplazamientos nodales \(\{\Delta d\}_{nodos globales} \). Hay varias técnicas matemáticas para resolver grandes sistemas de ecuaciones. La mayoría de los programas de elementos finitos adoptan una técnica basada en la eliminación gaussiana (Rao, 2011).

4.6. **Método de elementos finitos basado en la reducción de la resistencia al corte del suelo**

En general, el procedimiento de reducción de la resistencia al cortante del suelo involucra análisis repetidos (iteraciones) que permiten reducir progresivamente los valores del ángulo de fricción \(\tan \phi' \) y la cohesión \(c' \), como se muestra en la Ecuación 4-6, a partir de incrementos sistemáticos de un factor \(F \) hasta que ocurre la falla (Brinkgreve & Bakker, 1991).

\[
\frac{\tau}{F} = \frac{c'}{F} + \sigma' \frac{\tan \phi'}{F}
\]

Donde \(\tau \) es el esfuerzo cortante y \(\sigma' \) es el esfuerzo normal efectivo. En la literatura, existen diferentes definiciones del criterio de falla, entre las cuales se encuentra el método de no-convergencia (Matsui & San, 1992).

4.6.1. **Método de no-convergencia**

Cuando el método de elementos finitos basado en la reducción de la resistencia al corte del suelo no puede converger dentro de un número máximo de iteraciones especificado, la implicación es que no se puede encontrar una distribución de esfuerzos que pueda satisfacer simultáneamente el criterio de falla de Mohr-Coulomb y el equilibrio global. Si el algoritmo no puede satisfacer estos criterios, se dice que se ha producido “la falla” (Griffiths & Lane, 1999). En muros, la falla ocurre cuando la estructura de contención rota y/o se desplaza y...
simultáneamente la no-convergencia ocurre, acompañada de un aumento dramático en los desplazamientos nodales (Goh, 1990), como se muestra en la Figura 4-7. El método de no-convergencia se basa en las siguientes suposiciones:

1) La reducción en los parámetros de resistencia del suelo (i.e., cohesión y el ángulo de fricción) no impacta sobre las otras propiedades del suelo, como el módulo de elasticidad y la relación de Poisson.
2) Ambos parámetros, la cohesión y el ángulo de fricción, son igualmente importantes en proporcionar la resistencia al cortante del suelo; por tanto, el mismo valor de F es aplicado a c' y a $\tan \phi$.

En programas de elementos finitos, como PLAXIS (Brinkgreve, Broere, & Waterman, 2006) y Phase² (Rocscience Inc., 2001), el criterio de convergencia por defecto consiste en que el error global es menor que el error tolerado de 0.01.

Figura 4-7. Ejemplo de resultado de cálculos iterativos por el método de no-convergencia para una pantalla de pilas (Ukritchin et al., 2016).
5. Metodología

Inicialmente se desarrolló una revisión de la literatura para reconocer los métodos de diseños de pantallas de pilas y estudiar su aplicación en los análisis por confiabilidad y en el método de elementos finitos. Subsecuentemente, se consultaron los fundamentos teóricos de códigos, manuales y libros nacionales e internacionales de diseño geotécnico, y se caracterizaron las especificaciones de diseño de cada referencia con relación a los métodos de equilibrio límite, teorías de presiones de tierra, fricción de la interfase suelo/muro y factores de seguridad.

De manera análoga, se estudiaron los procesos de cálculo de probabilidades de falla de pantallas de pilas en voladizo por medio de simulaciones de Monte Carlo y se identificaron las etapas que involucra el uso del método de elementos finitos en el diseño geotécnico de estructuras de contención.

5.1. Análisis por confiabilidad

5.1.1. Pantallas de pilas continuas en voladizo

Con la información obtenida de la búsqueda y análisis de la literatura, se consideró un caso de diseño de una pantalla de pilas continuas en voladizo en un suelo arenoso, con propiedades estudiadas por Bilgin (2010). El muro consta de una altura libre igual H=5.0 m y el suelo es una arena saturada en estado suelto con $\phi'=30^\circ$, $c'=0$ y $\gamma=16$ kN/m3. La fricción suelo/muro $\delta/\phi'=0.89$ se seleccionó de acuerdo con los estudios experimentales de Potyondy (1961), ver Sección 4.3.5. Las propiedades geotécnicas del suelo de lleno y de cimentación son iguales.

La aplicación de los métodos de análisis por confiabilidad al caso de diseño estuvo orientada a estimar la relación entre el empotramiento y la probabilidad de falla del muro considerando el enfoque de diseño basado en simulaciones de Monte Carlo propuesto por Wang (2013). Este enfoque establece que la falla por estabilidad de una pantalla de pilas en voladizo ocurre cuando la profundidad de diseño ($D/H)_d$ es menor que la profundidad mínima obtenida en las simulaciones ($D/H)_m$. En términos probabilísticos, la falla del muro se define de acuerdo con la Ecuación 5-1.

$$p_f = P [(D/H)_m > (D/H)_d] = 1 - P [(D/H)_m \leq (D/H)_d] \quad (5-1)$$

En base a lo anterior, las profundidades (D/H) calculadas por análisis de equilibrio límite y simulaciones de Monte Carlo se compararon para determinar la influencia de los métodos de Krey, Blum, Rowe y Hansen en los análisis por confiabilidad. Los empotramientos se calcularon a partir de la probabilidad de falla mínima de diseño establecida por la USACE (1997) $p_f=0.001$. El ángulo de fricción del suelo se modeló como una variable aleatoria continua definida con relación a una distribución normal y variabilidad igual a 10%. Estas propiedades estadísticas son comúnmente utilizadas en diseños de muros de contención (Viviescas et al., 2017). Las teorías de presiones, los factores de seguridad y los valores de fricción suelo/muro se estimaron de acuerdo con la metodología seguida por el código GEO (2000). También, se analizaron las diferencias entre el valor típico de diseño propuesto por
Look (i.e., D/H=1.5, de acuerdo con el caso de estudio en esta investigación) y los resultados de análisis de equilibrio límite y simulaciones de Monte Carlo.

Análogamente, con el mismo enfoque de diseño propuesto por Wang (2013) y la probabilidad de falla mínima de diseño $p_f=0.001$, se desarrollaron simulaciones de Monte Carlo para comparar las profundidades en la falla de acuerdo con los métodos de equilibrio límite, teorías de presiones de tierra, factores de seguridad y ángulos de fricción de la interfase suelo/muro especificados por códigos, manuales y libros de diseño geotécnico encontrados en la literatura. El objetivo era examinar la influencia que tenía cada consideración de diseño (i.e., método, teoría, factor y valor de fricción suelo/muro) en la estimación de la profundidad del muro tomando en cuenta una variabilidad del ángulo de fricción del suelo igual a 10%. Asimismo, se evaluó la influencia que tiene la variabilidad de ϕ' en los diseños asumiendo coeficientes de variación iguales a 2%, 5%, 10% y 15%; los cuales se encuentran en el rango de variabilidad inherente de dicho parámetro (Phoon, Kulhawy, & Grigoriu, 1995).

En la Figura 5-1, se muestra el procedimiento empleado para realizar los análisis basados en simulaciones de Monte Carlo de pantallas de pilas en voladizo en esta investigación.

5.1.2. Pantallas de pilas discontinuas en voladizo

Por otro lado, el diseño de la pantalla de pilas continuas considerada en el caso de diseño de Bilgin (2010) se extendió al análisis de una pantalla de pilas discontinuas en voladizo en el que se asumió una separación igual entre las pilas. En los análisis planteados, se usaron simulaciones de Monte Carlo con el objetivo de determinar valores confiables de la profundidad y la esbeltez frente a variaciones del ángulo de fricción del suelo, el diámetro y la separación de las pilas. La esbeltez L/B se determinó como la relación entre la longitud total de la pantalla de pilas L y el diámetro de las pilas B.

Con respecto a lo anterior, la variabilidad del ángulo de fricción del suelo se modeló de acuerdo con una distribución normal y una variabilidad igual a 10%. El diámetro de las pilas se modeló a través de una distribución uniforme, con valores mínimo y máximo iguales a 0.8 m y 2.5 m, respectivamente. La separación de las pilas se evaluó en valores del orden de 1, 2 y 3 veces el diámetro de las pilas. Los análisis se realizaron considerando dos referencias de diseño: USACE (1994) y AIS (2014); estas referencias poseen las alteraciones de mayor y menor magnitud en términos del empotramiento, ver Sección 6.2.1.

Para el cálculo de la probabilidad de falla por esbeltez a través de simulaciones de Monte Carlo se empleó la Ecuación 5-2, la cual deriva del enfoque de diseño de Wang (2013).

$$p_f = P [(L/B)_m > (L/B)_d] = 1 - P [(L/B)_m \leq (L/B)_d]$$ (5-2)

donde $(L/B)_d$ es la esbeltez de diseño final y $(L/B)_m$ es la esbeltez mínima obtenida en las simulaciones. La probabilidad de falla mínima asumida para los cálculos es $p_f = 0.001$.

Página | 37
El procedimiento de diseño utilizado para los análisis por confiabilidad de pantallas de pilas discontinuas en voladizo es similar al planteado en la Figura 5-1 con la diferencia de que, al determinar la profundidad, se añade un paso más para el cálculo de la esbeltez.

En todas las simulaciones descritas con anterioridad se utilizó MS Excel y @Risk. El número de simulaciones por cada iteración es del orden de 10000 utilizando la técnica de muestreo Latino Hipercúbico.

5.1.3. Criterio de información bayesiano

En los procedimientos descritos anteriormente se usó el criterio de información bayesiano (BIC) para ajustar los histogramas de frecuencia resultantes de las simulaciones de Monte Carlo a funciones de densidad de probabilidad (PDF, en inglés) teóricas. La finalidad del uso de las PDF teóricas se justifica en que los histogramas de frecuencia conllevan a errores de cálculo de las profundidades del muro a niveles de probabilidad de baja resolución, es decir, probabilidades menores que $p_f=0.001$ (e.g., Wang et al., 2011).

Figura 5-1. Procedimiento utilizado para realizar análisis por confiabilidad de pantallas de pilas en voladizo.
5.2. Análisis de elementos finitos

5.2.1. Análisis de elementos finitos basados en la reducción de la resistencia al corte del suelo

En los análisis de elementos finitos, se utilizó el software PLAXIS para desarrollar cálculos iterativos por medio del método de no-convergencia en el marco de la resistencia al cortante reducida. En esta parte de la investigación, el objetivo consistió en determinar el efecto de la profundidad y el diámetro de las pantallas de pilas en el factor F y en los mecanismos de falla del sistema suelo/estructura. Los análisis numéricos se desarrollaron de acuerdo con los datos de la Tabla 5-1.

El valor de la cohesión en los análisis de elementos finitos (c’=0.3 kPa) difiere del utilizado en los análisis por confiabilidad y equilibrio límite (c’=0 kPa). Debido a que PLAXIS no permite utilizar un valor de cohesión igual a cero en condiciones drenadas se tomó c’=0.3 kPa (Bilgin, 2010). Los valores del diámetro y de la profundidad de las pilas consideradas en esta investigación son:

B = 0.75 m, 0.86 m, 1.05 m, 1.32 m, 1.51 m, 1.8 m.
D = 3.0 m, 3.2 m, 3.5 m, 4.0 m, 4.2 m, 4.5 m, 4.8 m, 5.25 m, 6.0 m, 6.4 m, 6.75 m, 7.0 m, 7.5 m, 8.0 m, 8.4 m, 8.75 m, 9.0 m, 10 m, 10.5 m y 11.25 m.

Tabla 5-1. Parámetros de diseño utilizados en PLAXIS.

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo (Arena suelta saturada)</td>
<td></td>
</tr>
<tr>
<td>Ángulo de fricción, ϕ' (°)</td>
<td>30</td>
</tr>
<tr>
<td>Cohesión, c' (kPa)</td>
<td>0.3</td>
</tr>
<tr>
<td>Peso unitario, γsuelo (kN/m³)</td>
<td>16</td>
</tr>
<tr>
<td>Módulo de elasticidad, Esuelo (kPa)</td>
<td>15000</td>
</tr>
<tr>
<td>Relación de Poisson, νsuelo</td>
<td>0.2</td>
</tr>
<tr>
<td>Fricción de la interfase, δ/ϕ'</td>
<td>0.89</td>
</tr>
<tr>
<td>Coef. presión de tierra en reposo, K₀</td>
<td>1.0</td>
</tr>
<tr>
<td>Condiciones de diseño</td>
<td>Drenadas</td>
</tr>
<tr>
<td>Modelo constitutivo</td>
<td>Mohr-Coulomb</td>
</tr>
<tr>
<td>Muro (Pantalla de pilas discontinuas)</td>
<td></td>
</tr>
<tr>
<td>Diámetro, B (m)</td>
<td>0.75 ≤ B ≤ 1.8</td>
</tr>
<tr>
<td>Profundidad, D (m)</td>
<td>3.0 ≤ D ≤ 11.25</td>
</tr>
<tr>
<td>Separación de las pilas, S</td>
<td>1.0 m</td>
</tr>
<tr>
<td>Módulo de elasticidad, E_muro (kPa)</td>
<td>19600000</td>
</tr>
<tr>
<td>Relación de Poisson, νmuro</td>
<td>0.15</td>
</tr>
<tr>
<td>Peso unitario, γmuro (kN/m³)</td>
<td>24</td>
</tr>
<tr>
<td>Modelo constitutivo</td>
<td>Lineal-elástico</td>
</tr>
</tbody>
</table>
El módulo de elasticidad del muro E_{muro} se tomó como $0.7E_0$, donde $E_0 = 28 \times 10^6$ (Gaba et al., 2003). Por otro lado, la rigidez a la flexión de las pilas es calculada con base a la Ecuación 5-3 (Gaba et al., 2017), donde I_p es el momento de inercia de la sección transversal de una pila y S es la separación de las pilas. La rigidez axial es calculada con base a la Ecuación 5-4, donde A_p es el área de la sección transversal de la pila.

$$E_{muro}I_p = (0.7E_0) \left(\frac{\pi B^4}{64S} \right)$$ \quad (5-3)

$$E_{muro}A_p = (0.7E_0) \left(\frac{\pi B^2}{4} \right)$$ \quad (5-4)

Antes de proceder con los análisis de elementos finitos, se realizó una calibración del modelo de diseño con respecto a un caso de análisis planteado por Ukritchon et al., (2016), en el que se modeló a través del método de reducción de la resistencia al cortante del suelo una pantalla de pilas en voladizo. La calibración consistió en determinar la geometría óptima de la malla de elementos finitos, el número de nodos de la malla, el procedimiento de cálculo en PLAXIS (i.e., comandos y rutina de cálculo para estructuras de contención con elementos de placa) y el número de iteraciones de convergencia requeridos para alcanzar valores del factor F para diferentes valores de empotramiento del muro obtenidos por Ukritchon et al., (2016). En el Anexo C, se muestran resultados de la calibración.

Posterior a la calibración, se realizaron las modelaciones de las pantallas de pilas discontinuas considerada en la Tabla 5-1. El procedimiento de cálculo en PLAXIS se realizó de acuerdo con las siguientes etapas, tres de ellas se muestran en la Figura 5-2:

a) Procedimiento K_0: cálculo de los esfuerzos verticales y horizontales del suelo
b) Activación del muro y de la interfase suelo/muro
c) Excavación de 5 m de suelo
d) Aplicación del método de no-convergencia

El número de iteraciones empleadas en el método de no-convergencia es 100, con un tamaño de paso igual 0.1; el nodo para el análisis se ubicó en el extremo superior del muro. Esta es la configuración con la que se logró la calibración y es la recomendada en investigaciones para el diseño de tablestacas y pantallas de pilas en voladizo (Brinkgreve & Bakker, 1991; Do et al., 2013; Ukritchon et al., 2016).

En la Figura 5-3, se ilustra con mayor generalidad el procedimiento aplicado en los análisis de elementos finitos y, a su vez, se incluyen las etapas a, b, c y d descritas con anterioridad. El primer cuadro de decisión corresponde a la convergencia de los análisis de esfuerzos y deformaciones del modelo constitutivo elástico-perfectamente plástico de Mohr-Coulomb del suelo. El segundo cuadro decisión corresponde a la convergencia del método de reducción de la resistencia al corte del suelo. En esta investigación, en la etapa correspondiente al primer cuadro de decisión no fue necesario incrementar el empotramiento para cada profundidad D analizada; el sistema estructural era estable en todos los casos.
5.2.2. Mecanismos de falla del muro

Los mecanismos de falla del muro se analizaron a través de diagramas de contorno de elementos finitos que involucran análisis de puntos plásticos, deformaciones incrementales y esfuerzos cortantes incrementales del suelo en la falla (i.e., no-convergencia), de acuerdo con diferentes características geométricas de la pantalla de pilas en voladizo (i.e., variaciones de la profundidad y diámetro). En PLAXIS, los diagramas de contorno se determinaron a través de las rutinas de cálculo Plastic analysis que abarca las etapas b) y c) de la Figura 5-2 y phi-c reduction method que abarca la etapa c) posterior al análisis plástico (Brinkgreve et al., 2006).

5.2.3. Factores de seguridad equivalentes

En la Sección 6.4.3., se establecieron relaciones y diferencias entre el factor F estimado por elementos finitos, el factor de seguridad F_s y los factores de seguridad equivalentes F_p, F_r y F_{np} considerando los parámetros de diseño mostrados en la Tabla 5-1. El proceso por seguir se muestra a continuación:

Para cada altura libre H y empotramiento D se calcularon:

a) Las presiones activas de tierra de acuerdo con la teoría de Coulomb.
b) Las presiones pasivas de tierra de acuerdo con las teorías de Rankine, Coulomb, Janbú y Caquot & Kerisel.
c) Los momentos movilizantes y resistentes con respecto al extremo inferior del muro.
d) Mediante la herramienta Solver de MS Excel, determinar los valores de F_s para cada altura libre H y profundidad D especificada, según la Ecuación A-6.
e) Implementando la herramienta Solver de MS Excel, estimar los factores equivalentes de F_s (i.e., F_p, F_r y F_{np}) para cada altura libre H y profundidad D especificada, según las Ecuaciones 4-1, 4-2 y 4-3.
Generar malla de elementos finitos y definir los parámetros de diseño del suelo y el muro

Realizar procedimiento K0: calcular los esfuerzos verticales y horizontales efectivos del suelo

Activar el muro y la interfase suelo/muro

Activar la excavación del suelo

¿Converge el análisis?

SSE inestable: Incrementar el empotramiento

SÍ (SSE estable)

Aplicar el método de no-convergencia

¿Converge el análisis?

SÍ

Aumentar tamaño de paso y/o número de iteraciones

NO

Factor F

Figura 5-3. Procedimiento de aplicación del método de no-convergencia para el diseño de pantallas de pilas en PLAXIS.

SSE: Sistema suelo/estructura
6. Resultados y discusión

6.1. Relación entre los métodos de análisis de equilibrio límite y simulaciones de Monte Carlo en los diseños de pantallas de pilas

En la Figura 6-1, se muestran los resultados de las simulaciones de Monte Carlo. La relación entre la profundidad y la probabilidad de falla p_f indica que el método de Krey arroja valores de profundidad superiores en comparación con los métodos de Blum, Rowe y Hansen. Estos resultados se deben a que en el método de Krey las distribuciones de presiones alrededor del punto de giro en el muro producen una baja movilización de la resistencia pasiva del suelo, en contraste con el método de Hansen, en el que las presiones aumentan linealmente hasta el extremo inferior del muro generando una alta movilización de la resistencia pasiva que da como resultado profundidades de diseño más bajas. Los métodos de Rowe y Blum presentan resultados iguales debido a que consideran la misma distribución de presiones.

![Figura 6-1. Relación entre profundidad y probabilidad de falla de acuerdo con los métodos de equilibrio límite (Mattos et al., 2018).](image)

En la Figura 6-2, se exhiben las profundidades determinadas por simulaciones de Monte Carlo para $p_f=0.001$ y, en la Tabla 6-1, se muestran las diferencias entre las profundidades calculadas por métodos de equilibrio límite y simulaciones de Monte Carlo. Las diferencias entre los resultados obtenidos permiten indicar que, para el caso analizado el uso de los valores medios (i.e. los valores más probables) de los parámetros de diseño en los análisis de equilibrio límite conllevan a profundidades similares a la altura libre (i.e., $D/H=1.0$). Por el contrario, a niveles de confiabilidad del orden de $p_f=0.001$, la profundidad aumenta cerca al 90% con relación a las calculadas por cada método de equilibrio límite.
Figura 6-2. Profundidades estimadas por medio de simulaciones de Monte Carlo \((p=0.001)\)
(Mattos et al., 2018).

Tabla 6-1. Diferencias entre las profundidades calculadas por simulaciones de Monte Carlo y métodos de equilibrio límite, modificado de (Mattos et al., 2018).

<table>
<thead>
<tr>
<th>Método</th>
<th>MEL((p=0.001))</th>
<th>SMC ((p=0.001))</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krey</td>
<td>1,12</td>
<td>2,13</td>
<td>90,2%</td>
</tr>
<tr>
<td>Blum</td>
<td>1,04</td>
<td>1,97</td>
<td>89,4%</td>
</tr>
<tr>
<td>Rowe</td>
<td>1,04</td>
<td>1,97</td>
<td>89,4%</td>
</tr>
<tr>
<td>Hansen</td>
<td>1,02</td>
<td>1,93</td>
<td>89,2%</td>
</tr>
</tbody>
</table>

*MEL: Métodos de análisis basados en equilibrio límite
SMC: Simulaciones de Monte Carlo
Diferencia: \((SMC-MEL)/MEL*100\%\)

Para el caso analizado, el valor típico de diseño de Look (i.e., \(D/H=1.5\)) podría constituir una solución de diseño preliminar subjetiva, ya que dependiendo del enfoque de análisis puede ser considerada muy conservadora o poco conservadora. Por ejemplo, de acuerdo con los resultados de los análisis de equilibrio límite (i.e., \(D/H\approx1.0\)), el valor de Look conlleva a un incremento del 50\% del empotramiento; mientras que de acuerdo con los resultados de las simulaciones de Monte Carlo (i.e., \(D/H\approx2.0\)), el valor de Look representa un decrecimiento del 33\% en la profundidad del muro.

6.2. Relación entre las metodologías propuestas por códigos, manuales y libros geotécnicos y simulaciones de Monte Carlo en los diseños de pantallas de pilas

6.2.1. Análisis basados en por simulaciones de Monte Carlo para COV\(\phi’=10\%\)

En la Figura 6-3, se muestran las distribuciones de probabilidad de las profundidades obtenidas en las simulaciones de Monte Carlo para cada referencia de diseño y, en la Tabla 6-2, se exhiben las propiedades estadísticas de las curvas de diseño considerando COV\(\phi’=10\%\).
Los resultados de las Figuras 6-3 y la Tabla 6-2 indican que las metodologías propuestas por cada referencia de diseño tienen un impacto considerable en las medidas de asimetría, curtosis y colas (i.e., percentil 99%) de las distribuciones de probabilidad. Esto se hace más evidente para los códigos AIS (2014), CMAA y USACE que arrojan valores de profundidad mayores con relación a las demás referencias de diseño.

![Figura 6-3. Distribuciones de probabilidad para cada referencia de diseño para COVφ'=10%](image)

Figura 6-3. Distribuciones de probabilidad para cada referencia de diseño para COVφ'=10%.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Asimetría*</th>
<th>Curtosis</th>
<th>P99%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGS (1978)</td>
<td>1,28</td>
<td>6,08</td>
<td>0,79</td>
</tr>
<tr>
<td>USS (1984)</td>
<td>0,24</td>
<td>5,90</td>
<td>0,75</td>
</tr>
<tr>
<td>BSI (1994)</td>
<td>0,62</td>
<td>3,81</td>
<td>1,20</td>
</tr>
<tr>
<td>USACE (1994)</td>
<td>0,64</td>
<td>3,77</td>
<td>1,18</td>
</tr>
<tr>
<td>Suárez (1998)</td>
<td>0,63</td>
<td>3,82</td>
<td>1,35</td>
</tr>
<tr>
<td>GEO (2000)</td>
<td>1,14</td>
<td>5,43</td>
<td>0,95</td>
</tr>
<tr>
<td>EN (2004)</td>
<td>0,61</td>
<td>3,76</td>
<td>1,27</td>
</tr>
<tr>
<td>CGS (2006)</td>
<td>1,30</td>
<td>6,34</td>
<td>0,85</td>
</tr>
<tr>
<td>CMAA (2008)</td>
<td>0,82</td>
<td>4,34</td>
<td>1,30</td>
</tr>
<tr>
<td>AIS (2014)</td>
<td>2,89</td>
<td>27,49</td>
<td>1,97</td>
</tr>
</tbody>
</table>

*Coeficiente de asimetría de Fisher
**Percentil 99% de la SMC

Asimismo, en la Figura 6-4, se exponen los resultados de las simulaciones de Monte Carlo que relacionan la profundidad con la probabilidad de falla para cada referencia de diseño y, en la Figura 6-5, se muestran las profundidades de empotramiento evaluadas considerando p=0,001 y COVφ'=10%.

De acuerdo con las Figuras 6-4 y 6-5, los métodos de diseño y los factores de seguridad tienen un efecto significativo en las profundidades. Por ejemplo, en el método de Krey, al
comparar las normas USACE y USS se detecta que un cambio de 0.3 en ΔD genera diferencias que alcanzan el 30.7% en las profundidades de diseño. Asimismo, en el método de Blum, la aplicación de factores a las presiones laterales de tierra altera los empotramientos, ya que un incremento y reducción del 50% en los empujes activos y pasivos generan diferencias del orden de 74.1% y 154.6% en los valores de profundidad, como se percibe al comparar el código AIS (2014) con las normas CMAA y CGS1978, respectivamente. En el método de Hansen, la aplicación de F_s genera un decrecimiento en las probabilidades de falla. Esto es evidenciado debido a que un cambio de sólo 0.05 en F_s representa un incremento de 5.8% en la profundidad D/H para las normativas BSI y EN.

![Figura 6-4](image)

Figura 6-4. Relación entre profundidad y probabilidad de falla para cada referencia de diseño para COVϕ^{\prime}=10%.

![Figura 6-5](image)

Figura 6-5. Profundidades evaluadas para cada referencia de diseño para p_f=0.001 y COVϕ^{\prime}=10%.
Adicionalmente, en la Tabla 6-3 se analizan las diferencias que presentan las profundidades de acuerdo con las metodologías de equilibrio límite y simulaciones de Monte Carlo para cada referencia de diseño considerando $p_f=0.001$ y $COV\phi'=10\%$. Los resultados permiten señalar que los análisis basados en simulaciones de Monte Carlo conllevan a una extensión mínima del 50% de la profundidad de la estructura; particularmente, con la aplicación del reglamento de diseño AIS (2014) se alcanza un sobredimensionamiento mayor que el doble (i.e., 128.7%) de la profundidad evaluada por métodos de equilibrio límite.

El factor de seguridad aplicado en las presiones laterales tiene una implicación importante en el empotramiento, sin embargo, la variabilidad del suelo (i.e., $COV\phi'=10\%$) también tiene un efecto de relevancia ya que estadísticamente la asimetría y las colas de las distribuciones de probabilidad obtenidas en las simulaciones están asociadas al tipo de función matemática (e.g., polinómica de primer o cuarto orden) que posean las ecuaciones de equilibrio límite y a la varianza o coeficiente de variación de la variable aleatoria (i.e., ángulo de fricción del suelo).

Tabla 6-3. Diferencias entre las profundidades calculadas por simulaciones de Monte Carlo y métodos de equilibrio límite para cada referencia de diseño.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>SMC ($p_f=0.001$)</th>
<th>MEL</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGS (1978)</td>
<td>1.32</td>
<td>0.70</td>
<td>89.1%</td>
</tr>
<tr>
<td>USS (1984)</td>
<td>1.27</td>
<td>0.67</td>
<td>89.9%</td>
</tr>
<tr>
<td>BSI (1994)</td>
<td>1.39</td>
<td>0.77</td>
<td>80.7%</td>
</tr>
<tr>
<td>USACE (1994)</td>
<td>1.66</td>
<td>1.09</td>
<td>52.5%</td>
</tr>
<tr>
<td>Suárez (1998)</td>
<td>1.56</td>
<td>0.89</td>
<td>75.4%</td>
</tr>
<tr>
<td>GEO (2000)</td>
<td>1.57</td>
<td>0.82</td>
<td>91.1%</td>
</tr>
<tr>
<td>EN (2004)</td>
<td>1.47</td>
<td>0.82</td>
<td>78.9%</td>
</tr>
<tr>
<td>CGS (2006)</td>
<td>1.44</td>
<td>0.76</td>
<td>89.5%</td>
</tr>
<tr>
<td>CMAA (2008)</td>
<td>1.93</td>
<td>1.16</td>
<td>66.4%</td>
</tr>
<tr>
<td>AIS (2014)</td>
<td>3.36</td>
<td>1.47</td>
<td>128.7%</td>
</tr>
</tbody>
</table>

MEL: Métodos de análisis basados en equilibrio límite
SMC: Simulaciones de Monte Carlo
Diferencia: $\frac{SMC-MEL}{MEL}*100\%$

6.2.2. Análisis basados en simulaciones de Monte Carlo para $COV\phi'=2\%, 5\%, 10\%$ y 15%

En la Figura 6-6, se presenta la relación entre la profundidad y el índice de confiabilidad β para diferentes coeficientes de variación del ángulo de fricción del suelo conforme a la USACE y AIS (2014), las cuales son las referencias de diseño que poseen las alteraciones menos y más representativas de la profundidad, respectivamente, según la Tabla 6-3. Asimismo, en la Figura 6-7, se exponen los cambios del empotramiento con relación a la variabilidad del suelo tomando en consideración todas las referencias de diseño para $p_f=0.001$.

De acuerdo con la Figura 6-6, la variabilidad del ángulo de fricción del suelo tiene un efecto notable en las profundidades de diseño. Frente a un incremento del 5% en $COV\phi$, las profundidades de empotramiento obtenidas por la metodología de la USACE experimentan aumentos que fluctúan entre 15.8% y 49.6% para $\beta \geq 2.0$. De igual manera, frente a un incremento del 5% en $COV\phi'$, se observa un aumento en la profundidad del muro que oscila entre 15.1% y 77.1% para $\beta \geq 2.0$, de acuerdo con el código AIS (2014).
Figura 6-6. Relación entre profundidad e índice de confiabilidad de acuerdo con: a) USACE; b) AIS (2014).

Figura 6-7. Relación entre profundidad e índice de confiabilidad de acuerdo con todas las referencias de diseño para p=0.001.

Con el propósito de estimar la susceptibilidad que posee la profundidad de diseño respecto a la variabilidad del suelo para p=0.001, se muestra en la Tabla 6-4 la relación entre la profundidad y los cambios en el coeficiente de variación el ángulo de fricción del suelo. En general, un cambio del 3% en COVϕ' produce variaciones de la profundidad que oscilan entre 11.7 % y 30.6% y, por otro lado, un cambio del 5% en COVϕ' produce variaciones de la profundidad que oscilan entre 25.8% y 48.4%.
Tabla 6-4. Variación de las profundidades frente a cambios en $COV\phi'$ tomando en cuenta las referencias de diseño geotécnico para $pf=0.001$.

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Profundidad, D/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$COV\phi'=2%\Delta COV\phi'(2%\to5%)$</td>
</tr>
<tr>
<td>CGS (1978)</td>
<td>0.78 20.70 0.94 41.01 1.32 29.58 1.72</td>
</tr>
<tr>
<td>USS (1984)</td>
<td>0.75 21.54 0.91 39.81 1.27 40.18 1.78</td>
</tr>
<tr>
<td>BSI (1994)</td>
<td>0.86 19.30 1.03 35.00 1.39 37.20 1.91</td>
</tr>
<tr>
<td>USACE (1994)</td>
<td>1.18 11.71 1.32 26.31 1.66 25.79 2.09</td>
</tr>
<tr>
<td>Suárez (1998)</td>
<td>0.99 18.31 1.17 33.90 1.56 36.65 2.13</td>
</tr>
<tr>
<td>GEO (2000)</td>
<td>0.92 21.30 1.12 40.16 1.57 36.31 2.14</td>
</tr>
<tr>
<td>EN (2004)</td>
<td>0.92 18.96 1.09 34.44 1.47 36.56 2.00</td>
</tr>
<tr>
<td>CGS (2006)</td>
<td>0.84 21.06 1.02 41.22 1.44 37.72 1.98</td>
</tr>
<tr>
<td>CMAA (2008)</td>
<td>1.27 16.46 1.47 30.94 1.93 31.81 2.54</td>
</tr>
<tr>
<td>AIS (2014)</td>
<td>1.73 30.64 2.26 48.41 3.36 21.38 4.08</td>
</tr>
</tbody>
</table>

6.3. Relación entre profundidad, esbeltez y espaciamiento de pantallas de pilas discontinuas en voladizo a través de simulaciones de Monte Carlo.

6.3.1. Análisis basados en simulaciones de Monte Carlo para $COV\phi'=10\%$

En la Figura 6-8, se muestra la relación entre la profundidad de empotramiento, la esbeltez, la separación y la probabilidad de falla de pantallas de pilas discontinuas para las referencias USACE y AIS (2014) a través de simulaciones de Monte Carlo. La separación considerada corresponde a $S/B=1, 2$ y 3, donde $S/B=1$ corresponde a pantallas de pilas continuas.

Figura 6-8. Relación entre profundidad, esbeltez, separación y probabilidad de falla de pantallas de pilas discontinuas de acuerdo con a) USACE; b) AIS (2014) para $COV\phi'=10\%$.
De acuerdo con la Figura 6-8, la influencia de la separación en la esbeltez se agudiza a medida que disminuye la probabilidad de falla; especialmente para el código AIS (2014), en el que se aprecian cambios sustanciales en la esbeltez para \(p_f < 0.001 \). Para \(p_f = 0.001 \), los cambios en la profundidad y la esbeltez considerando USACE y AIS (2014) son menores que 77 y 25\%, de acuerdo con las Tablas 6-5 y 6-6. La implicación que tiene este resultado en los análisis es que el efecto de la separación en la esbeltez es poco significativo; mientras que la profundidad presenta mayor susceptibilidad al espaciamiento.

Tabla 6-5. Relación entre profundidad y espaciamiento de las pilas de acuerdo con USACE y AIS (2014) para \(p_f = 0.001 \) y COV\(\phi' = 10\% \).

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Profundidad, D/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S/B=1,0</td>
</tr>
<tr>
<td>USACE</td>
<td>0,78</td>
</tr>
<tr>
<td>AIS (2014)</td>
<td>1,26</td>
</tr>
</tbody>
</table>

Tabla 6-6. Variación de la esbeltez frente a cambios en el espaciamiento de las pilas de acuerdo con USACE y AIS (2014) para \(p_f = 0.001 \) y COV\(\phi' = 10\% \).

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Esbeltez, L/B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S/B=1,0</td>
</tr>
<tr>
<td>USACE</td>
<td>15,16</td>
</tr>
<tr>
<td>AIS (2014)</td>
<td>16,23</td>
</tr>
</tbody>
</table>

6.4. Relación entre profundidad, diámetro, factores de seguridad y mecanismos de falla de pantallas de pilas discontinuas en voladizo a través de análisis de elementos finitos.

6.4.1. Relación entre profundidad, diámetro y factores de seguridad

La Tabla 6-7 y las Figuras 6-9 y 6-10 muestran la relación entre la altura libre, la profundidad, el diámetro y el factor de seguridad \(F \). La Tabla 6-7 permite comprobar que el factor \(F \) oscila entre 1.13 y 1.82 y posee una relación inversa con la altura libre. La Figura 6-9 constata que la influencia de la profundidad en el factor \(F \) es significativa, sin embargo, la influencia del diámetro en \(F \) es poco relevante, cuando se compara con los efectos de la profundidad. La Figura 6-10 permite comprobar que el diámetro genera una reducción significativa en el factor \(F \) a empotramientos profundos (i.e., \(D/H \geq 2.0 \)). En contraste, se aprecia una reducción poco importante en \(F \) a profundidades superficiales (i.e., \(D/H \leq 1.5 \)).

En general, los resultados evidencian que la rigidez del sistema estructural conduce a una mayor estabilidad; especialmente con el incremento de la profundidad de empotramiento, la cual tiene una gran influencia del peso del sistema de contención en relación con el diámetro.
Tabla 6-7. Relación entre profundidad, diámetro y factor de seguridad F.

<table>
<thead>
<tr>
<th>H (m)</th>
<th>B (m)</th>
<th>D (m)</th>
<th>B/H</th>
<th>D/H</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>0,75</td>
<td>3,0</td>
<td>0,25</td>
<td>1,0</td>
<td>1,19</td>
</tr>
<tr>
<td>3,2</td>
<td>0,86</td>
<td>3,2</td>
<td>0,27</td>
<td>1,0</td>
<td>1,15</td>
</tr>
<tr>
<td>3,5</td>
<td>1,05</td>
<td>3,5</td>
<td>0,30</td>
<td>1,0</td>
<td>1,14</td>
</tr>
<tr>
<td>4,0</td>
<td>1,32</td>
<td>4,0</td>
<td>0,33</td>
<td>1,0</td>
<td>1,13</td>
</tr>
<tr>
<td>4,2</td>
<td>1,51</td>
<td>4,2</td>
<td>0,36</td>
<td>1,0</td>
<td>1,13</td>
</tr>
<tr>
<td>4,5</td>
<td>1,80</td>
<td>4,5</td>
<td>0,40</td>
<td>1,0</td>
<td>1,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H (m)</th>
<th>B (m)</th>
<th>D (m)</th>
<th>B/H</th>
<th>D/H</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>0,75</td>
<td>4,5</td>
<td>0,25</td>
<td>1,5</td>
<td>1,44</td>
</tr>
<tr>
<td>3,2</td>
<td>0,86</td>
<td>4,8</td>
<td>0,27</td>
<td>1,5</td>
<td>1,38</td>
</tr>
<tr>
<td>3,5</td>
<td>1,05</td>
<td>5,25</td>
<td>0,30</td>
<td>1,5</td>
<td>1,34</td>
</tr>
<tr>
<td>4,0</td>
<td>1,32</td>
<td>6,0</td>
<td>0,33</td>
<td>1,5</td>
<td>1,36</td>
</tr>
<tr>
<td>4,2</td>
<td>1,51</td>
<td>6,3</td>
<td>0,36</td>
<td>1,5</td>
<td>1,37</td>
</tr>
<tr>
<td>4,5</td>
<td>1,80</td>
<td>6,75</td>
<td>0,40</td>
<td>1,5</td>
<td>1,34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H (m)</th>
<th>B (m)</th>
<th>D (m)</th>
<th>B/H</th>
<th>D/H</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>0,75</td>
<td>6,0</td>
<td>0,25</td>
<td>2,0</td>
<td>1,65</td>
</tr>
<tr>
<td>3,2</td>
<td>0,86</td>
<td>6,4</td>
<td>0,27</td>
<td>2,0</td>
<td>1,57</td>
</tr>
<tr>
<td>3,5</td>
<td>1,05</td>
<td>7,0</td>
<td>0,30</td>
<td>2,0</td>
<td>1,60</td>
</tr>
<tr>
<td>4,0</td>
<td>1,32</td>
<td>8,0</td>
<td>0,33</td>
<td>2,0</td>
<td>1,54</td>
</tr>
<tr>
<td>4,2</td>
<td>1,51</td>
<td>8,4</td>
<td>0,36</td>
<td>2,0</td>
<td>1,55</td>
</tr>
<tr>
<td>4,5</td>
<td>1,80</td>
<td>9,0</td>
<td>0,40</td>
<td>2,0</td>
<td>1,50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H (m)</th>
<th>B (m)</th>
<th>D (m)</th>
<th>B/H</th>
<th>D/H</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>0,75</td>
<td>7,5</td>
<td>0,25</td>
<td>2,5</td>
<td>1,82</td>
</tr>
<tr>
<td>3,2</td>
<td>0,86</td>
<td>8,0</td>
<td>0,27</td>
<td>2,5</td>
<td>1,74</td>
</tr>
<tr>
<td>3,5</td>
<td>1,05</td>
<td>8,75</td>
<td>0,30</td>
<td>2,5</td>
<td>1,67</td>
</tr>
<tr>
<td>4,0</td>
<td>1,32</td>
<td>10,0</td>
<td>0,33</td>
<td>2,5</td>
<td>1,70</td>
</tr>
<tr>
<td>4,2</td>
<td>1,51</td>
<td>10,5</td>
<td>0,36</td>
<td>2,5</td>
<td>1,61</td>
</tr>
<tr>
<td>4,5</td>
<td>1,80</td>
<td>11,25</td>
<td>0,40</td>
<td>2,5</td>
<td>1,63</td>
</tr>
</tbody>
</table>

Figura 6-9. Relación entre profundidad y factor de seguridad F.
Figura 6-10. Relación entre diámetro vs Factor de seguridad F.

6.4.2. Relación entre profundidad, diámetro y mecanismos de falla

En las Figuras 6-11 y 6-12, se muestran comparaciones del mecanismo de falla del sistema de pantallas de pilas en voladizo en términos de desplazamientos, puntos plásticos y esfuerzos cortantes del suelo para diferentes profundidades D/H=1.0 y D/H=2.5 y el mismo diámetro B/H=0.33. En el caso del menor empotramiento, la pantalla de pilas rota hacia el lado excavado, donde hay un modo de falla rotacional que ocurre alrededor del extremo superior el muro (Figura 6-11a). La zona de falla es similar a la clásica superficie de falla profunda con forma de espiral logarítmica (Figura 6-11b). En el lado activo, la zona de falla interseca al muro 1 m por debajo del nivel de excavación; mientras que en el lado pasivo se extiende desde el extremo inferior del muro hasta 5 m de la posición del muro en la superficie (Figura 6-11c).

En el caso de mayor empotramiento, el movimiento de rotación es más tenue en comparación con la translación horizontal que aumenta ostensiblemente (Figura 6-12a). La zona de falla es diferente con relación al muro de menor empotramiento. En el lado activo, la zona de falla interseca al muro hasta la profundidad de excavación; mientras que en el lado pasivo está comprendida desde 5 m metros por debajo del nivel de excavación hasta aproximadamente 8 m de la posición del muro en la superficie (Figuras 6-12b y 6-12c).
Figura 6-11. Mecanismo de falla donde B/H=0.33; D/H=1.0; a) desplazamiento incremental, b) puntos plásticos, c) esfuerzo cortante incremental.
c) Figura 6-12. Mecanismo de falla donde B/H=0.33; D/H=2.50; a) desplazamiento incremental, b) puntos plásticos, c) esfuerzo cortante incremental.

En la Figura 6-13, se muestran comparaciones del mecanismo de falla de pantallas de pilas en término del esfuerzo cortante incremental para diferentes diámetros B/H=0.25, 0.33, 0.40 y una misma profundidad D/H=1.5. El aumento del diámetro conlleva a un decrecimiento de los esfuerzos cortantes incrementales del suelo, lo que se refleja en la Figura 6-13 como una reducción del contorno de la cuña de falla en el lado activo y pasivo. Sin embargo, se aprecia un aumento del esfuerzo cortante incremental a profundidades inmediatamente por debajo de la línea de excavación, al lado del muro. Este resultado deriva del rozamiento entre el muro y el suelo inmediatamente adyacente, y su agudización se debe al aumento del peso del sistema de contención con el aumento del diámetro.
b) Figura 6-13. Esfuerzo cortante incremental donde D/H=1.5; a) B/H=0.25; b) B/H=0.3; c) B/H=0.40.

6.4.3. Relación entre factores de seguridad calculados por métodos de equilibrio límite y análisis de elementos finitos.

La Tabla 6-8 muestra los factores de seguridad F y Fs para distintos empotramientos (i.e., D=3.0 m, 4.5 m, 6.0 m y 7.5 m y H=3.0 m) y teorías de presión lateral de tierras. Los valores del factor F se calcularon previamente y corresponden a los mostrados en la Tabla 6-7. Los resultados indican que la teoría de Coulomb arroja los valores más grandes del factor Fs en relación con las teorías de Rankine, Janbú y Caquot & Kerisel. Además, se comprueba que la teoría de Janbú es más conservadora que la de Rankine.

<table>
<thead>
<tr>
<th>H (m)</th>
<th>D (m)</th>
<th>D/H</th>
<th>F</th>
<th>Fs Rankine</th>
<th>Coulomb</th>
<th>Janbú</th>
<th>C&K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>3,0</td>
<td>1,0</td>
<td>1,19</td>
<td>1,14</td>
<td>1,55</td>
<td>1,39</td>
<td>1,36</td>
</tr>
<tr>
<td>3,0</td>
<td>4,5</td>
<td>1,5</td>
<td>1,44</td>
<td>1,62</td>
<td>2,09</td>
<td>1,92</td>
<td>1,77</td>
</tr>
<tr>
<td>3,0</td>
<td>6,0</td>
<td>2,0</td>
<td>1,64</td>
<td>2,08</td>
<td>2,63</td>
<td>2,44</td>
<td>2,12</td>
</tr>
<tr>
<td>3,0</td>
<td>7,5</td>
<td>2,5</td>
<td>1,82</td>
<td>2,55</td>
<td>3,16</td>
<td>2,96</td>
<td>2,42</td>
</tr>
</tbody>
</table>

*Caquot & Kerisel

En la Figura 6-14, se comparan los factores de seguridad F y Fs mostrados en la Tabla 6-8 de acuerdo con el empotramiento y teoría de presión lateral de tierras (La línea 1:1 se define como la línea de compatibilización entre los métodos de equilibrio límite y elementos finitos. Los valores de Fs ubicados por debajo de este límite son mayores que F y, por el contrario, los valores Fs ubicados encima de la línea son menores que F). Los resultados indican que los valores de Fs determinados por la teoría de Rankine son los que mejor se ajustan a los valores de F. Las demás teorías conllevan a imprecisiones puesto que conducen a factores de seguridad Fs ostensiblemente altos, en otras palabras, son muy conservadores y e implican un sobredimensionamiento de la pantalla de pilas.
Los resultados de la Tabla 6-8 y de la Figura 6-14 permiten comprobar que los mecanismos de fallas teóricos con forma de ruptura lineal (e.g., Rankine y Coulomb) y espiral-logarítmica (e.g., Janbú y Caquot & Kerisel) tienen una implicación directa en los factores de seguridad calculados; principalmente las teorías de Rankine y Coulomb que consideran el mismo modo de falla y diferentes valores de fricción en la interfase suelo/muro.

Figura 6-14. Relación entre los factores de seguridad F_s y F.

En la Tabla 6-9, se muestran los factores de seguridad equivalentes de F_s usando la teoría de Rankine. Los factores de seguridad para $F_s \geq 2.0$ crecen ostensiblemente, particularmente F_r y F_{np}; este resultado se debe a que las presiones pasivas netas aumentan linealmente a partir de un punto ubicado entre la cota de excavación y el punto de giro en el muro. Por tanto, la resistencia pasiva neta debe ser muy superior para contrarrestar los efectos movilizantes de las presiones activas netas.

Asimismo, los resultados de la Tabla 6-9 indican que, para diseños de muros de contención en condiciones estáticas, sin sobrecarga, sin nivel freático y sin inclinación del suelo de lleno acorde a la NSR-10 (AIS, 2010), las profundidades a utilizar serían las de $D=6.0$ m y $D=7.5$ m ya que cumplen con $F_r \geq 3.0$, considerando $H=3.0$ m. También se comprueba que bajo las condiciones de diseño planteadas los valores de $F_s \geq 2.08$ cumplen las especificaciones de la NSR-10.

<table>
<thead>
<tr>
<th>H (m)</th>
<th>D (m)</th>
<th>D/H</th>
<th>F_s^*</th>
<th>F_p</th>
<th>F_r</th>
<th>F_{np}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,00</td>
<td>3,00</td>
<td>1,00</td>
<td>1,14</td>
<td>1,27</td>
<td>1,30</td>
<td>1,30</td>
</tr>
<tr>
<td>3,00</td>
<td>4,50</td>
<td>1,50</td>
<td>1,62</td>
<td>2,19</td>
<td>2,52</td>
<td>2,52</td>
</tr>
<tr>
<td>3,00</td>
<td>6,00</td>
<td>2,00</td>
<td>2,08</td>
<td>3,00</td>
<td>3,85</td>
<td>3,85</td>
</tr>
<tr>
<td>3,00</td>
<td>7,50</td>
<td>2,50</td>
<td>2,55</td>
<td>3,69</td>
<td>5,24</td>
<td>5,24</td>
</tr>
</tbody>
</table>

*Son los mismos valores de la Tabla 6-8, se añadieron para efectos de comparación.

Tabla 6-9. Factores de seguridad equivalentes de F_s usando la teoría de Rankine.
7. Conclusiones

- Para muros empotrados en suelos arenosos bajo condiciones estáticas, sin nivel freático, sin inclinación del suelo de lleno y sin sobrecargas, el método Hansen genera una mayor resistencia pasiva del suelo que da como resultado un empotramiento relativamente bajo en relación con el método de Krey, que produce una menor movilización de los presiones laterales pasivas y profundidades superiores.

- Las diferencias mostradas en la Tabla 6-1, entre los análisis basados en equilibrio límite y simulaciones de Monte Carlo, se deben al efecto del coeficiente de variación del ángulo de fricción del suelo y del grado del polinomio de las ecuaciones de estado límite en la asimetría, curtosis y colas de las distribuciones de densidad de probabilidad resultantes.

- Es importante anotar que, aunque la aplicación de análisis basados en equilibrio límite de códigos, manuales y libros de diseño geotécnico sea extensa y recomendada, para un caso ideal de diseño de pantallas de pilas en voladizo en una arena con variabilidad superior al 10% podrían ser inadecuadas desde un enfoque de análisis basado en el riesgo de falla.

- Acorde a los análisis basados en simulaciones de Monte Carlo de la metodología de la USACE (1994) (Figura 6-6a), la menor incertidumbre en el posible rango de variación del ángulo de fricción causará la menor diferencia para determinar el empotramiento del muro. Esto se evidencia para COV\(\phi^\prime\)≤5\%, en los que se alcanzan profundidades cercanas a la altura libre (i.e., D/H=1.0), incluso a niveles de confiabilidad altos (e.g., β=5.0), en los que las diferencias entre los valores de empotramiento incrementan ostensiblemente conforme aumenta la variabilidad del ángulo de fricción.

- Aunque los análisis basados en simulaciones de Monte Carlo muestren una perspectiva de diseño fundamentada en niveles de confiabilidad, es recomendable utilizar análisis de elementos finitos para investigar los efectos de la rigidez de los muros en los modos de falla del sistema de contención.

- A través de la literatura, se comprobó que incluso para suelos “homogéneos” se realizan análisis de estabilidad de pantallas de pilas considerando una variabilidad del suelo del orden de COV\(\phi^\prime\)≥10\%.

- La separación de las pilas tiene un rol fundamental en los análisis geotécnicos de pantallas de pilas en voladizo debido a que la profundidad y la esbeltez son susceptibles a pequeños cambios del área aferente en el que actúan las cargas activas. Particularmente, con la aplicación del código CCP-14 (AIS, 2014), en la que un incremento de la separación igual a S/B=1.0 genera un incremento máximo en la profundidad del orden de 76\% y en la esbeltez de un 24\%, según las Tablas 6-5 y 6-6.
Los factores de seguridad F calculados por elementos finitos reflejan que los niveles de incertidumbre que abarcan los diseños de pantallas de pilas en voladizo disminuyen de manera significativa en función del incremento en el empotramiento del muro.

De acuerdo con la literatura, el uso de ningún factor de seguridad en los diseños de pantallas de pilas representa una situación de alta incertidumbre geotécnica. Por lo tanto, en la Tabla 6-9, se presentan factores de seguridad equivalentes derivados de análisis de equilibrio límite y elementos finitos basados en la reducción del esfuerzo cortante hasta alcanzar la falla. No obstante, para su aplicación se debe tener en cuenta que estos factores se calcularon para muros en condiciones estáticas, sin sobrecargas, sin nivel freático y sin inclinación del suelo de lleno.

De acuerdo con los resultados de la Sección 6.4.2., aunque el efecto del diámetro en la estabilidad de sistema de pantallas de pilas no es tan significativo cuando se compara con la influencia de la profundidad, es importante considerarlo porque permite apreciar variaciones en los esfuerzos incrementales que definen la cuña de falla del suelo.

Al analizar los mecanismos de fallas de las pantallas de pilas con un mismo diámetro y diferentes profundidades, se evidencia que el mecanismo de falla rotacional alrededor del extremo superior de las pilas conlleva a un menor desplazamiento del paramento del muro hacia el lado de la excavación a empotramientos del orden de $D/H=1.0$. En contraste, los desplazamientos del paramento del muro hacia el lado excavado son más significativos para profundidades del orden de $D/H=2.5$.

La geometría de la malla de elementos finitos constituye un factor relevante en el análisis de pantallas de pilas; fundamentalmente la profundidad de la malla y el número de nodos. Por tanto, es importante realizar una calibración del modelo numérico a utilizar en las investigaciones.

Respecto a los resultados de la Tabla 6-8: A pesar de que en la literatura es poco utilizada la teoría de Rankine para el cálculo de presiones pasivas, se demostró que su aplicación en el caso de diseño analizado arroja factores de seguridad F_s semejantes al factor F, sin embargo, estos análisis que no involucran sobrecargas, nivel freático e inclinación del terreno en suelo granular deben ampliarse para suelos cohesivos, condiciones drenadas y no drenadas con nivel freático e inclinación del terreno.

Calcular el factor de seguridad equivalente F_p mediante el diagrama de presiones de Krey podría considerarse inconsistente ya que las presiones laterales pasivas experimentarían un decrecimiento en magnitud a partir de cierta profundidad, similar a lo que les ocurre a las arcillas en condiciones no drenadas, de acuerdo con la teoría analizada en la Sección 4.3.3.2.

La principal similitud que posee el código CCP-14 respecto a las normas, manuales y libros de diseño referenciados en la Tabla 4-1 consiste en que todas aplican el método LFRD, con la diferencia que el CCP-14 aplica factores parciales a los empujes de tierra.
y al empotramiento; mientras que las demás referencias de diseño aplican factores parciales a los parámetros del suelo, a las cargas externas y a las profundidades. Al analizar una pantalla de pilas en voladizo, sin sobrecarga, sin nivel freático y en un suelo arenoso en condiciones drenadas, el CCP-14 aumenta en un 50% los empujes activos y reduce en un 50% los empujes pasivos del suelo; en contraste, las demás normas sólo efectúan una reducción de Tan (ϕ’) que oscila entre 20% y 50% para algunos casos. Aunque la aplicación de factores parciales busque aumentar las profundidades de diseño, la aplicación de 1.5 Ka y 0.5 Kp produce un aumento significativo que alcanza a duplicar las profundidades estimadas por las referencias de diseño estudiadas, a excepción del código CMAA (2008), que particularmente aplica Rankine para calcular la presión pasiva del suelo (ver Sección 6.2.1.). Por tanto, para el caso de diseño analizado, el código CCP-14 conlleva al sobredimensionamiento con un aumento excesivo de las profundidades de empotramiento. Una calibración de los factores parciales utilizados en el CCP-14 es necesaria para ajustar los factores parciales a valores que conduzcan a profundidades de diseño más razonables acorde con normas, manuales y libros de diseño nacionales e internacionales.

- Acorde con los resultados de la Tabla 6-8 y Figura 6-14: Las teorías de presiones de tierra derivadas de modos de ruptura lineales (i.e., Rankine y Coulomb) tienen implicaciones singulares en los factores de seguridad, cuando se considera la fricción de la interfase suelo/muro. Por un lado, la teoría de Rankine proporciona factores de seguridad similares a los calculados por análisis de elementos finitos y, de otro modo, la teoría de Coulomb conduce a valores de seguridad que en promedio son un 50% más altos en relación con los de Rankine, en otras palabras, conllevan al sobredimensionamiento de las pantallas de pilas en voladizo.

- En la Tabla 6-9, se constata que un factor de seguridad del orden de $F_s \geq 2.08$ permitiría cumplir con las especificaciones de diseño de la norma NSR-10 (AIS, 2010), ya que se obtendría un factor equivalente $F_r \geq 3.0$. Sin embargo, estos resultados aplican a un caso de diseño sin nivel freático, sin sobrecargas y sin inclinación del suelo de lleno, el cual es una arena. Los análisis deben ampliarse a suelos cohesivos con diferentes condiciones de drenaje e inclinación del terreno.
8. Investigaciones futuras

Alternativamente, los análisis por confiabilidad de pantallas de pilas en voladizos deberían ser extendidos a suelos cohesivos para evaluar el efecto de la variabilidad en la resistencia pasiva del terreno. Esto permitiría comprender el comportamiento de los muros en suelos en los que la variabilidad es aún mayor que en las arenas, y la cual está caracterizada por tendencias no lineales de los parámetros de resistencia al corte en función de la profundidad. Además, contribuiría al estudio de la estabilidad de los muros de contención en unidades de suelo asociadas a la geología local.

Otras investigaciones para desarrollar estarían enfocadas en el estudio de la estabilidad local de los muros anclados y en voladizos considerando la variación de la pendiente del terreno, y la determinación de valores de fricción correspondientes a la interfase suelo muro a través de pruebas de laboratorio, con el fin de establecer relaciones y diferencias respecto a los ángulos de fricción (\(\delta\)) sugeridos por códigos y manuales geotécnicos.
9. Anexos

9.1.1. Método de Krey

Figura A-1. Diagrama de presiones laterales de Krey (Murthy, 2002).

\[\bar{P}_a = \gamma H K_A \]
\[\bar{P}_p = \gamma D_0 K_A \]
\[\bar{P}'_p = \bar{P}''_p + \gamma K \bar{D}_0 \]
\[\bar{P}''_p = \gamma y_0 K + \gamma H K_p \]
\[K = (K_p - K_A) \]

En el punto O, la presión pasiva que actúa hacia la derecha debería ser igual a la activa que actúa hacia la izquierda.

\[\gamma y_0 K_p = \gamma (H + y_0) K_A \]

Resolviendo para \(y_0 \)

\[y_0 = \frac{\gamma H K_A}{\gamma (K_p - K_A)} = \frac{\bar{P}_a}{K} \quad (A-1) \]

Para el equilibrio estático, la suma de todas las fuerzas en la dirección horizontal debe ser igual a cero.
\[Pa - \frac{1}{2} \bar{P}_p (D - y_0) + \frac{1}{2} (\bar{P}_p + \bar{P}'_p) h = 0 \]

Resolviendo para \(h \),
\[h = \frac{\bar{P}_p (D - y_0) - 2Pa}{\bar{P}_p + \bar{P}'_p} \quad \text{(A-2)} \]

Tomando momentos de todas las fuerzas sobre el extremo inferior de la pila, e igualándolos a cero.
\[Pa (D_0 + \bar{y}) - \frac{1}{2} \bar{P}_p \cdot D_0 \cdot \frac{D_0}{3} + \frac{1}{2} (\bar{P}_p + \bar{P}'_p) \cdot h \cdot \frac{h}{3} = 0 \]

Resolviendo para \(h \),
\[6Pa(D_0 + \bar{y}) - \bar{P}_p \cdot D_0^2 + (\bar{P}_p + \bar{P}'_p) \cdot h^2 = 0 \quad \text{(A-3)} \]

Por consiguiente,
\[\bar{P}_p = \gamma K \cdot D_0^2 \]
\[\bar{P}'_p = \bar{P}''_p + \gamma K \cdot D_0^2 \]

Sustituyendo \(\bar{P}'_p, \bar{P}''_p \) y \(h \) en la Ecuación (A-3) y simplificando

\[D_0^4 + C_1 D_0^3 + C_2 D_0^2 + C_3 D_0 + C_4 = 0 \quad \text{(A-4)} \]

Donde,
\[C_1 = \frac{\bar{P}''_p}{\gamma K} \]
\[C_2 = \frac{P_a}{\gamma K} \]
\[C_4 = \frac{6Pa}{(\gamma K)^2} \left(2\bar{y} \gamma K + \bar{P}''_p \right) \]
\[C_4 = \frac{6Pa \bar{y} \bar{P}''_p + 4P_a^2}{(\gamma K)^2} \]

La solución de la Ecuación A-4 da como resultado el parámetro \(D_0 \). La herramienta Solver de MS Excel es utilizada para resolver esta ecuación. La profundidad de empotramiento mínima sería:
\[D = D_0 + y_0 \]

Un factor de seguridad (\(\Delta D \)) se adopta para incrementar la profundidad, ver Tabla 4-1.
9.1.2. Método de Blum:

\[\bar{P}_a = K_A \gamma H \]
\[\bar{P}_p = \gamma D K_p - \gamma (H + D) K_A \]
\[P_a = \frac{1}{2} K_A \gamma H (y_0 + H) \]
\[\bar{y} \approx y_0 + \frac{1}{3} H \]
\[P_p = \frac{1}{2} \left(\gamma D K_p - \gamma (H + D) K_A \right) D_0 \]

En el punto O, la presión pasiva que actúa hacia la derecha debería ser igual a la activa que actúa hacia la izquierda.

\[K_A \gamma (H + D_0) = K_p \gamma D_0 \]

Resolviendo para \(y_0 \)

\[y_0 = \frac{K_A H}{K_p - K_A} \]

Tomando momentos de todas las fuerzas sobre el extremo inferior de la pila, e igualándolos a cero.
\[P_a(D_0 + \bar{y}) - P_p h = 0, \text{ donde } h = \frac{1}{3} D_0 \]

La solución de la Ecuación A-5 da como resultado el parámetro \(D_0 \). La herramienta Solver de MS Excel es utilizada para resolver esta ecuación. La profundidad de empotramiento mínima sería:

\[D = D_0 + y_0 \]

De acuerdo con Bica & Clayton (1989), el método de Blum considera presiones laterales de tierra actuantes en un muro rígido y liso; por tanto, \(\delta/\phi' = 0 \). Un factor de seguridad (\(\Delta D \)) se adopta para incrementar la profundidad, ver Tabla 4-1.

9.1.3. Método de Rowe

El método de Rowe consiste de dos pasos: 1) calcular la profundidad del muro de acuerdo con el planteamiento de Blum; 2) una vez calculada la profundidad, determinar el momento flector máximo del muro de acuerdo con el diagrama de presiones mostrados en la Figura A-3 (Bica & Clayton, 1989). En los pasos 1 y 2, se considera que \(\delta/\phi' \) es igual a 2/3 y a cero para las presiones laterales activas y pasivas, respectivamente, y no se utiliza factor de seguridad (\(\Delta D \)) (Rowe, 1951). En esta investigación sólo es de interés el paso 1.

9.1.4. Método de Hansen

Figura A-4. Diagrama de presiones laterales de Hansen (Murthy, 2002).

\[P_a = \frac{1}{2} K_A \gamma (H + D)^2 \]

\[P_p = \frac{1}{2} K_p \gamma D^2 \]

Para el equilibrio, se toma sumatoria de momentos respecto al extremo inferior de la pila.

\[\frac{1}{3} P_p D - \frac{1}{3} P_a (H + D) = 0 \]

Por tanto, la profundidad de empotramiento mínima sería calculada de acuerdo con la Ecuación A-6.

\[K_p D^3 - K_A (H + D)^3 = 0 \quad (A-6) \]

La solución de la Ecuación A-6 da como resultado el parámetro D. Un factor de seguridad \((\Delta D)\) se adopta para incrementar la profundidad, ver Tabla 4-1.
9.2. Anexo B: Coeficientes de presión lateral de tierra

En suelos arenosos en condiciones drenadas ($c’=0$), el esfuerzo vertical y horizontal efectivo se calculan de acuerdo con las Ecuaciones B-1 y B-2, respectivamente.

\[\sigma'_v = \gamma z - u \quad \text{(B-1)} \]

\[\sigma'_H = K\gamma z - u \quad \text{(B-2)} \]

Donde z es la profundidad debajo de la superficie del terreno; K es el coeficiente de presión lateral de tierra; u es la presión de poros, la cual es calculada con base la Ecuación B-3.

\[u = (\gamma - \gamma_w)h_w \quad \text{(B-3)} \]

Donde γ_w es el peso unitario del agua y h_w es la diferencia entre z (debajo del nivel freático) y la cota del nivel freático. Los coeficientes de presión activa y pasiva de tierra se determinan de acuerdo con las Ecuaciones B-4 a B-10.

9.2.1. Rankine (1857)

\[K_A = \frac{1 - \sen(\phi’)}{1 + \sen(\phi’)} \quad \text{(B-4)} \]

\[K_p = \frac{1}{K_a} = \frac{1 + \sen(\phi’)}{1 - \sen(\phi’)} \quad \text{(B-5)} \]

9.2.2. Coulomb (1776)

\[K_A = \frac{[\cos(\phi’-\eta)]^2}{[\cos(\eta)]^2 \cos(\eta+\delta) \left\{ 1 + \left[\frac{\sen(\phi’+\delta)\sen(\phi’-\beta)}{\cos(\eta+\delta)\cos(\eta-\beta)} \right]^2 \right\}^{\frac{1}{2}}} \quad \text{(B-6)} \]

\[K_p = \frac{[\cos(\phi’+\eta)]^2}{[\cos(\eta)]^2 \cos(\eta-\delta) \left\{ 1 - \left[\frac{\sen(\phi’+\delta)\sen(\phi’+\beta)}{\cos(\eta-\delta)\cos(\eta-\beta)} \right]^2 \right\}^{\frac{1}{2}}} \quad \text{(B-7)} \]

Donde η es la inclinación del muro; δ es el ángulo de fricción de la interfase suelo/muro; β es la inclinación del terreno.
9.2.3. Janbu (1957)

\[K_{A,p} = 2 \left[\sin \left(45 \mp \frac{\phi'}{2} \right) \right]^2 \exp \left(\phi' \mp \frac{\pi}{2} \right) \tan \phi' \]

(B-8)

9.2.4. Caquot & Kerisel (1948)

Las Ecuaciones B-9 y B-10 corresponden a ajustes de las gráficas de \(K_A \) y \(K_p \) publicadas por Caquot & Kerisel. En los ajustes se obtuvieron coeficientes de correlación de Pearson mayores que 0.90. En la Tabla B-1 y, en la Figura B-1, se muestran las diferencias de los valores de \(K_p \) dados por Caquot & Kerisel y los calculados mediante la Ecuación B-10.

\[K_A = \left\{ \left[0.0478 \left(\frac{\beta}{\phi'} \right)^3 - 0.0536 \left(\frac{\beta}{\phi'} \right)^2 + 0.0133 \left(\frac{\beta}{\phi'} \right) - 0.0143 \right] \phi' + \\
0.1602 \left(\frac{\beta}{\phi'} \right)^2 + 0.1031 \left(\frac{\beta}{\phi'} \right) + 0.7491 \right\} \left\{ -0.0083 \phi' + 1.0817 \right\} \]

(B-9)

\[K_p = \left[1.806 \left(\frac{\beta}{\phi'} \right)^4 - 3.4211 \left(\frac{\beta}{\phi'} \right)^3 + 2.13342 \left(\frac{\beta}{\phi'} \right)^2 - 0.7529 \left(\frac{\beta}{\phi'} \right) + 0.5377 \right] * \\
\exp \left[\left(-0.0233 \left(\frac{\beta}{\phi'} \right)^2 - 0.078 \left(\frac{\beta}{\phi'} \right) + 0.084 \right) \phi' \right] (-0.0002 \phi'^2 - 0.0028 \phi' + 0.9903) \]

(B-10)

<table>
<thead>
<tr>
<th>(\phi') (°)</th>
<th>(\delta) (°)</th>
<th>Caquot & Kerisel</th>
<th>Esta investigación</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>(K_p = 2.58)</td>
<td>(K_p = 2.46)</td>
<td>-4.7%</td>
</tr>
<tr>
<td>25</td>
<td>12.5</td>
<td>(K_p = 3.42)</td>
<td>(K_p = 3.49)</td>
<td>2.1%</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>(K_p = 4.59)</td>
<td>(K_p = 4.85)</td>
<td>5.8%</td>
</tr>
<tr>
<td>35</td>
<td>17.5</td>
<td>(K_p = 6.46)</td>
<td>(K_p = 6.58)</td>
<td>1.9%</td>
</tr>
</tbody>
</table>
9.3. **Anexo C: Calibración del modelo numérico**

El modelo numérico se calibró para una condición no drenada porque representa el caso más crítico para definir la geometría y sensibilidad de la malla de elementos finitos. En condiciones no drenadas el modo de falla del muro es más extenso que en condiciones drenadas, por tanto, se requiere un ancho y profundidad de la malla lo suficientemente grande para garantizar el despliegue de la superficie de falla del suelo en los mapas de contorno y evitar alteraciones en los elementos de falla por la cercanía del muro a los límites de la malla. En PLAXIS se consideró la mitad del ancho de excavación (T) de 16 m; el ancho y la profundidad de la malla de elementos finitos se tomaron iguales a 50 m basándose en los límites establecidos en el código CIRIA C580 (Gaba et al., 2003) para muros en voladizo en condiciones drenadas y no drenadas, en las que se establece que la sensibilidad de la malla no presenta variaciones significativas más allá de 3T, ver Tabla 4-6. El suelo, la interfase y el muro se modelaron mediante elementos triangulares de 15 nodos, elementos de unión de 10 nodos y elementos de placa de 5 nodos, respectivamente. El número de elementos y nodos en los análisis numéricos corresponde a 5438 y 44017, respectivamente.

En la Tabla C-1, se muestran los resultados de la calibración del modelo numérico a través del método de no-convergencia. La diferencia de los resultados del modelo calibrado respecto a los obtenidos por Ukritchon et al., (2016) es menor al 2% para D/H ≥ 1, en contraste para profundidades menores la diferencia es del orden de -5.6%. En la Figura C-1, se observa que la diferencia de resultados aumenta con la reducción de la profundidad; esto probablemente se deba a refinamientos en la malla de elementos finitos realizados por Ukritchon et al., los cuales no fueron posible identificar en el modelo de calibración. Por otro lado, en la Figura C-2, se exhiben los resultados de los cálculos iterativos del modelo de calibración. El valor F mostrado en la Tabla C-1 corresponde al valor de la última iteración mostrada en la Figura C-2.
Tabla C-1. Resultados de la calibración del modelo numérico.

<table>
<thead>
<tr>
<th>H (m)</th>
<th>D (m)</th>
<th>B (m)</th>
<th>D/H</th>
<th>B/H</th>
<th>$\gamma H/S_u$</th>
<th>F</th>
<th>$F\gamma H/S_u$</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>0.72</td>
<td>0.5</td>
<td>0.12</td>
<td>4.55</td>
<td>1.51</td>
<td>4.29</td>
<td>-5.6%</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.72</td>
<td>1.0</td>
<td>0.12</td>
<td>4.72</td>
<td>1.62</td>
<td>4.63</td>
<td>-1.9%</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0.72</td>
<td>1.5</td>
<td>0.12</td>
<td>4.80</td>
<td>1.67</td>
<td>4.77</td>
<td>-0.6%</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.72</td>
<td>2.0</td>
<td>0.12</td>
<td>4.83</td>
<td>1.70</td>
<td>4.85</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

$\gamma = 17.2 \text{ kN/m}^3$ $S_u = 36.2 \text{ kPa}$

Figura C-1. Resultados de la calibración del modelo numérico.

Figura C-2. Cálculos iterativos por el método de no-convergencia en PLAXIS.
10. Referencias

