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Abstract

Background: The understanding of the roles of gut bacteria in the fitness and vectorial capacity of mosquitoes
that transmit malaria, is improving; however, the factors shaping the composition and structure of such bacterial
communities remain elusive. In this study, a high-throughput 16S rRNA gene sequencing was conducted to
understand the effect of developmental stage, feeding status, species, and geography on the composition of the
gut bacterial microbiota of two main Colombian malaria vectors, Anopheles nuneztovari and Anopheles darlingi.

Results: The results revealed that mosquito developmental stage, followed by geographical location, are more
important determinants of the gut bacterial composition than mosquito species or adult feeding status. Further,
they showed that mosquito gut is a major filter for environmental bacteria colonization.

Conclusions: The sampling design and analytical approach of this study allowed to untangle the influence of factors
that are simultaneously shaping the microbiota composition of two Latin-American malaria vectors, essential aspect for
the design of vector biocontrol strategies.
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Background
In the past decades, a number of studies have demon-
strated that mosquitoes, like many other organisms, har-
bor a microbiota that plays critical roles in their biology
[1, 2]. In an attempt to understand its functions, micro-
bial communities have been removed from the gut of la-
boratory-reared mosquitoes via antibiotics, resulting in
the alteration of several mosquito life traits such as
larval development [3–5], fecundity [6, 7], blood diges-
tion [7], adult longevity [6–8], and even an increase on
malaria parasite proliferation rates [7–10] has been
observed. Further, studies performed in field-collected
specimens have confirmed that mosquitoes rely on their
gut microbiota for their development [11] and have

highlighted the importance of understanding natural var-
iations occurring in their gut microbiota, which strongly
determine the mosquito competence to transmit malaria
parasites [12].
Changes in the composition of the mosquito gut

microbiota have been frequently attributed to varia-
tions in geography [11–14], seasonal climatic patterns
[13–15], mosquito species [13–16], nutritional status
[17–19], and developmental stage [19–21], but in some
cases, the studies draw contradictory conclusions. For
example, it has been shown that two Culex species harbor
distinct microbiota assemblies, although dominated by
few bacterial taxa [22], but no major differences have been
observed in the gut microbiota composition of two
Anopheles species [13, 15, 23] or even among different
mosquito genera [15, 23]. Ambiguous results could be
owed to various factors such as differences in sequencing
techniques and depth, the use of culture-dependent vs
culture-independent methods, and laboratory-reared
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vs field-collected mosquitoes, with microbiota being
more diverse in the later [12, 24]. What appears
evident from all studies is that bacterial communities
of the mosquito gut change according to several factors,
and most likely, the interplay of these factors determines
the mosquito gut assemblies in natural conditions.
Thereby, the aim of this study was to analyze simultan-
eously the effect of four factors upon the gut bacterial
communities of two Colombian field-collected malaria
vectors, Anopheles darlingi and Anopheles nuneztovari.
To our knowledge, this is the first study that examines the
gut microbiota of these two main Latin American malaria
vectors using a high-throughput sequencing approach.

Results
Anopheles species composition and abundances
A total of 239 Anopheles specimens were collected in two
municipalities of two important malaria-endemic regions
of Colombia: Istmina (IST), located in the Pacific coast
(PAC), western Colombia and El Bagre (BAG) in the Ura-
bá-Bajo Cauca-Alto Sinú (UCS), northwest Colombia. Col-
lections consisted of 116 female adults, 26 larvae, and four
water samples from the larval habitats in BAG and 87 fe-
male adults, 10 larvae, and 3 water samples from larval

habitats in IST (Table 1). In BAG, A. darlingi (49.1%) was
the most abundant species among adults, whereas A. nunez-
tovari represented 16.4%, and other species accounted for ~
35%. In IST, most adult mosquitoes belonged to the species
A. nuneztovari (57.5%), followed by A. darlingi (42.5%). Of
larvae collected in BAG, only 11.6% were A. nuneztovari
and 3.8% A. darlingi. In IST, A. darlingi larvae predomi-
nated (70%) over A. nuneztovari (30%).

Sequencing data output
Eighty-three good-quality samples were selected for
sequencing, of which 28 were blood-engorged female
adult mosquitoes (BF), 35 non-blood fed adult females
(NBF), 13 fourth instar larvae (L4), and seven water
samples from the larval collection sites (Table 1). A
MiSeq Illumina sequencing generated a total of
15,909,048 bacterial 16S rRNA gene raw reads which
were assembled using FLASH [25] and filtered according
to quality settings, producing a total of 8,120,490 reads.
After applying the SWARM clustering algorithm [26],
1,453,332 unique sequences were identified, grouped
into 274,990 unique swarms, and assigned to 14,440
unique operational taxonomic units (OTUs).

Table 1 Anopheles species composition in two malaria endemic regions of Colombia

Department/municipality Anopheles species Number of samples collected (%) Number of samples sequenced

Antioquia/El Bagre Adults 116 (100) 33

A. darlingi 57 (49.1) 11 BF, 10 NBF

A. triannulatus 30 (25.9) ns

A. nuneztovari 19 (16.4) 3 BF, 9 NBF

A. albitarsis s.l. 7 (6) ns

Anopheles spp. 3 (2.6) ns

Larvae 26 (100) 4

A. darlingi 1 (3.8) 1

A. triannulatus 22 (84.6) ns

A. nuneztovari 3 (11.6) 3

Water from larval habitats 4 (100) 4

Chocó/Istmina Adults 87 (100) 30

A. darlingi 37 (42.5) 7 BF, 6 NBF

A. nuneztovari 50 (57.5) 7 BF, 10 NBF

Larvae 10 (100) 9

A. darlingi 7 (70) 6

An nuneztovari 3 (30) 3

Water from larval habitats 3 (100) 3

BF blood-fed females, NBF non-blood-fed females, ns not sequenced
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Bacterial communities vary according to sample types:
water samples from larval habitats, larvae, or adult guts
Bacterial communities revealed differences across sample
types, according to the collection environment: water
samples (W), larvae guts (L), or adult guts (A) (Adonis,
R2 = 0.16, p = 0.001). Interestingly, this clear segregation of
bacterial communities according to the sample type
(NMDS–ordination, Fig. 1a) was related with a sharp
decline in the number of observed OTUs from the water
samples (Mdn = 1417, IQR = 828–2081) to the larvae
(Mdn = 584.5, IQR = 383–809) and adult specimens (Mdn
= 594, IQR = 127–1605) (Fig. 1b). In addition, sample
evenness followed the same declining pattern (Fig. 1b), as
OTUs were less evenly distributed in larvae (Mdn = 0.40,
IQR = 0.3–0.55) and adults (Mdn = 0.39, IQR = 0.12–0.59),
than in the water samples (Mdn = 0.57, IQR = 0.46–0.72).
In terms of the influence of geography, this factor showed
a less pronounced effect (Adonis, R2 = 0.06, p = 0.001),
with a larger overlap observed in the microbiome commu-
nity composition (Additional file 1A). By contrast, no sig-
nificant differences were detected in the gut bacterial
community structures of the two Anopheles species
(Additional file 1B, Adonis, R2 = 0.01, p = 0.14,) or the
two adult feeding status (Additional file 1C, Adonis,
R2 = 0.01, p = 0.44) analyzed. In addition, a Jaccard
absence-presence-based analysis broadly supported these
results (data not shown).

Mosquitoes acquire most gut bacteria during the larval
stage, but microbial composition varies across
development
To elucidate the percentage of bacteria that are lost or
gained across the lifecycle and those that can potentially
persist transstadially, OTUs were subdivided according to
their occurrence in one or more of the collection environ-
ments (i.e., sample types). The grouping was as follows:
OTUs unique to water samples (uniW), larvae (UniL), or
adults (UniA); OTUs shared among water samples and
larvae (WL), water samples and adults (WA), larvae and
adults (LA), and OTUs common to all sample types
(WLA). This allowed to capture interesting patterns in the
bacterial composition within and between sampled groups
(Fig. 2a). For instance, even when water samples were the
least represented group (n = 7) and only constituted ~ 1%
of the total number of reads, 24% of the total OTUs were
unique to this group (UniW) (Fig. 2a). Similarly, 50% of the
OTUs were exclusively present in adult guts (UniA);
however, this percentage comprised < 6% of the total reads,
in spite of the large number of samples (n = 62). Also,
OTUs unique to larvae (UniL, n = 12) only accounted for
the 8% of the total OTUs. Intriguingly, there was a lack of
common OTUs between larvae and adult mosquitoes,
which indicate that all OTUs common to these two groups
were also present in the water samples. Finally, it was
remarkable that 90% of the total reads were common

A B

Fig. 1 a Non-metric multidimensional scaling ordination—NMDS—showing that bacterial communities cluster by sample type using Bray-Curtis
dissimilarity distance (see Shepard stress diagram in Additional file 1D). Each dot represents an individual collection of either a water sample, a
larva, or an adult gut. b Boxplots representing the observed number of bacterial operational taxonomic units (OTUs) and OTUs evenness by
sample type
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to the three sample types (WLA); despite they only
represented 10% of the total OTUs. For this reason,
the subsequent analyses were focused on this bacter-
ial subset.
Interestingly, the percentages of bacterial sequences

within WLA group were not equally distributed across
sample types, with 67.5% of reads per sample for the water
samples and an approximate of 97% and 94% of reads per
sample in larvae and adults, respectively (Fig. 2b). When
looking at bacterial taxonomy, it was observed that the
subset of shared bacteria (WLA) were represented by
three main classes: Actinobacteria, Betaproteobacteria,
and Gammaproteobacteria; however, strong variations in
the relative abundances of these classes were detected
across sample types (Fig. 2c). First, there was a gradual
increase of the Gammaproteobacteria class in larval
and adult mosquito guts with respect to the water sam-
ples. By contrast, there was a strong decline of Actino-
bacteria from the water samples to larval and adult
mosquito guts. Finally, the relative abundance of the
third class, Betaproteobacteria, showed its maximal
occurrence in larval samples. These results indicate that

although most of the aquatic bacterial colonizers persist
transstadially from larvae to adults (WLA), the relative
abundance of bacterial classes clearly change in the
mosquito gut during the developmental stages.
Further, OTUs categorized as WLA were present

across sample types, but in most cases, their occur-
rences were low (most OTUs were present in only
1–20 out of 81 specimens; Additional file 2). How-
ever, when WLA OTUs were categorized according
to the sample type where they showed a maximal
abundance (Fig. 3), three clearly separated categories
were found, which varied in their preferences for
water sample (Wmax), larva (Lmax), or adult gut
(Amax). In average, Wmax and Lmax OTUs consist-
ently represented the highest proportion of the WLA
reads in water samples and larvae (in average ~ 80%
and ~ 60%, respectively) and had little representation
in each of the other two sample types, respectively
(Fig. 3a). Although Amax OTUs were coherently
dominant in adults (i.e., more than 80% of WLA
reads), they also represented up to 60% of the com-
munity in water samples and larvae.

A C

B

Fig. 2 a Percentage of reads and OTUs that were unique or shared between sample types. OTUs shared by all groups accounted for 90% of the
total reads and 10% of the total OTUs. b Boxplots showing the percentage of reads corresponding to OTUs shared among the three sample
types (WLA). Not all shared OTUs are equally distributed across samples. c Relative abundances of the three most dominant bacterial classes:
Actinobacteria, Betaproteoabcteria and Gammaproteobacteria, which vary across sample types
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Interestingly, distinctive bacterial assemblies were
observed in the three groups analyzed (Wmax, Lmax,
and Amax). Almost 50% of the bacterial relative
abundance of the water samples corresponded to the
order Actynomicetales, while this percentage strongly
decreased in larvae (~ 9%) and adults (~ 2%). More-
over, a clear dominance of Burkholderiales for larval
guts, with > 50% of relative abundance, and of Pseu-
domonadales and Enterobacteriales in adult guts was
observed (Fig. 3b).

Bacterial diversity of adult mosquitoes according to
geography, Anopheles species or feeding status
One of the main goals in studying the mosquito micro-
biome is to assess the variability of the bacterial community
composition of the vectors of diseases such as malaria. In
this study, a large dispersion on the bacterial community
composition of the adults was observed (betadisper test,
Additional file 3). To understand the possible factors

responsible for the variation in the composition of Amax
(identified as the largest pool of bacteria with clear prefer-
ences for Anopheles adults), the role of each of the follow-
ing factors was analyzed: geography (Fig. 4), mosquito
species (Additional file 4A), and female feeding status
(Additional file 4B). Interestingly, results showed that bac-
terial communities significantly segregate into two main
groups, one corresponding to mosquitoes collected in BAG
and the other, to mosquitoes from IST (Adonis, R2 = 0.10,
p = 0.001; Fig. 4a). Furthermore, classification into families
showed that adults contained similar taxa, but their rela-
tive abundances differed (Fig. 4b). The six most abundant
families comprised Enterobacteriaceae, Comamonadaceae,
Aeromonadaceae, Pseudomonadaceae, Moraxellaceae,
and Rhodocyclaceae; but of notice, guts of mosquitoes
collected in BAG were largely inhabited by bacteria of the
Pseudomonadaceae family (32%) and Moraxellaceaea
(16%), whereas those from IST, by Enterobacteriaceae
(~ 43%) and Comamonadaceae (~ 19%). In contrast, no

A B

Fig. 3 a Boxplots showing the percentage of shared OTU (WLA) reads per sample, with maximal abundances on each of the three sample types:
water samples, larval guts, and adult guts. b Relative abundances of the most dominant OTUs with maximal abundance in each of the three
sample types. OTUs were mainly represented by seven orders: Actinomycetales, Burkholderiales, Rhodocyclales, Pseudomonadales, Enterobacteriales,
and Aeromonadales. Other OTUs represented ~ 10% of the total abundance
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clear differences were observed for the most abundant
OTUs of the adult gut microbiota (Amax), when
comparing between mosquito species (Adonis, R2 = 0.02,
p = 0.26; Additional file 4A) or feeding status (Adonis,
R2 = 0.01, p = 0.48; Additional file 4B). An additional
non-abundance-based test was performed based on the
Jaccard distance metric, which also showed a significant
difference among localities, but not among species or
feeding status (data not shown).

Discussion
To collect food on water surfaces, the anopheline larva
uses its head brushes to feed on bacteria, algae, proto-
zoa, invertebrates, and detritus [27]. Mosquito larvae are
usually not discriminatory in what they ingest; however,
the size of particles is commonly < 50 μm [27]. Since
bacteria are generally below 2 μm in diameter [28], most
bacteria are potentially able to cross the mosquito
brushes and enter the larval gut. Nevertheless, this study
showed that only a fraction of the aquatic bacteria
present in the water samples of the larval habitats was
detected in the mosquito larval guts. This could be due
to differences in sample coverage, but it might also sug-
gest that a significant portion of the aquatic bacteria

does not encounter larvae or is not able to survive inside
the larval gut environment. Moreover, the results
revealed that some OTUs entering the larval gut become
dominant in this new habitat whereas a large proportion
of them become rare or disappear, as shown by a
concomitant decrease in richness and evenness from
water samples to larvae (Fig. 1b). A previously proposed
hypothesis states that the human gut environmental
conditions select for a series of microbial traits that
allow the survival and growth of certain environmental
bacteria [29]. Following this idea, most aquatic bacteria
could potentially be ingested by larvae, but a series of
characteristics inherent to the mosquito gut would bene-
fit the establishment of only a subset, depending on
specific microbial traits. One possible selecting condition
is the pH, since mosquito guts are mainly alkaline, in the
range 8–11 [30, 31], due to high concentrations of car-
bonate ions [32], while in this study, the mean pH
recorded at the waterbodies was 6.8 ± 0.3; signifying a
drastic change for bacteria, from an acidic/neutral to a
rather basic environment. Apart from pH, the redox
potential and the presence of certain proteolytic en-
zymes and nutrients in the mosquito gut might be as
well selective pressures upon early colonists [33].

A B

Fig. 4 a Non-metric multidimensional scaling ordination showing how gut bacteria with maximal peak of abundance in adults, clustered by
municipality (see Shepard stress diagram in Additional file 4C). b Taxonomical classification showing that adult mosquito guts are mainly
populated by six families: Enterobacteriacea, Comamonadaceae, Aeromonadaceae, Pseudomonadaceae, Moraxellaceaea, and Rhodocyclaceae, with
differences in their relative abundances
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Moreover, recent studies carried out in Aedes and
Anopheles mosquitoes showed that the host genetics, in
terms of immune and amino acid metabolic genes, is an
important driver of the mosquito gut bacterial commu-
nity structure [34, 35]. Deeper studies on the genetics
and/or physiology of Latin American mosquitoes might
help to elucidate the influence of these factors on the
earliest mosquito gut microbial colonization. In addition,
other ingested microorganisms or maternally transmit-
ted bacteria may also compete with the new colonists
and contribute to shaping the novel bacterial commu-
nity. For instance, a mutual exclusion of the maternally
inherited bacteria Wolbachia and the predominantly envir-
onmental bacteria Asaia has been described in the repro-
ductive tract of the Asian malaria vector Anopheles
stephensi [36]. Hence, the larval gut appears to act as a
major filter for aquatic bacteria, by either limiting the estab-
lishment or enhancing the proliferation of some colonists.
Interestingly, the taxonomical analysis in this study revealed
that the most restricted bacterial taxa was Actinobacteria,
which was the second most abundant class in the water
samples and strongly declined in abundance in larvae and
adult guts. Actinobacteria are mostly known as free-living
microorganisms which, among others, play a critical role in
the breakdown of plant biomass [37], role that could be car-
rying out in the waterbodies where larvae develop. It is also
known that Actinobacteria can play different roles as
symbionts of insect hots, although much less informa-
tion is available. For instance, some Actinobacteria
provide the Chagas vector Rhodnius prolixus with
B-complex vitamins essential for its development [38].
Despite its low relative abundance in larvae, it could be
hypothesized that the Actinobacteria present in the
larval midgut might have a nutritional-associated role,
for instance by contributing to the breakdown of
ingested plant-based detritus present in the waterbodies
where Anopheles larvae feed; however, Beta and
Gammaproteobacteria were the two most successful
groups in the larval gut environment, in particular, the
order Burkholderiales.
Results from this and previous studies that have

mainly analyzed African mosquitoes strongly indicate
that bacteria acquired from the waterbody where mos-
quito larvae develop constitute the major gut bacterial
community of adults [4, 12, 24, 39]. Also, a study con-
ducted in field-collected Culex mosquitoes showed that
more than 80% of the total sequences recovered were
common to larval, pupal, and adult stages, indicating
that most bacteria present in adults are transferred from
larvae to adult [40]. In this work, close to 90% of the
total reads obtained were common to water samples, lar-
vae, and adult guts (WLA; Fig. 2a); however, the relative
abundances of the taxonomic groups within the bacterial
community varied from larvae to adults (Fig. 2c). A

potential cause of such variation is that insect guts are
unstable habitats due to the occurrence of several molts
during development [41]. Particularly in mosquitoes,
there is a complete metamorphosis process during which
pupae dispose of one of two gut peritrophic matrixes,
resulting in a significant gut microbial loss [42]. In fact,
a culture-dependent study showed that the mean bacter-
ial count of Aedes triseriatus midguts was reduced by
approximately 280-fold between the larval and the pupal
stages [43]. Also, variations on the gut bacterial commu-
nity from larvae to adults may be a result of the drastic
change on their diet. While larvae feed on aquatic de-
tritus and microorganisms, female adult mosquitoes feed
on nectar and vertebrate blood [44]. Based on results, it
is likely that the mosquito metamorphosis, together with
the diet shift from larvae to adults, represented a bottle-
neck for some taxa like Betaproteobacteria, which prolif-
erated in larvae, but its relative abundance was reduced
in adults, and signified a positive event for other bacteria
like Gammaproteobacteria, which instead increased its
abundance from larvae to adults (Fig. 2c). Overall, these
changes imply that there is a rearrangement of the gut
bacterial assembly during mosquito development.
Interestingly, for OTUs that were common to all sam-

ple types (WLA), their occurrence was low in most
cases, suggesting that this subset of OTUs may have dif-
ferential ecological preferences for each sample type (W,
L, A). The comparison of the taxonomic composition
between OTUs comprising Wmax, Lmax, and Amax
categories revealed that half of the bacterial community
of the water samples was composed of bacteria from the
order Actynomicetales, while Burkholderiales clearly
dominated the larval guts (Fig. 3b). Instead, adult guts
were inhabited by similar proportions of Pseudomona-
dales and Enterobacteriales, both belonging to the Gam-
maproteobacteria class, and represented approximately
70% of the sequences of the group. In addition, approxi-
mately half of the total OTUs retrieved were found exclu-
sively in adult gut samples (Fig. 2a); yet, several of these
OTUs occurred in high abundances in a few adult speci-
mens. This strongly suggests that the pool of bacteria
present during adulthood is strongly related to the life
history of each mosquito; for instance, adults acquire
bacteria by their interaction with a variety of plant and
animal sources during a nectar or a blood meal. Thus,
even when most bacteria present even when most bacteria
present in the adult gut are acquired in the early develop-
mental stages from the aquatic reservoirs, many other
bacterial taxa are also gained along the mosquito lifetime.
Understanding which bacteria are the most successful

colonizers of adult guts, where potential interactions be-
tween bacteria and malaria parasites may occur, is essen-
tial for the design of biocontrol strategies. As shown in
this study, bacteria with the highest abundances in
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adults (Amax) likewise represented a significant portion
of the shared microbiota of larvae and water samples,
suggesting that these bacteria might be suitable candi-
dates to investigate as biocontrol agents. Nonetheless, in
the search for potential biocontrol candidates, other fac-
tors should be considered, such as the effect of geog-
raphy upon the mosquito gut microbiota. Results of this
study showed a high variability in the bacterial micro-
biota of the adults and also that the adult mosquito guts
were mainly inhabited by similar taxa at the family level;
however, their relative abundances strongly varied across
locations. The guts of adult mosquitoes from BAG were
mainly inhabited by bacteria of the Pseudomonadaceae
family, while those from IST were dominated by the En-
terobacteriaceae family. Interestingly, field studies per-
formed in the African and Asian vectors revealed that
Plasmodium-infected and Chikungunya-infected mos-
quitoes, respectively, had higher abundances of Entero-
bacteriaceae than non-infected mosquitoes [12, 45].
Nonetheless, other studies have shown that some natur-
ally isolated Enterobacter species severely affects Plasmo-
dium development in African and American malaria
vectors [14, 46, 47]. These apparent contradictory results
might be explained by a possible intra-specific bacterial
diversity. It has been shown for different isolates of the
Enterobacteriaceae Serratia marcescens, which presented
strong structural and phenotypic variations that directly
correlated with the ability of this bacteria to inhibit the
Plasmodium development within Anopheles mosquitoes
[48]. What is remarkable in our results is that the
mosquito guts of the IST municipality presented high
levels of Enterobacteriaceae and that this municipality is
located in Chocó, the department with the highest number
of malaria cases in Colombia [49], rendering interest to
perform further studies to understand whether a particular
group of bacteria belonging to the Enterobacteriaceae family
is influencing the Plasmodium survival. In contrast, little is
known about the role of the Pseudomonadacea family,
highly abundant in BAG mosquitoes, in the development
of the malaria parasite. However, specific products ex-
tracted from different species of Pseudomonas have shown
to reduce the longevity and fecundity of A. stephensi
mosquitoes [50, 51].
Similar to this study, Akorli et al. [13] reported differences

in the mosquito gut bacterial composition among localities
but not among the African species Anopheles gambiae and
Anopheles coluzzii. However, as mentioned above, other
studies have shown differences across mosquito species and
strains [4, 22, 34]. One of the characteristics of the present
study is that the gut microbiota of two sympatric mosquito
species, collected in two municipalities geographically sepa-
rated, were simultaneously analyzed. This suggest that the
genetic background that differentiates the two Colombian
malaria vectors here analyzed, A. darlingi and A.

nuneztovari, might not be a strong determinant of the gut
bacterial microbiota composition.
Lastly, several studies have examined the influence of

a blood meal upon mosquito bacterial communities,
resulting in controversial conclusions. A culture-based
study demonstrated that bacterial counts of the midgut
of Aedes triseriatus mosquitoes increased by 70-fold
24 h after the blood meal, peaked 48 h after blood inges-
tion, and subsequently decreased 96 h after the blood
meal [43]. Moreover, two high-throughput sequencing
studies conducted in African Anopheles mosquitoes
evaluated simultaneously the effect of collection site and
female feeding status upon the microbiota composition,
concluding that geographical location is a strong deter-
minant of the bacterial composition, but reached opposite
conclusions about the effect of blood meal on the gut
microbiota of female adults [52, 53]. In the present study,
in which other three factors were analyzed, the blood
feeding status of female adult mosquitoes does not appear
to be a strong determinant of the gut bacterial compos-
ition of the here analyzed mosquitoes; however, a more
detailed analysis at the genus or species level could
provide further information on the effect of this factor on
the gut microbiota composition of malaria vectors.

Conclusions
The design and approach of this study allowed the sim-
ultaneous evaluation of the interplay of different factors
shaping the mosquito gut microbiota on field collected
specimens. The results evidenced that (a) the mosquito
gut is a major sieve for bacteria acquired from the
aquatic environment; (b) mosquito gut bacteria are
mostly acquired from the waterbodies where larvae de-
velop; however, the mosquito developmental stage af-
fects the structure of the gut bacterial community; and
(c) the gut bacterial composition of adult mosquitoes is
widely variable and seems to be associated to geography
and mosquito life history, regardless of the species or
blood feeding status. Finally, this study expanded the
knowledge on the gut microbiota composition of two
Latin American malaria vectors, A. darlingi and A.
nuneztovari, through a next-generation sequencing
approach.

Methods
Sample collection and mosquito identification
Samples were collected in two municipalities of two import-
ant epidemiological regions of Colombia (Additional file 5),
during the months of January and September of 2015. The
municipality of Istmina (5° 9′ N, 76° 41′ W) belongs to the
Chocó Department and is situated in the Pacific Coast
(PAC) region, western Colombia, while the municipality of
El Bagre (7° 34′ N, 74° 48′ W) is part of the Antioquia De-
partment and the Urabá-Bajo Cauca-Alto Sinú (UCS)
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region, northwest Colombia. Municipalities were selected
because of their epidemiological importance, as Chocó is
the first and Antioquia the third most affected depart-
ments in the country, both reported 65% (54,060) of the
total malaria cases registered in 2016 [49]. Moreover, the
species of interest, A. nuneztovari and A. darlingi, are the
main malaria vectors in these areas with infection rates or
percentage of Plasmodium-positive mosquitoes out of the
total specimens collected, of < 1% in both areas and for
both species [54–56]. Female adult Anopheles mosquitoes
were collected from 18:00–24:00 h during three nights per
locality, using 70% barrier screens [57] and human landing
catches (HLC), under a protocol and informed consent
approved by an Institutional Bioethics Committee of Sede
de Investigación Universitaria-SIU, Universidad de
Antioquia (reference number: 15-41-665). The use
of both methods allowed collection of blood-fed and
non-blood-fed mosquitoes. Fourth instar Anopheles larvae
(L4) were collected from aquatic habitats using a dipper
and were stored in water from the collection site until
dissections. In addition, a 50 ml sample of the surface of
waterbodies with presence of anopheline larvae was
collected. Larvae and adult gut dissections were carried
out under sterile conditions as follows: specimens were
surface-sterilized in 70% ethanol for 2–3 min and rinsed
three times in sterile 1× phosphate-buffered saline (PBS),
which then served as sterility control. In addition, 70%
ethanol tool cleansing was performed between sample
dissections and an ethanol burner was placed close to the
dissecting area. Guts were individually dissected and
stored in 50 μl 70% ethanol and kept on ice or fridge until
transfer to the lab settings. A posterior leg and the two
wings of the adult specimens were mounted on a glass
slide to aid species identification, using a morphological
key [58]. An additional leg of each adult specimen and the
rest of the body of larvae were individually preserved in
50 μl grinding buffer (10 mM Tris-HCl pH 8.2, 1 mM
EDTA, 25 mM NaCl) for a rapid DNA extraction, poster-
iorly performed in the laboratory by adding Proteinase K
(Mo Bio) to a final concentration of 200 μg/ml, incubating
at 37 °C for 1 h and 95 °C for 5 min to inactivate the Pro-
teinase K. DNA was used for molecular species confirm-
ation by a polymerase chain reaction-restriction fragment
length polymorphism—PCR-RFLP-ITS2 protocol [59, 60],
with a 1:5 dilution of the larval DNA prior to PCR.

DNA extraction and 16S rRNA gene amplification
DNA was extracted from gut or aquatic samples follow-
ing a salt precipitation protocol [61]. For the Illumina li-
brary preparation, a two-step PCR amplification of the
bacterial 16S rRNA gene hypervariable region 2 (V2)
was carried out for each sample. The first amplicon was
produced using primers Bact16S-101F (5′-AGYGGC-
GIACGGGTGAGTAA-3′) and Bact16S-338R (5′-TGCT

GCCTCCCGTAGGAGT-3′), which comprised a 5′
oligonucleotide tail for the second PCR. The 50 μl reac-
tion contained a final concentration of 1X Hi-Fi Reac-
tion buffer, 1 mM dNTP mix, 0.4 μM of each primer,
and 2 U of the high-fidelity velocity DNA polymerase
(Bioline). The cycling conditions consisted of an initial
denaturation at 98 °C for 30 s, followed by 30 cycles of
denaturation at 98 °C for 10 s, annealing at 52 °C for
30 s, extension at 72 °C for 30 s with a final extension at
72 °C for 10 min. Amplicons were purified using the
QIAquick 96 PCR purification kit (Qiagen), following
manufacturer’s instructions. A second PCR was carried
out to incorporate the Illumina adapter sequences and a
six-nucleotide index (each index was distinct from all
other indexes by at least two nucleotides) to each of the
sequences using primers targeting the 5′ oligonucleotide
tail; thus, each sample contained a unique barcode
allowing directional sequencing (detailed in Add-
itional file 6) The reaction contained a final concentra-
tion of 1× buffer, 1.25 U GoTaq (Promega), 2 mM
MgCl2, and 2 μM of each primer under the following
cycling conditions: initial denaturation of 94 °C for
3 min, followed by 15 cycles of 94 °C for 45 s, 50 °C for
45 s 72 °C for 45 s, and a final extension at 72 °C for
3 min. All indexed samples were subsequently pooled
together, purified using the DNA Clean & Concentra-
tor™-25 (Zymo Research), and sent to sequence. Purified
water was used as negative control for all PCR reactions
to monitor laboratory contamination. In addition, PBS
remnants of field mosquito washings were used as steril-
ity control of dissections and were processed and se-
quenced together with the rest of the samples.

MiSeq sequencing and data analysis
A total of 83 samples consisting of 63 adult mosquitoes, 13
larvae, and 7 water samples from the larval habitats were
paired-end sequenced by an Illumina sequencer server
(Genome Quebec), using a MiSeq Reagent Kit v2 (500 cy-
cles) with 25% PhiX content. Illumina paired-end reads
were assembled with FLASH v1.2.11 [25] with a min/max
overlap of 200/280 bp. Sequences were filtered according to
the following quality parameters: a minimum 30 quality
score over at least 80% paired sequence read and no am-
biguous bases. Sequence clustering was performed to 81
good-quality samples through the robust method SWARM
[26], and operational taxonomic units (OTUs) were
assigned based on available sequences of the Ribosomal
Database Project (RDP) [62, 63]. OTUs with < 5 reads were
discarded to avoid spurious OTUs. Downstream analyses
were performed in the R statistical software (version
3.4.0)[64], using the packages “Vegan” [65] and “ggplot2”
[66]. First, chimera, archaea, mitochondria, and chloroplast
reads were removed. Chimera were local reference-based
detected with USEARCH [67, 68] and web-based classified
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using the RDP database. Then, as the number of reads var-
ied among samples (mean ± SD= 82,144.96 ± 24,629.54),
these were rarefied to a read depth of 39,983 reads per
sample to homogenize the sampling effort. Nonetheless,
given the ongoing debate regarding a possible effect of this
type of normalization [69, 70], an exploratory analysis of
the data, excluding the rarefying step, was also performed,
with no strong differences detected in the patterns analyzed
(see Additional file 7). Non-Metric Multidimensional
Scaling (NMDS) analyses and ordination plots were per-
formed to determine bacterial composition differences
across sample types, localities, adult feeding status, and
species, by calculating the Bray-Curtis dissimilarity index
with 999 iterations. The function used (R: vegan:
metaMDS) runs NMDS several times with random starting
configurations, compares results, and stops after finding
twice a similar minimum stress solution. In this function,
the data are first square root transformed and then submit-
ted to Wisconsin double standardization. Significant differ-
ences in the influence of each factor to the microbial
composition across samples was determined using a multi-
factorial permutational multivariate analysis of variance
(PERMANOVA, R: vegan: Adonis) [71], using both a
Bray-Curtis and a Jaccard distance matrix with 999
permutations. The Shannon diversity index was calcu-
lated to obtain richness and evenness among sample
types. Boxplots, pie charts, and stacked bar graphics
were prepared to represent OTU richness, evenness,
and relative abundance metrics. Specific scripts were
designed to regroup OTUs in either unique or shared
among sample types (Additional file 8), as well as to
obtain the most abundant OTUs for each sample type
(Additional file 9). These scripts were based on similar
approaches that have been previously successfully
applied in microbiome studies in a variety of environ-
ments [72–76].

Additional files

Additional file 1: Non-metric multidimensional scaling 1. Non-metric
multidimensional scaling ordinations of the microbiota composition of all
OTUs with respect to geography (A), species (B) and feeding status (C).
Shepard stress diagrams for all OTUs with respect to sample type and
geography (D), species (E) and feeding status (F). (PDF 191 kb)

Additional file 2: Histogram. Histogram showing the frequency of shared
OTUs (WLA) among samples. (PDF 171 kb)

Additional file 3: Betadisper output A) Boxplot of the distance to the
centroid (i.e. dispersion) for each sample type. B) PCoA with polygons
showing the dispersion in the bacterial community composition for
different sample types. Notice the large dispersion in adults. (PDF 61 kb)

Additional file 4: Non-metric multidimensional scaling 2. Non-metric
multidimensional scaling ordination of the most abundant bacterial OTUs,
stacked bars representing the five most dominant bacterial families and
table showing the 5 most abundant genera in adults (Amax), related to
A) the mosquito species and B) the feeding status. C) Shepard stress
diagram related to the NMDS of Amax sample subset. (PDF 239 kb)

Additional file 5: Map. Sampled municipalities belonging to two important
epidemiological regions of Colombia: Urabá-Bajo Cauca-Alto Sinú (UCS) and
the Pacific (PAC) regions. (PNG 169 kb)

Additional file 6: Barcoding primers. Detail of barcoding primers used
for a directional sequencing. (DOCX 19 kb)

Additional file 7: Rarefied vs non-rarefied data. Non-metric multidimensional
scaling ordinations, stacked bar plots and tables are shown as examples of the
small variations observed after an exploratory analysis of the data comparing
rarefied versus non-rarefied data. (PDF 241 kb)

Additional file 8: Script 1. Script designed to regroup OTUs in either
unique or shared among sample types: water, larva and adult. (TXT 1 kb)

Additional file 9: Script 2. Script designed to obtain the most abundant
OTUs for each sample type: water, larva and adult. (TXT 803 bytes)
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