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The global spread of carbapenem-resistant Klebsiella pneumoniae (CR-Kp) has been largely associated with sequence type 258
(ST258) and its related variants (clonal group 258 [CG258]). Here we describe the molecular epidemiology of CR-Kp from five
tertiary care hospitals in Medellín, the second largest city in Colombia. All CR-Kp-infected patients admitted from June 2012 to
June 2014 were included (n � 193). Patients’ clinical information was obtained from medical records. Carbapenemase KPC,
VIM, IMP, NDM, and OXA-48 genes were detected by PCR. A CG258-tonB79 cluster-specific real-time PCR (targeting the multi-
locus sequence type [MLST] tonB79 allele), pulsed-field gel electrophoresis (PFGE), and MLST analysis were performed for typ-
ing. Remarkably, 62.2% (n � 120) of isolates were from STs unrelated to CG258 (non-CG258). KPC-3 predominated in CG258
isolates (86.3%), while KPC-2 prevailed in non-CG258 isolates (75.5%) (P < 0.001). Multidrug resistance (MDR) frequency was
significantly higher in CG258 strains (91.4% versus 56.1%; P < 0.001). ST512 (a single-locus variant of ST258) is the main ST in
CG258 (96.3%), and isolates in this group showed closely related pulsotype and similar resistance gene profiles, suggesting the
clonal spread of this strain. In contrast, high heterogeneity of STs (34/54), including eight novel STs, was found in non-CG258
isolates. Among non-CG258 isolates, ST14 (13.3%; n � 16) and ST307 (14.2%; n � 17) were the most frequent, and they showed
distinct molecular and clinical characteristics in comparison to CG258 isolates. Our results suggest that the dissemination of
carbapenem resistance in Medellín is due to heterogeneous K. pneumoniae clones, likely the result of horizontal transmission of
KPC in different unrelated lineages, further highlighting the challenge in CR-Kp infection control and the need for a multifocal
intervention.

Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is cur-
rently one of the most important pathogens causing health

care-associated infections, which typically occur in patients with
prolonged hospital stay and previous antibiotic exposure (1–3).
The most common mechanism of carbapenem resistance in K.
pneumoniae is the production of carbapenemases, among which
K. pneumoniae carbapenemase (KPC) is by far the most relevant
and prevalent (4, 5).

Since the initial identification of KPC in 1996 in North Caro-
lina (6), KPC-producing strains have spread worldwide, causing
major hospital outbreaks in North America, Europe, Asia, and
Latin America (2, 7, 8) and leading to a reduction of therapeutic
options that has resulted in high mortality and morbidity rates
and increasing length of hospital stay and associated costs (2, 4, 5,
9). The global spread of KPC-producing Klebsiella pneumoniae
(KPC-Kp) has been linked mostly to one genetic lineage, the mul-
tilocus sequence type 258 (ST258) and its related variants, i.e.,
clonal group 258 (CG258) (1, 10, 11). Members of CG258 include
ST258, its single-locus variants (SLVs) (e.g., ST11, ST512, ST340,
and ST437), and their SLVs (e.g., ST650 [an SLV to ST512]) (1).
CG258 has been associated with 70% of KPC-Kp outbreaks in the
United States and about 90% of infections by KPC-Kp in Israel,
and it is the most predominant clone in Argentina and Brazil (5).

In South America, the first report of KPC-2-producing K.
pneumoniae infections came in 2005, based on cases in two pa-
tients from two different hospitals in Medellín, Colombia (12).
Furthermore, an outbreak at an intensive care unit (ICU) oc-

curred between 2007 and 2008 in the same city, where the index
case involved a patient who had traveled from Israel. The outbreak
was due to KPC-3-producing K. pneumoniae strains typed as
ST512, an SLV to ST258 and a member of CG258 (13, 14). Further
studies in Colombia have shown the increasing incidence of KPC
producers among other Enterobacteriaceae, including Klebsiella
oxytoca, Enterobacter cloacae, Serratia marcescens, and Escherichia
coli (14–16), and other Gram-negative bacilli, such as Pseudomo-
nas aeruginosa (16–19). Curiously, in these non-K. pneumoniae
isolates, KPC-2 was the predominant variant, while KPC-3 was
frequently found in K. pneumoniae, especially isolates from
CG258 (16–19).

Results from the SENTRY Antimicrobial Surveillance Program
showed that the frequencies of CR-Kp in Brazil, Argentina, and
Chile were 11.1%, 8.2%, and 5.0%, respectively (20). In contrast,
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the frequency of CR-Kp in Colombia is as high as 14% based on
the data from the health care-associated infections and antimicro-
bial resistance national surveillance system of the Colombian Na-
tional Institute of Health (INS) (21). Colombia is now regarded as
one region where CR-Kp is endemic (5). Currently, knowledge of
the clinical, epidemiological, and molecular features of the circu-
lating KPC-Kp strains is still limited. A better understanding of the
epidemiology of KPC-Kp infections in countries where KPC
strains are endemic, such as Colombia (5), is crucial in identi-
fying the factors contributing to the dissemination of KPC-Kp
and is essential in developing targeted strategies for prevention
and infection control, both regionally and globally (22, 23). Here
we describe a large cross-sectional study aimed at exploring the
molecular epidemiology of CR-Kp from five tertiary care hospitals
in Medellín, Colombia, from 2012 to 2014.

MATERIALS AND METHODS
Study population and settings. This cross-sectional study included all
inpatients with carbapenem-nonsusceptible infections admitted from
June 2012 to June 2014 at five referral tertiary care hospitals (providing
service to both pediatric and adult patients) in Medellín, the second larg-
est city in Colombia. Hospitals A and C are large university hospitals, with
754 and 700 beds, respectively. Hospitals B and D are medium-size ter-
tiary care centers, with 286 and 300 beds, respectively. Hospital E is a
140-bed cardiology hospital. The study protocol was approved by the
Bioethics Committee for Human Research at Universidad de Antioquia
(CBE-SIU) (approval no. 11-35-415), as well as by the research ethics
committees at each hospital.

Clinical and epidemiological information. Medical records were re-
viewed for each patient. Clinical data, including demographics, medical
history, comorbidities, treatment, and outcome at discharge, were col-
lected. Infections were classified as either community or health care asso-
ciated according to standard epidemiological definitions established by
the U.S. Centers for Disease Control and Prevention (CDC) (24).

Bacterial strains and antibiotic susceptibility. In this study, CR-Kp
was defined as carbapenem nonsusceptible (intermediate or resistant)
based on the CLSI 2015 guidelines (25). Nonduplicate carbapenem-non-
susceptible K. pneumoniae isolates were selected. The identification of
isolates as well as the antibiotic susceptibility testing was carried out on the
automated system Vitek 2 (bioMérieux, Marcy l’Etoile, France). Tested
antibiotics included extended-spectrum cephalosporins (ceftriaxone, cef-
tazidime, and cefepime), carbapenems (ertapenem, imipenem, and
meropenem), aminoglycosides (amikacin and gentamicin), quinolones
(ciprofloxacin), tigecycline, and colistin. Antibiotic resistance to colistin
and tigecycline was further confirmed by microdilution method accord-
ing to European Committee on Antimicrobial Susceptibility Testing
(EUCAST) and FDA breakpoints, respectively.

Detection of �-lactamases. The presence of carbapenemases was eval-
uated by the modified Hodge test (MHT), performed according to the
CLSI protocol (25). blaKPC variants were detected using a molecular bea-
con-based multiplex real-time PCR assay (7). Conventional multiplex
PCR assays were performed for carbapenemase genes, i.e., blaVIM, blaIMP,
blaNDM, and blaOXA-48 (26, 27); extended-spectrum-�-lactamase (ESBL)
genes, i.e., blaCTX-M (clusters 1, 2, 8, 9, and 25), blaSHV, and blaTEM; and
genes for plasmid-mediated AmpC �-lactamases, including blaACT/MIR,
blaCMY-1/MOX, blaCMY-2/LAT, blaFOX, blaDHA, and blaACC (28). All PCRs
were performed using previously validated primers and conditions (6, 26,
27). For �-lactamase variants, amplification products were sequenced in a
subset of isolates, and the nucleotide and deduced amino acid sequences
of bla genes were compared against reference sequences available in the
NCBI (National Center for Biotechnology Information) GenBank data-
base using the BLAST (Basic Local Alignment Search Tool) server and
MultAlin software for sequence alignment (http://multalin.toulouse.inra
.fr/multalin/).

Phylogenetic typing. All isolates were tested by a previously validated
CG258-tonB79 cluster-specific multiplex real-time PCR (29). This PCR
was designed to target the multilocus sequence type (MLST) tonB79 allele,
which is primarily found in ST258 and its single-locus (SLV) and double-
locus (DLV) variants, e.g., ST512 (1, 30). A polysaccharide synthesis gene
cluster (CPS) multiplex PCR (31) was then performed on all CG258-
tonB79 isolates to identify the ST258 sublineages (clades I and II). Pulsed-
field gel electrophoresis (PFGE) was performed on all non-CG258-tonB79
isolates and among a subset of CG258-tonB79 isolates (40%) as described
previously (32). Strain relatedness analysis was performed on BioNumer-
ics software version 6.0 (Applied Maths, Sint-Martens-Latem, Belgium)
based on the Dice coefficient (cutoff of 80 or higher) for genetic related-
ness and the unweighted-pair group method analysis using average link-
ages (UPGMA) for generation of dendrograms. DNA fragment patterns
were normalized using a bacteriophage lambda ladder PFGE marker
(New England BioLabs, United Kingdom) with a 1% position tolerance
for further analysis. Representative isolates with unique PFGE patterns
(n � 54; 28%) were further subject to MLST analysis using the protocol
described by Diancourt et al. (33).

Statistical analyses. To explore the association between clinical and
epidemiological characteristics of infected patients and strain genotypes,
the chi-square, Fisher’s exact, or Kruskal-Wallis test was used. The level of
statistical significance was defined as a P value of �0.05. All statistical
analyses were performed in SPSS software v.22.

RESULTS
General clinical characteristics and antibiotic susceptibility.
One hundred ninety-three patients infected by CR-Kp were en-
rolled. The patients’ demographic and clinical characteristics are
summarized in Table 1. The majority of the patients were males
(62.7%; n � 121), with a median age of 54 years (interquartile
[IQ] range, 35 to 70 years). Only 14.5% (n � 28) of patients were
pediatric (aged �14 years). The most frequent medical specialties
that provided care to patients were surgery (24.6%; n � 47) and
internal medicine (17.8%; n � 34). The median hospital stay was
13 days (IQ range, 2 to 29 days). A total of 28.5% (n � 55) of
patients were hospitalized in intensive care units (ICUs) at the
time of sample collection.

The majority of patients had underlying illnesses, with cardio-
vascular disease (26.6%; n � 49), chronic renal disease (23.9%;
n � 44), and diabetes mellitus (23.9%; n � 44) the most frequent.
The most prevalent infections were urinary tract (33.3%; n � 64),
bloodstream (20.3%; n � 39), and intra-abdominal (17.7%; n �
34) infections. Ninety-eight percent of infections (n � 189) were
classified as health care associated according to CDC criteria after
individual assessment. A total of 66.3% (n � 126) of patients had
undergone surgery within a year prior to infection, 78.9% (n �
150) had a medical history of hospitalization within the prior 6
months, and 94.7% (n � 180) had a history of recent antibiotic
use, mainly carbapenems (49.4%; n � 89) and piperacillin-tazo-
bactam (49.4%; n � 89). Meanwhile, carbapenems (32.4%; n �
47) and piperacillin-tazobactam (22.8%; n � 33) were the most
frequently used empirical antibiotic agents. However, with respect
to targeted therapy documented for 160 patients, 40% (n � 64)
received monotherapy, with aminoglycosides (13.8%; n � 22)
and colistin (9.4%; n � 15), while carbapenem plus colistin
(11.3%; n � 18) and aminoglycoside plus tigecycline (8.1%; n �
13) were the most frequently used combination therapies. At dis-
charge, 66% (n � 124) of the patients had clinical improvement,
and the overall mortality rate was 34% (n � 64); however, this
varied with respect to different infection types (P � 0.001). The
mortality rates were higher in patients with bacteremia (56.4%;
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TABLE 1 Sociodemographic and clinical characteristics of carbapenem-resistant Klebsiella pneumoniae-infected patients from five tertiary care
institutions, Medellín, Colombia

Patient characteristic

Value for total
patients
(n � 193)

Value for patients with:

CG258 isolates
(n � 73;
37.8%)

Non-CG258 isolates (n � 120; 62.2%)

ST14
(n � 16; 8.3%)

ST307
(n � 17; 8.8%)

Other
(n � 87;
45.1%)

No. % No. % No. % No. % No. %

Sociodemographic
Age, yrs (median, IQ range)a 54 35–70 58 39–75 4.5 0.38–28 56 48–65 56 42–70
Male gender 121 62.7 50 68.5 8 50.0 10 58.8 53 60.9

Clinical
Days of hospital stay (median, IQ range) 13 2–29 13 1–29 13 6–41 24 11–32 12 1–26
Hospitalization in ICU at time of isolate

collectionb

55 28.5 16 21.9 8 50.0 2 11.8 29 33.3

Health care-associated infection 189 97.9 72 98.6 16 100.0 17 100.0 84 96.6
Medical specialty or servicea

Surgery 47 24.6 14 19.2 1 6.3 6 35.3 26 30.6
Medicine 34 17.8 18 24.7 2 12.5 1 5.9 13 15.3
Intensive care 30 15.7 10 13.7 3 18.8 1 5.9 16 18.8
Pediatrics 22 11.5 5 6.8 8 50.0 1 5.9 8 9.4
Transplants 12 6.3 3 4.1 0 0.0 1 5.9 8 9.4
Hematology 10 5.2 7 9.6 1 6.3 2 11.8 0 0.0
Urology-nephrology 20 10.5 8 11.0 1 6.3 3 17.6 8 9.4
Orthopedics and traumatology 8 4.2 4 5.5 0 0.0 2 11.8 2 2.4
Other 8 4.2 4 5.5 0 0.0 0 0.0 4 4.7

Medical history within 1 yr prior to infection
Colonization with CR-Kpa 61 31.6 33 45.2 9 56.3 3 17.6 16 18.4
Surgery 126 66.3 46 64.8 10 62.5 12 70.6 58 67.4

Medical history within 6 mo prior to infection
Hospitalization 150 78.9 59 83.1 14 87.5 10 58.8 67 77.9
ICU stay 71 37.4 21 29.6 10 62.5 7 41.2 33 38.4
Home health 16 8.4 4 5.6 1 6.3 0 0.0 11 12.8
Dialysis 45 23.7 18 25.4 3 18.8 6 35.3 18 20.9
Immunosuppressive conditions or therapies 53 27.9 21 29.6 6 37.5 5 29.4 21 24.4
Chemotherapy 22 11.6 12 16.9 3 18.8 0 0.0 7 8.1

Antibiotic use within 6 mo prior to infection 180 94.7 68 95.8 16 100.0 17 100.0 79 91.9
Piperacillin-tazobactam 89 49.4 34 50.0 7 43.8 6 35.3 42 53.2
Carbapenems 89 49.4 33 48.5 7 43.8 8 47.1 41 51.9
Aminoglycosidesa 33 18.3 16 23.5 3 18.8 8 47.1 6 7.6
Fluoroquinolones 57 29.5 25 34.2 6 37.5 5 29.4 21 24.1

Underlying conditions 184 100.0 69 100.0 16 100.0 17 100.0 82 100.0
Cancer 33 17.9 11 15.9 2 12.5 3 17.6 17 20.7
Diabetes mellitusb 44 23.9 19 27.5 2 12.5 8 47.1 15 18.3
Chronic renal disease 44 23.9 18 26.1 2 12.5 6 35.3 18 22.0
Cardiovascular diseaseb 49 26.6 10 14.5 5 31.3 6 35.3 28 34.1

Sites of infectionb

Pneumonia 13 6.8 2 2.7 2 12.5 1 5.9 8 9.3
Bloodstream 39 20.3 19 26.0 5 31.3 6 35.3 9 10.5
Surgical site 17 8.9 6 8.2 0 0.0 2 11.8 9 10.5
Skin and soft tissue 10 5.2 3 4.1 0 0.0 4 23.5 3 3.5
Intra-abdominal 34 17.7 9 12.3 2 12.5 1 5.9 22 25.6
UTI 64 33.3 30 41.1 5 31.3 2 11.8 27 31.4
Osteomyelitis 5 2.6 2 2.7 1 6.3 0 0.0 2 2.3
Other 10 5.2 2 2.7 1 6.3 1 5.9 6 7.0

Invasive medical devices at time of infection 141 100.0 54 100.0 12 100.0 12 100.0 63 100.0
Urinary catheter 87 61.7 35 64.8 6 50.0 10 83.3 36 57.1
Vascular dialysis catheterb 25 17.7 13 24.1 0 0.0 6 50.0 6 9.5
Invasive mechanical ventilation 35 24.8 11 20.4 4 33.3 3 25.0 17 27.0
Enteral nutrition 53 37.6 18 33.3 7 58.3 4 33.3 24 38.1
Central venous catheter 83 58.9 33 61.1 9 75.0 7 58.3 34 54.0

(Continued on following page)
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n � 22), pneumonia (50%; n � 6), and intra-abdominal infec-
tions (47.1%; n � 16) but lower in patients with urinary tract
infections (UTI) (11.1%; n � 7).

Overall, high frequencies of fluoroquinolone and aminoglyco-
side resistance were observed, with 76% (n � 146) of isolates
resistant to ciprofloxacin, 49.7% (n � 96) resistant to gentamicin,
and 36.3% (n � 70) resistant to amikacin. Of clinical significance,
25.4% (n � 49) were resistant to tigecycline and 17% (n � 32) to
colistin, and alarmingly, 13 isolates (7%) were resistant to both
tigecycline and colistin. Moreover, 70.4% (n � 136) of strains
were resistant to three or more classes of antibiotics (i.e., showed
multidrug resistance [MDR]).

�-Lactamase detection. The modified Hodge test was positive
for 89% (n � 173) of the isolates tested. blaKPC was detected in
86% (n � 166) of the isolates, and blaVIM was detected in one
isolate. No OXA-48, NDM, or IMP carbapenemase genes were
detected. Among KPC-positive isolates, 51.2% (n � 85) carried

KPC-3, while 48.7% (n � 81) carried KPC-2; no other variants
were detected. A total of 165 isolates were tested for the presence of
other �-lactamases. All isolates carried SHV-11 or SHV-1 (n �
165; 100%), 45% (n � 74) of the strains harbored TEM-1, 22%
(n � 37) carried CTX-M-15, and 17% (n � 28) carried SHV-12.
CTX-M-2 (5%; n � 8), CTX-M-8 (2%; n � 3), TEM-11 (4%; n �
7), and SHV-27 (1%; n � 2) were also identified. AmpC �-lacta-
mases, ACT/MIR, CMY-1/MOX, CMY-2/LAT, FOX, DHA, and
ACC, were not detected in this study. Twenty-five isolates were
negative for the carbapenemases, but all carried SHV-1 or SHV-
11, and 20 of them harbored other �-lactamases, mostly CTX-
M-15, TEM-1, and SHV-12.

Molecular typing. Among the 193 isolates, only 37.8% (n �
73) were from the CG258-tonB79 cluster, and all exclusively car-
ried the ST258 cps-2 operon, belonging to ST258 clade II (11, 31).
Further MLST analysis of 27 CG258-tonB79 cluster isolates
showed that 26 (96.3%) of them were ST512 and 1 was ST258. The

TABLE 1 (Continued)

Patient characteristic

Value for total
patients
(n � 193)

Value for patients with:

CG258 isolates
(n � 73;
37.8%)

Non-CG258 isolates (n � 120; 62.2%)

ST14
(n � 16; 8.3%)

ST307
(n � 17; 8.8%)

Other
(n � 87;
45.1%)

No. % No. % No. % No. % No. %

Empirical therapy 145 49 14 12 70
Aminoglycoside 9 6.2 5 10.2 2 14.3 0 0 2 2.9
Carbapenem 47 32.4 15 30.6 3 21.4 6 50 23 32.9
Carbapenem � aminoglycoside 6 4.1 3 6.1 1 7.1 0 0 2 2.9
Carbapenem � colistin 5 3.4 2 4.1 0 0 0 0 3 4.3
Carbapenem � TMP-SMXc 3 2.1 0 0 1 7.1 1 8.3 1 1.4
Cefepime 4 2.8 1 2 0 0 0 0 3 4.3
Colistin 4 2.8 4 8.2 0 0 0 0 0 0
Fluoroquinolone � colistin 3 2.1 0 0 1 7.1 1 8.3 1 1.4
Piperacillin-tazobactam 33 22.8 10 20.4 2 14.3 2 16.7 19 27.1
Piperacillin-tazobactam � aminoglycoside 3 2.1 1 2 2 14.3 0 0 0 0
Piperacillin-tazobactam � carbapenem 5 3.4 1 2 0 0 1 8.3 3 4.3
Other 23 15.9 7 14.3 2 14.3 1 8.3 13 18.6

Targeted therapy
Aminoglycoside 22 13.8 9 15.8 3 20 0 0 10 13.7
Aminoglycoside � fluoroquinolone 6 3.8 0 0 1 6.7 0 0 5 6.8
Aminoglycoside � tigecycline 13 8.1 7 12.3 0 0 3 20 3 4.1
Carbapenem 9 5.6 3 5.3 1 6.7 1 6.7 4 5.5
Carbapenem � aminoglycoside 7 4.4 3 5.3 0 0 0 0 4 5.5
Carbapenem � colistin 18 11.3 6 10.5 6 40 0 0 6 8.2
Carbapenem � tigecycline 4 2.5 2 3.5 0 0 0 0 2 2.7
Carbapenem � tigecycline � colistin 8 5 3 5.3 0 0 1 6.7 4 5.5
Colistin 15 9.4 6 10.5 3 20 0 0 6 8.2
Fluoroquinolone 8 5 0 0 0 0 1 6.7 7 9.6
Tigecycline 5 3.1 3 5.3 0 0 1 6.7 1 1.4
Tigecycline � colistin 4 2.5 2 3.5 0 0 1 6.7 1 1.4
Other 41 25.6 13 22.8 1 6.7 7 46.7 20 27.4

Need for surgical treatment 40 20.7 15 20.5 2 12.5 4 23.5 19 21.8
Outcome

Death (not attributable to infection) 64 33.9 25 34.2 4 25.0 9 52.9 26 31.3
Remission or clinical improvement 124 66.0 48 65.8 12 75.0 8 47.1 56 68.3

a Statistically significant differences with a P value of �0.001 when variable was compared among CG258, ST14, ST307, and other non-CG258 isolates by Fisher’s exact test or
Kruskal-Wallis test.
b Statistically significant differences with a P value of �0.05 when variable was compared among CG258, ST14, ST307, and other non-CG258 isolates by Fisher’s exact test or
Kruskal-Wallis test.
c TMP-SMX, trimethoprim-sulfamethoxazole.
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ST512 isolates were clustered together based on PFGE analysis
(Fig. 1). One CG258 ST11 isolate was also identified by MLST
analysis. Remarkably, the remaining 62.2% (n � 120) of isolates
belonged to genetic lineages other than CG258, showing highly
heterogeneous genetic backgrounds. Thirty-four different STs,
i.e., ST14, -17, -23, -35, -40, -45, -129, -140, -147, -151, -231, -259,
-268, -280, -283, -307, -526, -560, -636, -971, -1138, -1198, -1377,
-1533, -1661, -1681, -1703, -1704, -1705, -1706, -1707, -1708,
-1886, and -1887, were found. Among them, eight novel STs
(ST1703 to ST1708, ST1886, and ST1887) were first identified in
this study. ST14 and ST307 were the most predominant, account-
ing for 13.3% (n � 16) and 14.2% (n � 17) of the non-CG258
isolates, respectively. Isolates from the same STs (ST14 and
ST307) were clustered together by PFGE (Dice coefficient of
�80%) (Fig. 1).

Among KPC-positive isolates, 31 different STs were identified.
CG258 accounted for 43%, while ST307 and ST14 accounted for
10% and 8%, respectively. The remaining non-CG258 strains ac-
counted for 39% of KPC producers. Among KPC-negative strains,
8 STs were found. Interestingly, the majority of KPC-negative
strains (23/26, 88%) were not related to CG258.

Comparison of clinical and molecular characteristics in dif-
ferent clonal groups. We compared the molecular and clinical
characteristics of CG258, ST14, ST307, and other non-CG258 iso-
lates.

(i) CG258 isolates. CG258 comprised 37.8% (n � 73) of the
isolates. CG258 was isolated from four institutions but was the
dominant clone in hospital C (75%; n � 44) (P � 0.001), followed
by hospital B (35%; n � 19) (Fig. 2). The frequency of CG258
appeared to decrease during the study period, especially in the
second half of 2013 (2013/2) (P � 0.001) (Fig. 3). Patients were
attended most frequently by internal medicine (24.7%, n � 18),
and 45.2% (n � 33) had a medical history of colonization by
CR-Kp within the year prior to infection (Table 1). Isolates from
CG258 were commonly multidrug resistant (94.5%; n � 69) and
had higher frequencies of resistance to ciprofloxacin (94.5%; n �
69) (P � 0.001), amikacin (75.3%; n � 55) (P � 0.001), colistin
(37%; n � 27) (P � 0.001), and tigecycline (31%; n � 23) than did
other clonal groups. All strains except one in this group were KPC
producers. Analysis of the resistance genotypes identified KPC-3
as the most frequent variant (86.3%; n � 63) and TEM-1 as the
most common �-lactamase (56.5%), followed by the ESBL
SHV-12 (19.7%).

(ii) ST14 isolates. ST14 comprised 8.3% (n � 16) of the iso-
lates. It was found in four institutions; however, 66% (n � 10) of
strains were isolated from hospital B, and they accounted for 19%
of that hospital’s overall isolates. The frequency of ST14 isolates
remained relatively constant throughout the study period, with a
slight increase in the first half of 2013 (Fig. 3). Interestingly, the
median age of the patients infected with the ST14 strains was 4.5
years (IQ, 0.38 to 28 years), significantly lower than the median
age (52 to 58 years) of patients infected by other clonal groups
(Table 1). Similarly, pediatrics was the most frequent medical spe-
cialty (50%; n � 8) (P � 0.001). Moreover, most of the patients
had bloodstream infections (31.3%; n � 5) and UTI (31.3%; n �
5), half of the patients (50%; n � 8) were hospitalized in an ICU at
the time of sample collection (P � 0.039), and 56.39% (n � 9) had
a medical history of colonization by CR-Kp within the year prior
to infection (P � 0.001) (Table 1). In addition, ST14 isolates
showed higher frequencies of resistance to tigecycline (50%; n �

8) and gentamicin (75%; n � 12) than did other groups (P �
0.001). All isolates except two carried KPC, with KPC-2 as the
most frequent variant (92.9%; n � 13) (P � 0.001). The ESBL
SHV-12 was found in 7 isolates (43.8%).

(iii) ST307 isolates. ST307 comprised 8.8% (n � 17) of the
isolates. In contrast to other clonal groups, ST307 was found only
in hospitals A and C (P � 0.001), and the majority of the isolates
(82.4%; n � 14) were found in hospital A, accounting for 29% of
isolates from this hospital (Fig. 2). Remarkably, ST307 isolates
emerged in the second half of 2013 (70% of all ST307 isolates; n �
12) (Fig. 3). It is noteworthy that isolates showed close patterns by
PFGE (Fig. 1), suggesting the occurrence of an outbreak. More
than one-third of patients were from the department of surgery (P
� 0.001) (35.3%; n � 6), and 47.8% had exposure to aminogly-
cosides within the prior 6 months (n � 8) (P � 0.001); diabetes
mellitus was the most frequent comorbidity (47%; n � 10) (P �
0.024), and skin and soft tissue infections were the most prevalent
(23%; n � 4) (P � 0.0013). Although we observed no significant
differences in outcomes, a higher mortality rate was found in
ST307-infected patients, 52.9% (n � 9), than in patients infected
with other clonal groups (25 to 34%) (Table 1). In addition, ST307
isolates showed higher rates of resistance to gentamicin and cip-
rofloxacin (88.2%; n � 15 each) than did other clonal groups (P �
0.001). All isolates except one carried KPC, with KPC-2 as the
most frequent variant (62.5%; n � 10). The ESBL CTX-M-15 was
found in 94.1% of isolates (n � 16).

(iv) Other non-CG258 isolates. Other non-CG258 isolates
comprised 45.1% (n � 87) of the total isolates, including 32 dif-
ferent STs, and were distributed in all institutions. They ac-
counted for the majority of isolates in hospitals A (51%), D (78%),
and E (88%) and almost half in hospital B (46%), whereas they
accounted for only 20% of isolates in hospital C (Fig. 2). In com-
parison to isolates from other groups, 22% (n � 13) were resistant
only to �-lactams (including carbapenems) but susceptible to
other antimicrobial agents. Interestingly, a higher proportion
(92%; 23 of 25 carbapenemase-negative isolates) of non-carbap-
enemase producers were observed within this group, suggesting
that additional mechanisms, e.g., the loss of porin activity, con-
tributed to carbapenem resistance in our study. Seventy-two per-
cent (n � 63) of isolates carried KPC. A total of 39% of KPC
producers (n � 27) harbored only the KPC gene with no other
�-lactamases. KPC-2 was found in 75% (n � 48). Moreover, the
only VIM producer isolate belonged to ST147 from this group.

DISCUSSION

Transmission of KPC can be mediated by two different strategies:
the horizontal transfer of KPC-harboring genetic elements (e.g.,
plasmid) and the clonal spread of KPC-producing strains (1). Sur-
prisingly, highly heterogeneous genetic backgrounds were ob-
served in KPC-Kp in this study, and 28 STs have been found to
contain KPC. This suggests that KPC has emerged into different K.
pneumoniae strains, presumably due to the horizontal transfer of
blaKPC-harboring plasmids. Other studies based on whole-ge-
nome sequencing analysis have described the unexpected disper-
sal of blaKPC to many non-ST258 lineages involving different
blaKPC plasmids in settings where ST258 is endemic (34). Further
studies are warranted to understand if the spread of KPC in mul-
tiple K. pneumoniae strains is due to the same plasmid or different
ones. Meanwhile, three clones, CG258, ST14, and ST307, with
different clinical features accounted for �50% of total isolates.
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FIG 1 PFGE dendrogram generated with Bionumerics software showing the genetic relationship between representative strains of carbapenem-resistant
Klebsiella pneumoniae. The analysis of the bands generated was performed by using the Dice similarity coefficient and the unweighted pair group method with
arithmetic averages. The dashed line corresponds to 80% as the cutoff for close genetic relationship.
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Isolates from the same CG or ST displayed highly similar PFGE
profiles in each group (Fig. 1), further demonstrating their clonal
dissemination. Our study indicates that both horizontal transfer
and clonal spread have significantly contributed to the dissemina-
tion of carbapenem resistance in the area considered.

Among these CR-Kp clones, KPC-3-producing CG258, mainly
ST512, was the most predominant, comprising 37.8% of the iso-
lates, similar to observations in other studies reported previously
in Colombia (14). CR-Kp CG258 appears to be the main clone in
other Latin American countries where KPC is endemic, such as
Argentina, Uruguay, and Brazil. Distinct to our study is the obser-
vation that the most prevalent CG258 STs, including ST258, ST11,
and ST437, are mainly associated with KPC-2, suggesting that
multiple CR-Kp CG258 sublineages are circulating in Latin Amer-
ica. ST512 was initially described in 2006 in hospital B, as the cause

of the first outbreak of KPC-producing K. pneumoniae in Colom-
bia (12, 13). Clearly, this clone has emerged in other institutions
(hospitals A, C, and D). Meanwhile, the frequency of CG258 in-
fections appeared to decrease over the study period (Fig. 3). Of
clinical importance, isolates resistant to both tigecycline and colis-
tin or colistin alone were predominantly found in this clone. Sim-
ilar events have been described in countries where CG258 is highly
prevalent (35–42), and in these areas where KPC-Kp is highly
endemic and colistin exposure is high, resistance has been re-
ported (38). This raises a significant concern given the fact that
colistin is among the few agents that retain activity against CR-Kp
and is the key component of the combination antimicrobial regi-
mens that are frequently administered (2, 5, 36, 43, 44).

The second most common clone, ST14, has been regarded as a
high-risk K. pneumoniae clone (45), known for its ability to accu-

FIG 2 Relative distribution of major carbapenem-resistant Klebsiella pneumoniae clones found in this study—CG258, ST14, ST307, and other non-CG258
isolates—from five tertiary care hospitals (A to E) during the years 2012 to 2014 in Medellín, Colombia.

FIG 3 Relative distribution of cases per semester of major carbapenem-resistant Klebsiella pneumoniae clones found in this study.
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mulate and to disseminate resistance determinants, including
multiple �-lactamases, such as those in the KPC, NDM, CTX-M,
SHV, TEM, FOX, CMY, and OXA families. ST14 has been re-
ported in Italy (46), the United Kingdom, Sweden (47), Turkey
(48), Spain (49), Tanzania (50), Kenya (51), India (47, 52), and
Oman (53) and has been found harboring KPC in various facilities
in the midwestern United States (54). In addition, it has been
reported in sporadic cases carrying KPC-2, CTX-M-15, and
TEM-1 in several cities of Colombia (55) and carrying KPC-2 and
SHV-12 in Medellín (14). This is consistent with our results,
where the profile TEM-1�SHV-12�KPC-2 was the most fre-
quent. It is noteworthy that most patients infected with the ST14
strains were pediatric, which is likely associated with an ST14
CR-Kp outbreak in the pediatric ward in hospital B. However,
ST14 has been identified in four out of five hospitals, demonstrat-
ing its wide spread in our area. Infections caused by carbapenem-
resistant Enterobacteriaceae in infants and children are of great
concern, as these individuals do not tolerate the various available
agents, which frequently makes carbapenems the last-resort ther-
apeutic option for treating severe infections in children. Curi-
ously, reports of pediatric outbreaks caused by ST14 were found in
Italy, where isolates carried FOX-7 AmpC �-lactamase (46); in
Tanzania, where isolates carried the ESBL CTX-M-15 (50); and
in Turkey, where isolates carried NDM-1 (48).

ST307, the third most common clone in this study, has not
been described in Colombia, and this is the first report of this
clone in our country. Most significantly, the mortality associated
with ST307 infections is over 50%. Further investigations are
needed to assess if this clone is associated with hypervirulence and
carries virulence genes. On the other hand, ST307 strains emerged
in the second half of 2013, were predominately identified in hos-
pital A, and displayed close PFGE profiles, suggesting an outbreak.
The origin of the CR-Kp ST307 in this study remains unclear. It is
possible that a carbapenem-susceptible strain acquired a KPC
plasmid from another strain (e.g., CG258) or that an ST307 strain
was imported from somewhere else. Interestingly, this clone has
been reported to harbor KPC-2 and KPC-3 in the United States
(56) and in Italy (57), where it seems to be replacing ST258 (58,
59). In addition, it has been reported to carry OXA-48 and CTX-
M-15 in Morocco (60), which coincides with our results showing
that 94.1% of ST307 isolates carried this ESBL.

In general, the clinical features of CR-Kp infection were in
agreement with previous studies. For example, our findings are
consistent with the observations in previous studies that described
most patients to be elderly, with multiple comorbidities (2, 57, 61)
and with UTI and bloodstream infections the most frequently
reported (42, 57, 61–63). Several studies evaluating risk factors
for CR-Kp acquisition found exposure to health care and pre-
vious antimicrobial use as the most significant risks (3, 9, 61–
69). This is consistent with our findings that medical history
showing surgery, hospitalization, antibiotic use prior to infec-
tion, and the presence of invasive medical devices at the mo-
ment of infection were associated with CR-Kp acquisition (Ta-
ble 1). Meanwhile, we found an overall 34% mortality rate, in
accordance with previous reports of rates that varied from 6%
to 60% depending on the severity of infection (9, 42, 68–70).
Interestingly, our study revealed a highly heterogeneous ge-
netic background of CR-Kp strains, and CR-Kp from different
clones displayed distinct clinical characteristics in our local
epidemiology. Although the factors contributing to the clinical

differentiation of CR-Kp remain unclear, multiple factors, in-
cluding the various selective pressures, unique genetic con-
tents, and different host responses, may play a role.

Taken together, the results in this study describe the heter-
ogeneous spread of carbapenem resistance in a region where
KPC is endemic. Remarkably, non-CG258 strains account for
�60% of CR-Kp isolates, highlighting the significant contribu-
tion of horizontal transfer in the spread of carbapenem resis-
tance. More interestingly, the non-CG258 strains demon-
strated distinct clinical characteristics in comparison to CG258,
suggesting that they may adapt to different ecological niches
other than CG258 strains, further complicating clinical treat-
ment and infection control strategies. In addition, our study
evidenced the strong benefits of real-time surveillance and use
of molecular biology to support epidemiological research in
tracking the emergence and dissemination of resistance clones
and examining the clinical characteristics of patients infected
by such clones, which may provide useful data to guide resis-
tance and infection control strategies.
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