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Abstract: With the aim to determine the photo-generated current, diode saturation current, ideality
factor, shunt, and series resistances related to the one-diode model for p-i-n planar perovskite solar
cells, reference cells with active area of approximately 1 cm2 and efficiencies ranging between 4.6 and
12.2% were fabricated and characterized at standard test conditions. To estimated feasible parameters,
the mean square error between the I-V curve data of these cells and the circuital model results were
minimized using a Genetic Algorithm combined with the Nelder-Mead method. When considering
the optimization process solutions, a numerical sensitivity analysis of the error as a function of the
estimated parameters was carried out. Based on the errors behavior that is showed graphically
through maps, it was demonstrated that the set of parameters estimated for each cell were reliable,
meaningful, and realistic, and being related to errors lower than 9.1 × 10−9. Therefore, these results
can be considered as global solutions of the optimization process. Moreover, based on the lower
errors obtained from the optimization process, it was possible to affirm that the one-diode model is
suitable to model the I-V curve of perovskite solar cells. Finally, the estimated parameters suggested
that the average ideality factor is close to 2 when the fill factor of the I-V curves is higher than 0.5.
Lower fill factors corresponded to ideality that was higher than 3, linked to lower efficiencies, and
high loses effects reflected on lower shunt resistances. Lower ideality factor of 1.4 corresponds to the
best performing solar cells.
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1. Introduction

The electrical performance of solar cells and panels is described by the I-V curve. This curve
presents all the possible operative points, including the Short-Circuit Current (0, Isc), Open Circuit
Voltage (Voc, 0) and the Maximum Power Point (Vmpp, Impp). Several numerical models have been
developed to reproduce this curve at different conditions and illumination levels. Some of them
are based on electrical circuits [1,2], partial differential equations or semiconductor equations [3,4],
artificial intelligent technics [5,6], curve fitting [7,8], among others.

Circuital models based on the Kirchhoff’s current law, such as the one-diode model have
been widely used to reproduce the I-V curve of different solar technologies [9,10] under different
environmental conditions [11,12]. The one-diode model is characterized to be implicit, nonlinear,
and multivariable. Therefore, there is no way to calculate an exact solution from the I-V data. Hence,
up to 34 methods were proposed in literature to extract or estimate the five parameters related to the
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model [2,13,14]. Where the shunt resistance (Rsh) is related to the leakage current across the surfaces
involving pin-holes, grain boundaries, and charge recombination processes [15]. The series resistance
(Rs) is reflected in the voltage drops and is related to the conductivity of the layers and interphases,
this parameter is affected by space charges, traps, or other barriers [16]. Virtually, a proportional
relationship between the photo-generated current (Iph) and irradiance intensity is observed. The diode
saturation current (Io) is related to the material properties, junction configuration, recombination
processes, and temperature. Finally, the ideality factor (n) is related to the Shockley theory involving
conduction, interfacial layers, transport, and recombination processes in the bulk and surface regions,
which directly affects the shunt resistance and the open-circuit voltage [17,18].

However, since the parameters estimation of this model depend on different physical aspects (such
as temperature, light condition, number of series cells, among others), mathematical assumptions to
simplify or transform the problem, and the numerical method, which can be initial value dependent [13]
or instable in the results [19], it is possible to obtain relatively large error in the optimization process [6],
unrealistic parameters, such as negative resistances [20] or high diode ideality factors [21]. In the same
way, instability in the estimated parameters has been observed under measurement uncertainty when
data noise or fewer points of the I-V curve are considered [22]. These facts remark the complexity that
is involved to estimate reliable parameters from the I-V curve.

In spite of the last drawbacks, the optimized parameters that are related to the circuital model
have allowed for predicting the electrical performance of panels [11,23] and solar cells [24], reflect the
dynamic of panels under different environment conditions [12], explain the transport and recombination
process in solar cells [18,25], determine the minority carrier lifetime [26], investigate the interface state
density quality [27] and losses effects [28], study the degradation effects [29], among others.

The ideality factor is the most reported parameter for different solar cells technologies. In the
case of silicon solar cells, this value is between 1 and 2. n close to 1 indicates ideal junctions, while
n equal to 2 would be related to degradation of the solar cell, non-uniformities on recombination
centers, and shunt resistance effects [30]. In dye-sensitized solar cells, this factor is between 2 and
3 [31] and in organic solar cells this factor is higher than 2 [32]. In the case of Perovskite solar
cells (PSC), ideality factors that are close to 2 have been reported due to carrier recombination and
trap-assisted recombination under dark condition [33,34]. When several hole transport layer thicknesses
are considered at dark conditions, the ideality factor has been found to range between 1.3 and 2.5 [35].
Additionally, based on the intensity dependence of Voc under illumination conditions, an ideality
factor between 1.7 and 1.9 has also been reported [36], and based on different device architectures, this
parameter has been close to 1.0 for devices without hole transport layer (HTL) or even higher than 2
when considering the HTL [25]. However, due to the estimation of this parameter could be affected by
different aspects such as hysteresis, slow relaxation processes, open-circuit voltage dependence of light
intensity and temperature, capacitive effects and parasitic resistances, among others, the perovskite
ideality factor from the dark I-V curve could produce values higher than 2 [37]. Therefore, another
diode was included in the circuital model to agree with theoretical expectation [7], or methods that
are based on light-intensity dependence, such as electroluminescence, Voc as function of illumination
intensity, or based on AC resistances, as electrochemical impedance spectroscopy was proposed to
estimate this parameter [25,37].

In order to fully determine the parameters that are related to the one-diode model that represents
p-i-n perovskite solar cells, 11 cells of approximately 1 cm2 of area were fabricated and characterized
at standard test conditions. The I-V curve of these cells was fitted to the one-diode model to estimate
the five parameters using a Genetic Algorithm combined with the Nelder-Mead method to minimize
the mean square error between experimental data and the model results. Finally, a numerical analysis
of the mean square error between the data and the model was carried out to determine feasible,
realistic, and reliable values that represent the electrical behavior of perovskite cells. Hence, it was
demonstrated that under a rigorous methodology and a numerical optimization process, the one-diode
model is suitable to model the I-V curve of perovskite solar cells.
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2. Materials and Methods

2.1. Perovskite Solar Cells

Taking into account that the reproducibility [38] and large area devices [39,40] play a
crucial role in the photovoltaic performance of perovskite solar, different p-i-n planar devices
(ITO/NiOx/CH3NH3PbI3/PC60BM/Rhodamine/silver) were fabricated with an active area between 1
and 1.5 cm2 while using a previously reported protocol [41]. Briefly, devices were fabricated on Indium
Tin Oxide (ITO) coated glass (Naranjo). The substrates were washed with neutral soap (Inmunodet
neutro) and sequentially sonicated in Deionized (DI) water, acetone, and isopropanol for 5 min. Then,
ultraviolet ozone (UVO) treatment was done for 5 min at 100 ◦C. The NiOx hole transporting material
spin coated at 3000 rpm for 30 s with a 3 s ramp. To obtain a 430 ± 10 nm perovskite layer, a precursor
solution of methylammonium iodide (Dyesol, Queanbeyan, Australia) and lead iodide (Alfa Aesar,
Haverhill, MA, USA; 1:1 molar ratio; 55 wt %) in N, N-dimethylformamide (DMF) was deposited by
spin-coating at 4000 rpm for 25 s. During spinning, 500 µL of Diethyleter (Aldrich, St. Louis, MO,
USA) were dripped on the substrate after 10 seconds and the films were annealed at 65 ◦C for 1 min
and 100 ◦C for 10 min. PCBM (1-Material) was deposited via spin-coating a 20 mg/mL solution in
chlorobenzene (CB) at 2000 rpm for 30 s. Rhodamine 101 was deposited on top of the PCBM layer by
spin coating a 0.5 mg/L solution at 4000 rpm for 30 s. Finally, to complete the devices, 100 nm thick
silver electrodes were thermally evaporated under vacuum (≈10−6 mbar) at a deposition rate around
≈0.1 nm/s. The electrical performance of these devices was measured without mask at standard test
conditions using a 4200SCS Keithley system (Tektronix, Beaverton, OR, USA) and an Oriel sol3A sun
simulator (Newport Corporation, Irvine, CA, USA). From different batches fabricated, 11 cells that
represent different electrical performances were intentionally selected. These cells showed different
I-V curve characteristics, as shown in Figure 1 and Table 1.
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Figure 1. I-V curve of perovskite solar cells.

Table 1. Electrical performance of perovskite solar cells.

Cell Area (cm2) Efficiency (%) Fill Factors (FF) Voc (V) J (mA/cm2)

1 1.000 4.674 0.674 0.878 7.889
2 1.000 4.683 0.328 0.776 18.376
3 1.000 4.622 0.344 0.789 17.044
4 1.000 5.024 0.331 0.850 17.858
5 1.200 10.684 0.598 0.947 18.866
6 1.500 9.813 0.638 0.992 15.508
7 1.350 10.458 0.652 1.021 15.722
8 1.000 12.188 0.671 1.010 17.978
9 1.000 10.948 0.668 1.011 16.215

10 1.000 9.349 0.592 0.968 16.306
11 1.000 9.408 0.642 0.990 14.811
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2.2. Numerical Methods Used to Extract the One-Diode Parameters

The one-diode model is characterized to be implicit, nonlinear, and multivariable (Equation (1)).
This model showed the relationship between the current (I) and voltage (V) of solar device, the five
parameters (photo-generated current, diode saturation current, ideality factor, shunt, and series
resistances) and thermal voltage (VT) that depends on the temperature, the Boltzmann constant (k),
and electron charge (q), Equation (2).

I = Iph − I0

(
e(

V+I·Rs
n·VT

) − 1
)
− V + I·Rs

Rsh
(1)

VT = k·T/q (2)

Different numerical methods have been proposed in literature to estimate the five parameters that
are related to one-diode model from the I-V curve data. Some of them are called exact because these
parameters are expressed explicitly from algebraic manipulation. To obtain analytical expression for
these parameters, most exact methods evaluate one-diode model equation and his derivative at specific
points of the I-V curve, such as (Voc, 0), (0, Isc), and (Vmpp, Impp). Moreover, to extract the parameters,
some assumptions have been incorporated to simplify the iterative process or reduce the number of
variables to be estimated. In Tables 1 and 2 were summarized and correlated the assumptions and
implications to some common exact methods reported in literature [17,42–46]. Corresponding the
most part of these assumptions to the resistances that are involved in the model. For instance, if

Rs is approached to zero, then the exponential term of the Equation (1) can be simplified to e
V

nVT

(assumption 1). If Rsh is approached to infinity, then the term V+I·Rs
Rsh

can be neglected (assumptions
2–4). If Equation (1) is evaluated at the short circuit current point, then the diode current can be
simplified (assumptions 5–7). If Equation (1) is evaluated at the maximum power point (assumption
8), then the term “−1” can be neglected [45]. Moreover, if high illumination conditions are considered,
then assumptions 9 and 10 can be applied [17]. Finally, if Iph is approached to Isc (value that is known),
then just four variables can be estimated (assumption 11).

Table 2. Common assumptions in exact methods.

No. Assumptions Implications

1 e(
Voc

n·VT
) � e

(Isc ·RS )
(n·VT ) Neglect e

(Isc ·RS )
(n·VT )

2 Io
n·VT

·e(
Voc

n·VT
) � 1

Rsh
Neglect 1

Rsh

3 Io
n·VT

e
(Isc ·RS )
(n·VT ) � 1

Rsh
Rsh≈Rsh−Rs

4 Rs � Rsh
Rs
Rsh

≈ 0 and Rs + Rsh ≈ Rsh

5 Iph + Io � Ioe
(Isc ·RS )
(n·VT ) + (Isc ·Rs)

Rsh
Iph + Io = Isc

6 Io

(
e
(Isc ·RS )
(n·VT ) − 1

)
� Iph −

(Isc ·Rs)
Rsh

Neglect Io

(
e
(Isc ·RS )
(n·VT ) − 1

)
7 e

(Isc ·RS )
(n·VT ) � 1 Io

(
e
(Isc ·RS )
(n·VT ) − 1

)
≈ Io

8 e
(Vmpp+Impp ·Rs )

(n·VT ) >> 1 I = Iph − I0

(
e(

V+I·Rs
n·VT

)
)
− V+I·Rs

Rsh

9 Voc
Rsh

� Isc Neglect Voc
Rsh

10 Vmpp
Rsh

� Isc Neglect Vmpp
Rsh

11 Iph � Io

(
e
(Isc ·RS )
(n·VT ) − 1

)
+ (Isc ·Rs)

Rsh
Iph ≈ Isc

Six exact methods that are commonly suggested in literature that involved the last assumptions
are shown in Table 3. Due to that this kind of methods were developed to obtain quickly results and
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the number of assumptions are linked to the model simplicity, the generality, and accuracy of the
solution can be compromised.

Table 3. Common exact methods and their assumptions (Assumptions numbered according to Table 2).

References
Assumptions

1 2 3 4 5 6 7 8 9 10 11

[42] X X X X X
[43] X X X
[44] X X
[17] X X X X X X

[45,46] X X X X

Other methods are called numerical because they evaluate the one-diode equation and his
derivate in different points of the I-V curve, obtaining a set of nonlinear equations that can be solved
using Newton-Raphson method [6,29], iterative process [47], among others. Additionally, when the
numerical methods used to estimate the parameters required to calculate numerically the slope at Voc

and/or the slope at Isc as initial conditions, instability and non-convergence of the solution can appear.
Moreover, some of these methods can be sensitive to initial conditions [19].

To figure out these problems, numerical methods that are related to artificial intelligence, such as
particular swarm [11], Genetic Algorithm (GA) has been successfully used to extract the five parameters
of the one-diode model [5,48]. In these cases, one common way to express the parameter estimation
as an optimization problem is minimizing the mean square error (Equation (3)) between the current
measured (iexp) and the current calculated evaluating the Equation (1) as a function of the five
parameters. Where the samples corresponded to the number of points that are considered in the
I-V curve.

MSE =
1

samples

samples

∑
k=1

(
iexp(k)− i

((
Iph, Io, n, Rshunt, Rseries

)
, k
))2

(3)

3. Results

With the aim of obtaining the five parameters according to the one-diode model for a broad range
of performance PSCs, the I-V curves of devices fabricated and characterized in Section 2 (see Figure 1
and Table 1) were fitted to the circuital model. This process was divided in two parts. As an example,
in the first part, the analysis was performed to Cell 1, which is a device with lower efficiency and
short circuit current (see Table 1). For that, different numerical methods were used to extract the five
parameters (see Tables 2 and 3). In the second part, the analyses were extended to other cells using
the method that shows the best fitting performance. Note that in order to have a good validation of
our method, the efficiencies of the studied devices ranged between 4.6 and 12.19%, Fill Factors (FF)
between 0.3 and 0.7, open circuit voltages between 0.7 and 1 V, and short circuit current densities (J)
between 7 and 18 mA/cm2. The variability of these main variables indicated a broad range of electrical
performance to be analyzed.

3.1. Extracting Parameters Using Different Exact and Numerical Methods

The electrical performance of cell 1 represented by the I-V was fitted to the one-diode model using
the six exact methods described on Table 3. Additionally, due to Genetic Algorithm (GA) explores
global solutions and the method does not required any assumptions, constrains or derivatives, it is
suitable to the paradigm addressed here (Equation (3)), in which the equation to fit is non-linear and
multivariable [49].

The GA was defined by a mutation rate of 0.95 with 100 individuals in the population and
40 generations, tournament selection, and rank algorithm is considered [50]. The chromosome is
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determined by the five parameters of interest and the fitness function by the mean square error (MSE)
between the current measured (Iexp) and the one-diode model evaluated at each point of the I-V curve,
Equation (3).

The five parameters estimated and the MSE between the data and the fitting process are shown
in Table 4. Notice that, in all cases, the errors were lower than 10−4, values that are in the same
order as those commonly published in literature by implicit and explicit methods [11]. In the case of
GA, the error was in the same order of evolutionary algorithms when synthetic data were used [49],
indicating a good fitting and reproducibility of the I-V curve.

Table 4. One-Diode parameters for cell 1.

Method Error Iph (mA/cm2) Io (µA/cm2) n Rs (Ω·cm2) Rsh (Ω·cm2)

[42] 2.329 × 10−4 7.865 23.127 6.262 −13.138 3623.148
[43] 2.326 × 10−4 7.848 17.834 5.997 −10.588 3633.737

[44,51] 3.681 × 10−9 7.902 0.0288 2.743 5.980 3617.168
[17] 2.152 × 10−4 7.837 0.041 6.935 −14.638 3623.148
[45] 3.056 × 10−4 7.872 3.471 4.720 −7.912 3631.061
[46] 4.262 × 10−6 7.893 1.681 4.312 1.855 3621.293
GA 4.803 × 10−10 7.899 0.023 2.697 6.443 3392.119

The GA method that explores global solution showed the lowest error, followed by the oblique
asymptote method proposed by Toledo et al. [51] that considers just two assumptions (Table 3).
However, the method proposed by Khan et al. [17], which considers the largest number of assumptions
obtained higher error, higher ideality factor, and negative series resistance, which lack physical
meaning. These results confirmed that methods with less assumptions give more realistic parameters.
Moreover, high ideality factors are correlated to negatives series resistances. Aspects mentioned in
literature [13].

Due that Iph did not show significant changes (Table 4), a numerical sensibility analysis of error
when considering the other four parameters was carried out with the aim to define feasible values.
The MSE behavior as function of the estimated parameters is showed in Figures 2 and 3 while
considering the logarithm of the MSE to improve visualization.
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These results illustrate that the problem of estimate these five parameters from the I-V curve is
very sensitive to small differences in the parameters that are involved in the one-diode model equation.
In the case of Io and n (Figure 2), a small increase on the ideality factor causes a great decrease on
the exponential function value, which can be compensated by increasing the Io value and vice-versa.
A small decrease on n can be compensated by decreasing the Io value or changing the series resistances
by negative values (Figure 3a), behavior showed in Table 4. However, the Figure 2 suggested that the
ideality factor has to be higher than 2.00 in order to minimize the MSE.

In the case of the resistances that are involved in the model, different local regions with lower
errors are obtained, even with negative values, see Figure 3. In these cases, negative or unrealistic
resistances, trends to increase the ideality factor and the saturation current to minimize the MSE.
Similar behavior was shown by some exact methods (Table 4). Variation of Shunt resistance did not
show significant changes on MSE (Figure 3b).

These graphical results suggested that this optimization problem is characterized by many feasible
local minimums. However, due that the solution is a trade of between the five parameters, the realistic
and reliable parameter values that describe the electrical performance of this cell and minimize the
MSE correspond to the parameters shown in Table 4 by GA, this set of parameters can be considered
as a global solution.

3.2. One-Diode Model Parameters for Perovskite Solar Cells

From the last results, it is easy to see why numerical methods that search for local solutions could
be trapped in a specific region, and why methods, such as GA, which explore global solutions could
perform better. Being the local minimums the most common issues in optimization problems. For that
reason, the next analyses were carried out while using the GA method combined with the Nelder-Mead
method to explore global solutions, refining the search, and minimizing the MSE [52]. Additionally,
based on the relationship between the parameters involved in the one-diode equation that represents
the electrical behavior showed by the I-V curve, a sensitive analysis is performed by changing the
diode saturation current, ideality factor, and resistances obtained from the optimization process.

Figures 4–6 showed representative cases of the sensitivity analysis of MSE. For each case,
the feasible range for the ideality factor that minimize the MSE is shown. The complete set of
parameters from the sensitivity analyses for all cells are shown in Table 5. Notice that the MSE is lower
than 9 × 10−9 in all cases, indicating a successful fitting, as it was mentioned before.
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As it can be seen in Table 5, the lower ideality factor corresponds to the device with higher
efficiency. Devices with n in the expected range that are discussed in literature (between 1.7 and 2)
are characterized by average series resistance of 9.78 Ω, average shunt resistances of 1672 Ω and Fill
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Factor higher than 0.5. Other cases related to n higher than 2.9 corresponded to lower efficiencies and
FFs. This result is congruent with a defective cell or high loses effect due that variables, such as Rsh, Io,
and n are reflected in the recombination processes.

Table 5. One-diode parameters for Perovskite solar cells.

Cell Error Iph (mA/cm2) Io (nA) n Rs (Ω·cm2) Rsh (Ω·cm2)

1 4.803 × 10−10 7.899 0.023 2.697 6.443 3392.119
2 7.208 × 10−10 18.509 12,943.355 5.014 0.460 59.020
3 7.833 × 10−9 17.160 3088.873 4.100 0.200 67.629
4 1.102 × 10−9 17.933 1401.235 4.057 0.200 64.984
5 1.784 × 10−9 0.019 0.331 2.074 9.648 586.058
6 1.176 × 10−9 15.662 0.238 2.151 9.981 1195.976
7 9.913 × 10−9 15.852 0.240 2.216 9.661 1491.744
8 5.195 × 10−9 18.051 5.993 × 10−5 1.486 9.747 3184.295
9 2.060 × 10−9 16.263 3.976 × 10−3 1.780 9.979 3951.715

10 4.199 × 10−10 16.581 39.718 2.949 5.514 352.362
11 3.974 × 10−9 15.061 0.002 1.705 11.318 828.667

4. Discussion

In order to determine feasible and reliable one-diode parameters that represent the electrical
performance of PSC, five common exact methods that are proposed in literature were used to estimate
the parameters based on the I-V curve. From these results, it was showed that sometimes, these exact
methods could obtain parameter estimations with low fitting error but lacking physical meaning due
to negative resistances and higher ideality factors, as it has been reported in literature [13]. However,
by combining the GA with Nelder-Mead method, it was possible to explore global solutions and
minimize the error between the data and model, being these errors lower than those published in the
literature [2,13]. Becoming this procedure in a powerful tool to fully estimate the parameters that are
related to one-diode model, avoiding issues, such as initial condition and physical or mathematical
assumptions to simplify the optimization process.

Based on the MSE behavior showed graphically through maps as a function of the estimated
parameters, it was possible to determine feasible and reliable solutions to the circuital model.
Showing that the problem of estimate the one-diode model parameters from the I-V curve is
very sensitive to small differences in the parameters that are involved, and that different parameter
combinations lead to the reduction of the MSE even by solutions lacking physical meaning as negative
resistances, being these results local minimal solutions defined by feasible, but not realistic, regions.
However, MSE lower than 1 × 10−9 could be considered as a good metric to evaluate the performance
fitting and determine the more meaningful and reliable parameter estimation. These solutions could
be considered as a global minimum.

When considering the five parameters estimated for each perovskite solar cell at standard test
condition. These results suggested that the ideality factor is in average close to 2 when the FF is higher
than 0.5. In this sense, the ideality factor that was obtained for perovskite agreed with values published
in literature using other measures, such as electroluminescence [25] or electrochemical impedances
spectroscopy [37]. Lower FF are linked to ideality factor higher than 3 and low series resistances, fact
that could be correlated to defects such as pinholes, which is reflected on the low shunt resistances,
indicating high losses effects. An ideality factor of 1.4 was obtained for the best performing cell.

5. Conclusions

In this paper p-i-n perovskite solar cell with an active area of approximately 1 cm2 were fabricated
and characterized. To estimate feasible and reliable parameters that are related to the one-diode
model and represent the electrical performance of p-i-n PSC, two powerful numerical methods, called
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Nelder-Mead method and Genetic algorithm, were mixed. This procedure searches for global solution
and no assumptions were required, ensuring errors lower than 1 × 10−9 in all cases.

The dependence of the error (MSE) to the one-diode model parameters were shown for first
time graphically through maps with the aim to illustrate why different common numerical methods
obtained lower errors and solutions lacking physical meaning as negative resistances. Based on
this error behavior and considering that the fitted errors were lower than 1 × 10−9, the estimated
parameters that represented the electrical performance of devices can be considered as a global
minimum of the optimization problem.

This procedure is reliable to estimate not only the ideality factor, which is related to the quality
of the cells, but the series and shunt resistances and the saturation current. Therefore, due to the I-V
curve data of devices (that define their electrical performance in all operative points) at standard test
conditions were considered, the estimated parameters represent these conditions, and for that, no extra
measures, such as changing the light intensity, electroluminescence, or dark measures are necessary.
From this way, we can estimate parameters related to electrical performance based on common data,
such as described on solar devices datasheet.

Finally, based on the lower MSE obtained from the fitting process, it was possible to affirm that
the one-diode model is suitable to model the I-V curve of perovskite solar cell technology, even for low
performance devices characterized by low fill factor.
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