
Universidad de Antioquia
Facultad de Ciencias Exactas y Naturales

Instituto de Física

Topological properties of Hermitian and non-Hermitian

periodic systems

PhD Thesis

DAVID ANDRÉS GALEANO GONZÁLEZ

Advisor: Dr. Jorge Mahecha

Medellín, july 2021



Universidad de Antioquia



Universidad de Antioquia
Facultad de Ciencias Exactas y Naturales
Instituto de Física

Topological properties of Hermitian and non-Hermitian

periodic systems

PhD Thesis

DAVID ANDRÉS GALEANO GONZÁLEZ

Advisor: Dr. Jorge Mahecha

Approved by Date:.

(Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Jorge Mahecha

(Signature) (Signature) (Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Johans Restrepo Dr. Rodrigo Acuña Dr. Melquiades Leyva

Medellín, july 2021





Abstract

In this work we study some topological properties of Hermitian and non-Hermitian periodic
systems with physical importance.

For the Hermitian system, we have studied the behavior of 1, 2 and 3 layers of graphene
aligned on boron nitride (BN) substrate to analyze how the effective moiré potential and the
number of graphene layers affects the Chern number. Our contribution focuses on the calculation
of the Chern diagrams of N-layer (N = 1, 2, 3) ABC graphene boron nitride moire superlattices,
the respective analysis of the potential function and the rol of the pseudomagnetic moiré vector
potential to try to find a theoretical explanation for recent experimental results.

It is important to emphasize that our calculations confirm recent results, where the maximum
magnitude of the topological invariant (Chern number) coincides with the number of graphene
layers. However, the effective moiré potential in the low energy model allows Chern number mag-
nitudes smaller than the number of layers. The Chern diagrams that we calculated have practical
importance, because prior to any experimental implementation, the topological properties of the
material can be known. This issue is relevant to applications on nano-devices.

On the other hand, the non-Hermitian system that we have studied is new type of Su-Schrieffer-
Heeger (SSH) model with complex hoppings, where we propose its correspondence with an electri-
cal circuit model to represent the topological behavior and some quantum properties. Our model
can be configured so that the hoppings between sites of the chain are independently parameter-
ized and related to RLC circuit elements, which makes it useful to find and analyze topological
properties. Our non-Hermitian circuit model opens the door to new topological material designs
based on RLC circuit components.

Keywords

SSH, graphene, moiré patterns, Hermitian, non-Hermitian, topolectric circuits, topology.
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Abbreviations

ai Vector i of Bravais lattice
a0 Bohr radius
Aµ µ component of electromagnetic four potential
A Berry connection
A Vector potential
bi Vector i of reciprocal lattice
B Magnetic field
C Electrical capacitor or Chern number
CS Chern-Simons invariant
C Chiral operator
d Physical dimension of the material or distance between atoms
D Physical dimension of a topological defect
Dµ Covariant derivative
e Electron charge
E Energy eigenstate
EF Fermi Energy
EP Exceptional point
F Berry flux
F Berry curvature
FK Fu-Kane invariant
G1 Moiré pattern harmonics
Gm Moiré reciprocal lattices
H Hamiltonian
H0 Bloch Hamiltonian for graphene
HR
N Remote hopping term corrections for N-layers

HM
ξ The scalar moiré potential term

HA The vector moiré potential term
I Electric current
K Complex conjugation operator
L Electric inductor
L Laplacian Matrix
M Magnetization in a ferromagnet or

term for inversion-symmetry-breaking on-site in Haldane model
N Number on unit cells in the crystal or number of graphene layers
N−/+ Number of bands below/above the Fermi energy
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Abbreviations

n Energy levels or Landau levels or integer number or cell index
ne Electron density
P Spectral projector
P Particle-hole operator or parity operator
q Charge of a particle
r Position operator
R Electric resistance
R Lattice vector
RA Anomalous resistance
RH Hall resistance
R0 Ordinary Hall coefficient
Si Orbital angular momentum operator in direction i
t1 Hopping energy between nearest neighbor on different sublattice
t2 Hopping energy between second neighbor site in the same sublattice
tAB Intracell hopping energy
tBA Intercell hopping energy
T Time reversal operator
|um(k)〉 Bloch function
VH Hall voltage
WN Winding number (in text)
Y Electrical admittance
Y Admittance matrix
YL Electrical admittance of an inductor branch
YRC Electrical admittance of a RC series branch
Z Impedance
ZL Impedance of an inductor L
ZRC Impedance of a RC series branch
Z Topological integer number
Z2 Topological number with only two possible values
α Rashba term
βi Vector i of second neighbors
δi Vector i of first neighbors
∆ Mass term or gap between bands
εµνρ Order-3 Levi-Civita tensor
~ Planck constant
γ Berry phase
Γ Time reversal invariant moment
λ Number of eigenstates
Λ Sum of the admittances that converge at each node
µ Specifies direction in the space where is defined Ψ or winding number
ω Angular frequency or normal frequency modes of oscillation
ωc The cyclotron frequency
∂S Loop around which a parallel transport is carried out
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Abbreviations

φ Phase of elements acquired by t2 elements in Haldane model or
electric potential

Φ0 Quantum flux
Φ Wannier function
Ψ Wave function
|Ψ〉 Eigenvector
ρe Density of the charge carriers
σH Hall conductance
σS Spin Hall conductance
σj j-Pauli matrix, with j = {x, y, z}
ν Filling factor
υ0 Fermi velocity
ξ Parity eigenvalue from the lowest energy states at the TRIM or

alignments between the layers of graphene and BN
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Chapter 1

Introduction

Although topology is a branch of mathematics, physicists have found in this branch a way to
describe many phenomena. Important theoretical physicists like Thomson, Maxwell, Helmholtz,
to name but a few, have used these mathematical concepts for their research [1–3]. The Hall effect,
and all its derivations (ordinary, anomalous, quantum, quantum anomalous, spin and quantum
spin Hall effects), marked important points in the development of topology in quantum physics
[4–7].

Specifically, in condensed matter, topological invariants, such as the first Chern number (or
TKNN) [7], has been used to characterize the behavior of bulk, in addition to its relationship with
the edge, in what is known in the literature as the bulk edge correspondence.

The study of the Hall effect in all versions, and its theoretical structuring using topological
tools, has allowed theorizing and experimenting with new materials, such as topological insula-
tors [8, 9], Weyl semimetals [10], topological superconductors [11], topological spin models [12],
magnetic skyrmions [13], vortices [14], topological helium [15], among others.

In this thesis, we will use some theoretical tools of topology to study the behavior of Hermitian
and non-Hermitian materials. In the Hermitian Hamiltonian case, we analyzed a structure of
graphene sheets aligned with a boron nitride substrate to form moiré patterns. We propose Chern
diagrams of great experimental utility for phase transitions and, in addition, we do theoretical
analyzes of the way in which moiré potentials affect the topological properties of the material.

For the non-Hermitian case, we take the quantum SSH model (which is Hermitian) and we
propose a non-Hermitian classical circuital correspondence that emulates various quantum and
topological phenomena. Our model allows us to analyze phase transitions, emulate the skin effect,
find new topological invariants and propose a representation that links electrical engineering with
materials science.

These works have been presented at two international events (2021 APS March Meeting and
2021 KPS Spring Meeting1) and one national event (1st Postgraduate Symposium of the University
of Antioquia2). In addition, three papers have been published, two of them in Q1 category
journals3.

This report has the following structure. In part II, we do a theoretical background in which we
introduce some concepts of topology in physics. Additionally, given the importance of the concept

1Nominated in the category “Excellent Presentation Prize”
2Winner of 1st place in the presentation of the research work
3Physical Review B and Science China Physics, Mechanics & Astronomy
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of tight-binding in systems that we analyzed, in this part we also make a brief introduction to the
subject using some calculations that are made for graphene as an example.

We have divided part III in two. In the first one, we explain the main theoretical and develop-
ment aspects of the Hermitian model made up of graphene sheets in the boron nitride substrate,
whose results are presented in the first section of part IV. Likewise, in the second part of section
III, we present the theoretical preliminaries of the non-Hermitian SSH circuit model. Results are
presented in the second part of section IV.

Additionally, in section IV we show the summary of three papers published during the devel-
opment of this thesis and that are related to the results shown here and. Here we also refer to
international scientific events where we have shown the results of this work. Finally, we make a
summary and an outlook for the results.
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Part II

Theoretical background
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Chapter 2

Topological concepts in physics

2.1 Continuous deformations and topological equivalence classes

In mathematical topology two objects are equivalent if one of them can be continuously de-
formed in the other [16]. In physics this concept have been used to explain interesting properties
of matter and specifically, some quantum behaviors.

From a topological point of view, there are two kinds of objects: with holes and without holes.
Thus, an object with N holes can only be continuously deformed into another with N holes. The
number of holes is an example of a topological invariant: a quantity that is maintained despite
continuous deformations and only changes when something drastic happens, such as a new hole.

It is important to understand that there is no guarantee that two objects with the same
topological invariant belongs to the same equivalence class. Figure 2.1 shows that a circle can be
deformed into multiple figures while maintaining the same topological invariant (number of holes).
Although all the graphs in Figure 2.1 have a hole (same topological invariant), not all of them
belong to the same class: the last figure belongs to a different class from the other three because
it is crossed by a thread. Therefore, a topological invariant is a necessary, but not sufficient
condition, to ensure that two objects have a common topology [16].

Figure 2.1: All graphs have the same topological invariant (number of holes). The rightmost graph
belongs to a different class because it is crossed by a thread that avoid it from being deformed in
any of the other three.

Until now, we have considered that objects are embedded in a three-dimensional space. How-
ever, in an N-dimensional space, the classes depend not only on the object but on the space where
it is embedded [17].
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2.2 Topological invariant in physics

2.2 Topological invariant in physics

In section 2.1, we exposed an intuitive concept of topological invariance. Here we will make a
mathematical description of this concept, and its application in physics.

We will start with the definition of a Hermitian Hamiltonian. A Hamiltonian H is Hermitian
if satisfies H† = H and its eigenvalues are real. A system described by a Hermitian Hamiltonian,
evolves in a deterministic way, and if it is time independent, energy is conserved.

A widely used topological invariant is the first Chern number, which is related to the curvature
of the complex fiber bundle, whose integral on the manifold allows its calculation [16]. Under the
assumption that H is an n×n matrix and it is Hermitian (and therefore diagonalizable with real
eigenvalues), we define a set of n eigenvectors |Ψ(λ)(k)〉 for each point in the reciprocal space.
Here λ is the index that lists the eigenstates. Next, we will introduce the concept of connection.
For this, we consider Ψ as a plane wave

Ψ(k, r) = Ceik·r, (2.1)

where C ∈ C and |C|2 = 1 [16]. In gauge theory, C becomes a function of r coordinate. Regarding
the phase, this is used to introduce the concept of covariant derivative. Therefore, a change of
phase α in (2.1) implies a change in the expression of its derivative [16]. Indeed, if

Ceik·r → Ceik·r−iα(r),

∂µ → ∂µ + i∂µα(r) = ∂µ + iAµ.
(2.2)

Therefore ∂µ is the partial derivative respect to loops in the planes spanned by arbitrary basis
vectors that we called µ, while Dµ = ∂µ + iAµ is known as the covariant derivative and iAµ =

i∂µα(r) is the connection.

The formal definition of a connection is beyond the scope of this thesis. It is enough to
indicate that a connection can be seen as a quantity that makes zero the covariant derivative of
the eigenvectors of H [18]

Dµ|Ψ(λ)〉 =
(
∂µ + iA(λ)

µ

)
|Ψ(λ)〉 = 0, (2.3)

where µ specifies the direction in the space where Ψ is defined. A(λ)
µ can be written as

A(λ)
µ = −Im

(
〈Ψ(λ)|∂µΨ(λ)〉

)
(2.4)

and it is known as the Berry connection. However, it is possible that the connection can be defined
differently from the gradient of a global scalar function: parallel transport around a closed loop
can lead to a phase shift [19]. Indeed, from Stokes’ theorem, the phase acquired when transported
around a loop is calculated as

∫
S FdS, where

Fµν = ∂µAν − ∂νAµ, (2.5)

and S is an area element with the loop as boundary. This is called the Berry Curvature and the
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Chapter 2. Topological concepts in physics

phase picked up by the transport around the loop is known as the Berry phase. This is written as

γ =

∫
S
FµνdS. (2.6)

It is important to mention the relationship between the Berry phase and the adiabatic evolution
of the system. For the berry phase to be different from zero under adiabatic changes, it is necessary
that there is more than one time-dependent parameter in the Hamiltonian and also that the
Hamiltonian can generate imaginary or complex eigenfunctions as solutions to the Schrödinger
equation. However, more than the explicit dependence of time on the Hamiltonian, what is relevant
is a dependence of the Hamiltonian on its parameters. The obtained phase has a contribution
from the evolution of the state and from the variation of the eigenstate with the change of the
Hamiltonian [16, Sec. 10,6]. The Berry phase can be calculated over a Bloch function |um(k)〉 as

γm =

∮
i〈um|∇k|um〉 · dk. (2.7)

When Berry’s curvature is multiplied by i/2π, it becomes what is known as the first Chern
class [20]. Considering this factor in (2.6) or (2.7) integrals, such that S is taken to be the whole
manifold, the first Chern number is calculated. This is a topological invariant for the fiber bundle.
From the Berry phase, the calculation of the Berry flux [21] is immediate as

Fm = ∇k × i〈um|∇k|um〉. (2.8)

There is a Chern number that can be seen as the total Berry flux at the Brillouin zone, or in
terms of the Berry curvature,

C =
1

2π

∫
d2kFm,

where C is an integer. However, a natural question arises, under which deformations does the
Chern number remain invariant? The answer to this question is that the Chern number remains
invariant under small changes of parameters contained in H, i.e. changes which “do not alter the
topology of H”.

2.3 Topological band theory

Band theory provides a simple explanation of how crystalline materials have electrical insulat-
ing behavior, even when electrons jump from one atom to the other. In insulating materials, the
insulating band is completely filled and separated by an energy gap from the conduction band.
The gap represents the minimum energy to move the electrons from one band to the other. In
contrast, conductors are materials with partially filled bands. To introduce the concept of bands,
lets suppose the Hamiltonian

H =

[
∆ Ξ

Ξ∗ −∆

]
, (2.9)

whose energy eigenvalues are given by E = ±
√
|Ξ|2 + ∆2. Thus, there are two hybridized states

coupled by an interaction of strength Ξ between them and whose two levels are split with an
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2.3 Topological band theory

energy difference 2∆. At the limit, when ∆ → 0 the hybridization is very strong and keeps the
two levels separated by 2|Ξ| (complete degeneracy with ∆ = 0). On the other hand, when ∆� Ξ

the hybridization is negligible and therefore, any coupling between energy levels will tend to split
them, especially degenerate ones.

Notwithstanding the aforementioned about the coupling of the bands in the Hamiltonian (2.9),
the coupling of the bands is possible through the addition of terms. For example, if we emulate a
Zeeman term [22], then ∆→ ∆̃ + |k2|, and therefore the energy of (2.9) would be given by

E = ±
√
|Ξ|2 + (∆̃ + |k|2)2. (2.10)

However, this is just one example of how a slight modification of the Hamiltonian produces a
coupling between the bands.

One of the uses of band theory is to be able to characterize phases of matter. Appealing to the
topology concepts developed in Section 2.2, and after this short introduction, we will explore the
notion of topological equivalence based on the adiabatic continuity, that is, the system remains in
its instantaneous eigenstate if any disturbance acting on it is slow enough [23].

Taking up the concepts with which we started in Section 2.1, two insulators are equivalent
if when converting one into the other through an adiabatic deformation in the Hamiltonian, it
always remains in the ground state. In other words, if there is an adiabatic path connecting the
two insulators along an energy gap that remains finite [24]. If the above is not true, then there is
a phase transition.

2.3.1 Bulk-boundary correspondence

Until now, we have talked about classifying systems that have a gap. However, another
objective of topological band theory is to characterize gapless states. Besides, the bulk-boundary
correspondence talks about the relationship between the topological invariants in the bulk and
the edge states.

To understand this concept, we will take the energy (2.10) (from Hamiltonian (2.9) where
∆→ ∆̃ + |k|2) and assume that a part of the material has a value ∆̃ > 0 and another part ∆̃ < 0

in direct space, as we illustrate in Figure 2.2. For both, positive and negative values of ∆̃, there
is a gap. According to the magnitude of these values, a Dirac cone can be formed at the interface.
That’s where the bulk-edge correspondence comes from.

Under the argument presented above, if ∆̃→∞, there is a vacuum at one side and the rest of
the material has ∆̃ < 0. Then, in the polarity change of ∆̃, there will be gapless edge states [21],
as we show in Figure 2.3.

Therefore, we can conclude that the bulk-edge correspondence refers to the fact that changing
some parameters of the bulk, it gives us information regarding the boundary of the system.

2.3.2 Edge states

While the arguments given in section 2.3.1 about bulk-edge correspondence are correct, they
are based on the assumption of a slow change in the sign of ∆̃, that is, there is no abrupt change
in sign. However, what happens if there is an abrupt change in the parameters of the material?.
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Chapter 2. Topological concepts in physics

Figure 2.2: Material with a value ∆̃ > 0 (left side), ∆̃ < 0 (right side) and a Hamiltonian (2.9)
where ∆→ ∆̃ + |k|2. At the bottom, we show the corresponding energy bands for ∆̃ values. With
dotted lines we show the interface where there is a slow change in polarity of ∆̃ (crossing through
zero). Dirac cones are formed at the interface.

To illustrate this, we will assume the Hamiltonian of the Rashba effect [25], with |k|2 = k2
x+k2

y

and considering a factor α (called as Rashba term) as an experimental factor in a heterojunction
[26,27], then

H =

[
∆̃ + k2

x + k2
y (ky + ikx)α

(ky − ikx)α −∆̃− k2
x − k2

y

]
, (2.11)

and the energy is given by

E = ±
√
α2(k2

x + k2
y) + (∆̃ + k2

x + k2
y)

2.

Taking into account Figure 2.3, we assume an interface at x = 0, such that ∆̃(x) = ∆̃sgn(x).
For low energy, that is, k2

x, k
2
y → 0 and making the Fourier transform in the x direction, we obtain

a space and momentum hybrid Hamiltonian,

H =

[
∆̃(x) α(∂x + ky)

−α(∂x − ky) −∆̃(x)

]
. (2.12)
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2.3 Topological band theory

Figure 2.3: Two-dimensional material with ∆̃ < 0 in the bulk and edge that borders with the
vacuum (∆̃→∞) in x = 0. The bands in the bulk maintain a gap between them while at the edge
they close in Dirac cones.

Then, we make a separation of variables H = Hx +Hy,

H =

[
∆̃(x) α∂x

−α∂x −∆̃(x)

]
+

[
0 αky

αky 0

]
.

Then, we require that the eigenstate be a zero energy contribution eigenstate of the partial eigen-
value problem Hx|Ψ〉 = 0. The solution of this problem is given by [21,28]

Ψ
(−)
ky

=
1√
2

(
1

i

)
e−
∫ x
0

∆̃(x′)
α

dx′ . (2.13)

From equation (2.13), we noticed that if x > 0 the integrand is positive and if x < 0 the
integrand is negative. Thus, the exponential is decreasing as we move away from the edge and
therefore, the state is tied to the surface. If we apply this state to Hy, it can be proved that
E(ky) = −αky, where we can notice that E(ky) is half of a Dirac cone. On the other hand, the
solution

Ψ
(+)
ky

=
1√
2

(
1

−i

)
e
∫ x
0

∆̃(x′)
α

dx′ (2.14)

is not valid because the integrand increases as we move away from the edge, which makes no
physical sense.
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Chapter 2. Topological concepts in physics

Therefore, dividing H into Hx and Hy, it can be understood as the sum of a dispersive energy
(Hy) and a location energy (Hx). Therefore, the edge states are located at the edge. In section
2.4, we will see that this phenomenon is linked to the Hall effect.

However, changing ∆̃(x) → ∆̃(−x) in (2.13), it produces another possible solution with a
physical sense. Thus, the other side of the material locates a state where the change in the mass
gap occurs in the opposite direction. This is shown schematically in Figure 2.4.

Figure 2.4: Dispersion in edge states along an infinite strip in the y-direction. (Left) The strip is
shown in real space. The two channels exhibit currents in opposite directions with E(ky) energy
in the form of Dirac cones. (Right) Density probability of the Ψ

(−)
ky

wave function at each edge.

Therefore, it can be concluded that the system described by the Hamiltonian (2.11) has a spin
propagation 1√

2
(1, i)T along the edge with dispersion E(ky) = −αky. If Hamiltonian H∗(k) is

considered a spin state 1√
2
(1,−i)T , it is found with a dispersion relation E(ky) = αky.

2.4 Hall effect

The Hall effect is a family of effects that relate charge currents, spin currents, magnetization
and magnetic fields in different materials. Each of them, has associated specific topological prop-
erties. The first Hall effect was theorized by Edwin Hall [4] in 1879 and is known as the ordinary
Hall effect. Later, other Hall effects were discovered. In Table 2.1, we show a summary of those
Hall effects and in the following subsections we will delve into each of them.

2.4.1 Ordinary Hall effect

The ordinary Hall effect [4] is a phenomenon in which a transverse potential difference VH
is generated in an electrical conductor when a magnetic field B is applied perpendicular to the
surface through which an electric current I circulates, as we show in Figure 2.5.
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Main characteristics Experimental
discovery

Ordinary
Hall effect B 6= 0 1879

Anomalous
Hall effect B = 0, M 6= 0 1880

Quantum
Hall effect σH = n e

2

h 1980 - 1982

Quantum Anomalous
Hall effect σH = e2

h 2013

Spin
Hall effect B = 0, M = 0 2004 - 2006

Quantum spin
Hall effect σs = e

4π 2007

Table 2.1: Hall effect classes, main characteristics and year of experimental discovery. B refers
to the magnetic field and M to the magnetization in a ferromagnet. σH is the Hall conductance
and σS is the spin Hall conductance [4,29–33].

Figure 2.5: Schematic representation of the Hall effect.

Thus, the ratio of Hall voltage and electric current is known as the Hall resistance,

RH =
VH
I

=
B

qρe
= R0B,

where q is the charge of the particle, ρe is the density of the charge carriers and R0 is the ordinary
Hall coefficient. Therefore, RH has units of de m3/C u Ωcm/G. For later discussions, it is
important to note the proportionately between the magnetic field, the Hall voltage, and the Hall
resistance.
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2.4.2 Anomalous Hall effect

Hall demonstrated that the resistance of ferromagnetic materials or even paramagnetic metals
in the presence of an external magnetic field has an additional term [29], given by

RH = R0B +RAM,

where M represents the intrinsic magnetization of the material and RA the anomalous coefficient
[34]. Although the phenomenon was not fully understood at the beginning (since it is not explained
from the Lorentz law on which the ordinary Hall effect is based), later works [35,36] showed that
this effect is due to the topologic band structure in solids.

In this phenomenon, the electrons acquire an additional group velocity that is parallel to the
surface, adding a contribution to the Hall conductance. This phenomenon is also achieved when
a paramagnetic material is subjected to an electric field perpendicular to the surface [37].

This phenomenon can have extrinsic or intrinsic origin. The phenomenon is said to be extrinsic
due the disorder of spin-dependent scattering of the charge carriers or intrinsic due to the spin-
dependent conduction band structure, which can be expressed in terms of the Berry phase. In
other words, it is necessary the coupling between the orbital movement of electrons and its spin.

Due to the Lorentz force, the electrons with spin-up deflect in one direction and the electrons
with spin-down do so in the other. However, due to the magnetization of the ferromagnetic
materials, a charge imbalance will appears between the edges and this produces the anomalous
Hall voltage, see Figure 2.6.

Figure 2.6: Schematic representation of the anomalous Hall effect.

2.4.3 Quantum Hall effect

To understand the quantum Hall effect, it is important to know that the motion of a charged
particle in a uniform magnetic field could be equivalent to a simple harmonic oscillator in quantum
mechanics, where the energy levels are quantized as

(
n+ 1

2

)
~ωc, with ωc = eB/m as the cyclotron
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2.4 Hall effect

frequency and n as the energy or Landau quantum number. In other words, all the electrons in
the bulk are localized and the electrons near the edge form a series of conductive channels [30].
We sketch this effect in Figure 2.7.

Figure 2.7: Schematic representation of the quantum Hall effect.

In 1980 [5] it was experimentally discovered that in a two-dimensional electron gas with a
heterojunction subjected to a strong magnetic field, the longitudinal conductance tends to zero
while the quantum plateau of the conductance Hall appeared at exact multiples of νe2/h, where
ν = 1, 2, 3, · · · is known as the filling factor. This phenomenon is also known as integer quantum
Hall effect and occurs especially in topological insulators [21], i.e, the two-dimensional electron gas
configurations, graphene at room temperature [38], GaAs [39], ZnO MgxZn1–x heterostructures
[40], among others

An interesting property of ν is that it is insensitive to variations in geometry or interaction
between electrons and is defined as a topological invariant [7]. So, if Hall conductance is calculated
as σH = νe2/h, the magnetic field takes the value

B =
2π~ne
νe2

=
ne
ν

Φ0, (2.15)

where ne is the electron density and Φ0 = 2π~/e2 is the “quantum of flux”. Figure 2.8 shows the
relationship between the magnetic field and the quantized Hall resistance RH = σ−1

H . Each of
the plateaus occurs when the magnitude of the magnetic field takes the value described by the
equation (2.15).

Besides, in 1982 [42] it was observed that for larger magnetic fields (greater mobility), quantum
plateaus appeared with fractional filling factors ν = 1

3 ,
2
3 ,

1
5 ,

2
5 ,

3
5 ,

12
5 · · · . This is known as the

fractional quantum Hall effect.

This effect is explained by the electron-electron interaction in addition to the Landau quanti-
zation. The quasiparticles in a condensate carry fractional charge e/3 due to the strong Coulomb
interaction. Today, it is widely accepted that the fractional quantum Hall effect is a topological
quantum phase of composed fermions, which breaks the time reversal symmetry [43].

30



Chapter 2. Topological concepts in physics

Figure 2.8: Integer quantum hall effect. Magnetic field (B) in Teslas (T). The red line shows the
longitudinal resistivity as a function of the magnetic field. This longitudinal resistivity spikes when
there is a level change in the Hall resistivity (green line). Image source: [41]

2.4.4 Quantum anomalous Hall effect

A very important theoretical description of this effect was carried out by Haldane, who demon-
strated that the integer quantum Hall effect can be presented in a lattice of spinless electrons in
the presence of a magnetic flux. Although the total magnetic flux is zero, the electrons form a
conducting edge channel [31]. Because this effect occurs without an external magnetic field, the
Hall conductance originates from the band structure of the electrons in the lattice rather than
from the discrete Landau levels in the strong magnetic field. The Figure 2.9 shows a diagram that
represents the quantum anomalous Hall effect.

The anomalous Hall conductance is expressed in terms of the integral of the Berry curvature
over the moment space or by means of the Chern number. This effect was first observed ex-
perimentally in 2013 at Tsinghua University with thin films of chromium-doped (Bi,Sb)2Te3, a
magnetic topological insulator with strong spin-orbit coupling [44].

2.4.5 Spin Hall effect

This phenomenon was proposed by the Dyakonov and Perel in 1971 [32, 45]. Unlike the Hall
anomalous effect in which the resistance vanishes in the absence of a magnetic field or without the
magnetization in a paramagnetic metal, in this phenomenon the spin-dependent deflected motion
of particles may still be an observable effect, as we show in Figure 2.10.

The spin Hall effect occurs when there is a Zeeman splitting and a spin-orbit coupling that allow

31



2.4 Hall effect

Figure 2.9: Schematic representation of the quantum anomalous Hall effect

a resonant spin effect, in which small currents can induce finite spin current and spin polarization.
In other words, this phenomenon refers to the accumulation of spins at the border of a conductor
that carries electrical current for which the sign of the spin at one border will be opposite to the
spin at the opposite border.

This phenomenon has been widely theorized in graphene films, although the low spin-orbit
coupling makes difficult to detect it experimentally. In Figure 2.10, we show schematically the spin
Hall effect and the inverse spin Hall effect. In the first one, a charge current circulates through a
two-dimensional material with the appropriate topological characteristics (such as graphene). It
is divided into two spins, and accumulates it in each edge. Thus, a spin current transverse to the
charge current is generated.

In the inverse spin Hall effect, a spin current flows through a two-dimensional material and due
to its topological configuration, a transverse charge current circulation occurs. Due to charge flow,
the charges at each edge of the material are separated, as shown on the right side of Figure 2.10.
In 2003, spin-orbit coupling in electron band structure was experimentally observed and it was
evident that it was the cause of the effect [46,47]. Later experimental work has realized the effect,
in semiconductors such as GaAs, InGaAs [48] and heterostructures of (Al,Ga)As/GaAs [49].

The spin Hall effect is also present in geometries other than 2D. Specifically, it has been ob-
served in 3D bulk states of the Bi2Te2Se platelets [50] and, in general, in metal and semiconductor
systems with spin-orbit coupling [51,52].

2.4.6 Quantum spin Hall effect

This effect is the quantum version of the spin Hall effect or the spin version of the quantum
Hall effect. Thus, this effect can be seen as the combined version of two quantum anomalous Hall
effects of spin up and spin down, as shown in Figure 2.11. A fundamental aspect of this effect
is that there are spin-dependent edge states with spin-up electrons moving in one direction while
spin-down electrons move in the opposite direction, forming a pair of helical edge states.

An important aspect to highlight is that this effect does not have charge Hall conductance,
but a spin Hall conductance different from zero. The theoretical explanation for this effect was
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Figure 2.10: Schematic representation of the spin Hall effect (left) and inverse spin Hall effect
(right)

Figure 2.11: Schematic representation of the quantum spin Hall effect

provided by Kane and Mele [33] in 2005, when they generalized Haldane’s model as a lattice with
1/2 spin electrons and a strong spin-orbit coupling that replaces periodic magnetic flux in the
Haldane model.

The time reversal symmetry (see Sec. 2.5.1) is preserved in this effect and the edge states are
robust against impurities or disorders due to the fact that electron backscattering in the two edge
channels is prohibited due to symmetry.

Because the low spin-orbit coupling in graphene, the phenomenon is difficult to observe experi-
mentally, however, in 2006 it was experimentally tested in a CdTe/HgTe/CdTe quantum well [53].

From the theoretical description and subsequent experimental confirmation of this effect, vari-
ations have been proposed, such as the topological Anderson insulator, in which all the electrons in
the bulk are located by impurities, while a pair of conductive helical edge channels is formed [54].
Similarly, strong Coulomb interaction can cause the quantum spin Hall effect in Mott insula-
tor [55].
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2.5 Topological symmetries

Near absolute zero temperature, the matter presents exotic behaviors related with the quantum
entanglement that have been theoretically described as quantum phases of matter. Physicists
considered that with the help of Landau’s symmetry-breaking theory [56], all the possible quantum
phases of matter and its transitions can be described [57].

However, some works of the late 80’s and early 90’s identified a chiral spin state that breaks
the parity and time reversal symmetry. Therefore Landau’s symmetry-breaking theory was not
enough to explain the quantum phases [58,59].

There are spatial and non-spatial symmetry topological protected modes. Since non-spatial
symmetries have boundary modes that are topologically protected, we are interested on this kind
of symmetries that are basically summarized in time reversal symmetry, particle-hole symmetry
and chiral symmetry [60]. From now on, for each m band we consider Bloch states that are
eigenstates of the Bloch Hamiltonian H(k) [61]

H(k)|um(k)〉 = Em(k)|um(k)〉. (2.16)

The two-band model provides a useful tool to describe the physics of each of the topological
classes. Therefore, we will use the 2× 2 Bloch Hamiltonian [62]

H(k) = d0(k)I + dx(k)σx + dy(k)σy + dz(k)σz, (2.17)

where I is the 2× 2 matrix identity, σi, i = x, y, z are the Pauli matrices, and di, i = 0, x, y, z are
the related functions of k vector.

2.5.1 Time-reversal symmetry (TRS)

First, we introduce the antiunitary time reversal (TR) operator T . If we consider a vector
|Ψ〉, we say that T |Ψ〉 is the time-reversed state. A system exhibits TR symmetry if T commutes
with the Hamiltonian, [H, T ] = 0 [63]. It is easy to verify that T 2 = −1 for half-integer spins
system and it implies double degeneracy (Kramers theorem) [61, Appendix A]. If T 2 = 1 it means
a integer spin system and all entries of the Hamiltonian are real.

Specifically, in 1/2-spin system, T = iσyK = e−iπSy/~K [63, Appendix B], where K is the
complex conjugation, Sy = (~/2)σy is the spin angular momentum operator and σy is the y-Pauli
matrix. In band theory [64,65]

T H(k)T −1 = H(−k). (2.18)

Therefore, for a 2×2 general Hamiltonian defined by (2.17), the fulfillment of the time-reversal
symmetry, as we expressed it in equation (2.18), implies that d0(k) = d0(−k) (symmetric func-
tion) and di(k) = −di(−k) (antisymmetric function) where i = {x, y, z}. The eigenvalues and
normalized eigefunctions of Hamiltonians H(k) that present this kind of symmetry are, respec-
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tively,

E± = d0 ±
√
d2
x + d2

y + d2
z and Ψ± =



√
1
2
− dz

2
√
d2x+d2y+d2z

(
√
d2
x+d2

y+d2
z+dz)

dx+idy√
1
2 −

dz
2
√
d2
x+d2

y+d2
z

 . (2.19)

2.5.2 Particle-hole symmetry (PHS)

The particle-hole operator P is anti-unitary and anti-commutes with the Hamiltonian, it is to
say [H,P] 6= 0. The particle-hole symmetry can be expressed as [64,65]

PH(k)P−1 = −H(−k), (2.20)

where in the two-bands model approximation, P = σxK with K the complex conjugation operator.
It is easy to verify that P2 = ±1 if there is a particle-hole symmetry. The P2 sign means the
winding number (w) is clockwise (−) or counterclockwise (+) direction [63]. In two band model, it
has PHS if dz(k) = dz(−k) (symmetric function) and di(k) = −di(−k) (antisymmetric function)
where i = {0, x, y}.

2.5.3 Chiral symmetry (CS)

The chiral operator C is a unitary operator which anti-commutes with the Hamiltonian, it
is to say, [H, C] 6= 0. It is important to note that combining TRS with PHS yields a chiral
symmetry [65,66]. If there is chiral symmetry, then C2 = 1.

If C = T · P, then it is easy to prove that

CH(k)C = −H(k), (2.21)

where it follows that

C =

[
1 0

0 −1

]
, (2.22)

and therefore, the Hamiltonian

HCS =

[
0 −dx(k)

−dx(k) 0

]
(2.23)

has the CS and his eigenvalues are E± = ±dx(k), and its autofunctions are

Ψ± =

[
∓1

1

]
. (2.24)

2.5.4 Relationship between topological invariants and symmetries

We define a quantity s as even if the Hamiltonian has non-chiral symmetry or odd if the
Hamiltonian has chiral symmetry. In Table 2.2 we summarize the topological invariants in relation
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to the presence (s is odd) or absence (s is even) of chiral symmetry.
The presence of topological defects [67] in a material allows to characterize the presence or

absence of symmetries related to spatial adiabatic variations for a topological classification of
the material [68] according to the Altland-Zirnbauer symmetry classes [69]. Although in this
work we will not delve into the topic of topological defects, it is important to know that from
now on d-dimension refers for the dimension of the material and D-dimension for the dimension
of a topological defect. Also, it is important to say that in Table 2.2 Z means a topological
integer number (0,±1,±2, · · · ) and Z2 denotes a topological number with only two possible values:
Z2 = {0, 1} or Z2 = ±1. However, the topological numbers Z2 have two classes that are called
“descendants”, which we will explain later.

Z Z(1)
2 Z(2)

2

Non-Chiral CN CS FK
Chiral WN FK CS

Table 2.2: Topological invariants for chiral and non-chiral symmetries where CN: Chern number,
CS: Chern-Simons invariant, FK: Fu-Kane invariant, WN: winding number.

Chern number invariant

As we show in Table 2.2, the Chern number is used in gapped topological phases and non-chiral
classes. It is important to note that it is only defined when d + D is even [70]. If δ = d −D =

2n + 2, (n = 0, 1, 2, · · · ) the (n + 1)th Chern number is defined in terms of the Berry curvature
as [64]

Cn+1 =

∫
BZd×MD

1

(n+ 1)!
Tr
(
iF
2π

)n+1

∈ Z. (2.25)

In two-dimensional lattice with D = 0, it is defined in the mth band

C1 =
i

2π

∫
BZ2

Fm(k)dk, (2.26)

and this is the Thouless, Kohomoto, Nightingale and den Nijs (TKNN) integer [7]. This Chern
number gives the quantized Hall conductance σH . This invariant has a special characteristic, it
defines a class of materials called “Chern insulators”: a two-dimensional material with non-zero
Chern number and without net magnetic field. This material class exhibit the quantum anomalous
Hall effect explained in section 2.4.4.

Winding number invariant

The winding number can be defined only in presence of chiral symmetry. In chiral symmetry
N+ = N− , where N−/+ are the number of bands below/above the Fermi energy. If d+D = 2n+1,
the winding number µ, is defined as [70]

µ2n+1[k] =

∫
BZd×MD

(−1)nn!

(2n+ 1)!

(
i

2π

)n+1

Tr

[(
dk

k

)2n+1
]
. (2.27)
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Specifically, when d = 1 and D = 0 it is shown that

µ0 =
1

2π

∫ π

−π

(
k
d(k)

|d(k)|
× d

dk

d(k)

|d(k)|

)
z

dk, (2.28)

where d(k) represents the bulk momentum-space Hamiltonian as H = d(k) · σ. The winding
number is related to the number edge of states in the SSH model [28].

Chern-Simons invariant

In general terms, this is a not quantized invariant (unlike Chern number) and it is defined
when d+D is odd. Mathematically, it is defined as [71]

CS2n+1[A] =
1

n!

(
i

2π

)n+1 ∫
BZd×MD

∫ 1

0
dtTr(AFnt ), (2.29)

with n = (d+D+ 1)/2 and Ft = tdA+ t2A2 = tF + (t2 − t)A2. In Table 2.2 we can see that CS
invariant apply in chiral and non-chiral symetries with different descendants [70].

For CS-First descendant (Z(1)
2 ), the result of (2.29) is a number such that, if CS2n+1 ∈ Z then

the Z2 topology is trivial, but if CS2n+1 ∈ 1
2Z the topology is non-trivial.

The CS-second descendant (Z(2)
2 ) is typical of systems that exhibit chiral symmetry. As the

first descendant, the CS-second descendant Z(2)
2 is given by CS2n+1 ∈ Z. Specifically, it is said

that Z2 is trivial if CS2n−1 is even and non-trivial if CS2n−1 is odd.

Fu-Kane invariant

If we assume N−/+ as the number of bands below/above the Fermi energy and the set of filled
Bloch wavefunctions as {|uα(k)〉} where α = 1, 2, · · · , N±, then, we define the spectral projector
as [70]

P (k, r) =

N−∑
α=1

|uα(k, r)〉〈uα(k, r)|, (2.30)

and the Q-Matrix by
Q(k, r) = 1− 2P (k, r), (2.31)

where q(k, r) are the unit matrices that make up Q(k, r). Taking the above, the Fu-Kane invariant
is defined in terms of Berry curvature as [72]

FKn =
1

n!

(
i

2π

)n ∫
BZd

1/2
×MD

Tr(Fn)−
∮
∂BZd

1/2
×MD

Q2n−1 (2.32)

with n = (d+D)/2.
As it is shown in Table 2.2, the FK invariant has two descendants. The FK-first descendant

(Z(1)
2 ) is isomorphically to the Z(2)

2 descendant in non-chiral classes [70]. These descendants can
be written as [72,73]

FK =
∏
K

Pf[w̃(K)]√
det [w̃(K)]

, (2.33)
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where K runs over the dimensional TR fixed momenta and the components α and β of w̃(K) are
given by

w̃αβ(k, r) = 〈uα(−k, r)|T uβ(k, r)〉 = constant, (2.34)

and |uα,β〉 are the Bloch wavefunctions. Fu and Kane [72] show that if FK = 1 the phase is trivial
and FK = −1 the phase is topological.

2.5.5 Topological classification

Taking into account that the square value of the symmetry operators take the values T 2 = ±1,
P2 = ±1 and C2 = 1, in Table 2.3 we show the symmetry classes for different δ-dimensions, where
δ = d − D, that are related to topological invariants. In this table, there is a division between
cases A and AIII with the other cases. This is because the Hamiltonian of the symmetries A and
AIII are complex symmetry classes (The complex symmetry classes do not have TRS nor PHS),
whereas the Hamiltonians of the other symmetries belongs to real symmetry classes.

s Class C P T Spin Dyson Name Topological invariant δ = 0 1 2 3 4 5 6 7

A I or HI chiral unitary Z→CN Z Z Z Z
AIII 1 I or HI unitiary Z→WN Z Z Z Z

0 AI 1 I orthogonal Z→CN, Z(1)
2 →CS, Z(2)

2 →FK Z 2Z Z(2)
2 Z(1)

2

1 BDI 1 1 1 I chiral orthogonal Z→WN, Z(1)
2 →FK, Z(2)

2 →CS Z(1)
2 Z 2Z Z(2)

2

2 D 1 I or HI BdG Z→CN, Z(1)
2 →CS, Z(2)

2 →FK Z(2)
2 Z(1)

2 Z 2Z
3 DIII 1 1 -1 HI BdG Z→WN, Z(1)

2 →FK, Z(2)
2 →CS Z(2)

2 Z(1)
2 Z 2Z

4 AII -1 HI symplectic Z→CN, Z(1)
2 →CS, Z(2)

2 →FK 2Z Z(2)
2 Z(1)

2 Z
5 CII 1 -1 -1 HI chiral symplectic Z→WN, Z(1)

2 →FK, Z(2)
2 →CS 2Z Z(2)

2 Z(1)
2 Z

6 C -1 I or HI BdG Z→CN, Z(1)
2 →CS, Z(2)

2 →FK 2Z Z(2)
2 Z(1)

2 Z
7 CI 1 -1 1 I BdG Z→WN, Z(1)

2 →FK, Z(2)
2 →CS 2Z Z(2)

2 Z(1)
2 Z

Table 2.3: Altland-Zirnbauer (AZ) symmetry classes. δ = d −D where d is the space dimension
and D is the dimension of defects. If D = 0 it corresponds to the tenfold classification of gapped
bulk topological insulators and superconductors [69]. The superscript of Z2 means the descendant.
In the column titled spin, “I” means integer and “HI” means half integer [74]

Regarding Table 2.3, in the Figure 2.12 we show the change of topological class keeping the
same type of topological invariant (Z, 2Z or Z2) by the addition (subtraction) of one dimension
in the Hamiltonian. It is to say, a Hamiltonian which belongs to a specific symmetry class can be
continuously transformed into each other without closing the gap.

2.6 Topology in non-Hermitian systems

Due to the notable interest in topological materials and their associated symmetry in recent
years, some authors have explored the topological properties of non-Hermitian systems. By defi-
nition, a non-Hermitian Hamiltonian is related to dissipative systems.

Like the Hermitian systems of Section 2.5, non-Hermitian systems also exhibit time reversal
symmetry when the operator T satisfies [H, T ] = 0 such that in the moment space T H∗(k)T −1 =

H(−k). On the other hand, the particle-hole symmetry is related to the conjugation of the
charge such that PHT (k)P−1 = −H(−k), and the chiral symmetry, as in the Hermitian case, is
a combination of both symmetries, such that CH†(k)C−1 = −H(k). Specifically, chiral symmetry
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Figure 2.12: Bott periodicity [75]. Grey zones are chiral classes (C = 1). The arrows show the
classes that have the same topological classification adding a dimension d → d + 1, as is showed
in Table 2.3. s labels the Altland-Zirnbauer symmetry classes

in non-Hermitian systems implies that the eigenvalues appear in pairs, which is fundamental for
protected zero-energy edge states.

Although in Hermitian systems the degeneration of the bands play a fundamental role in
topological phases, in non-Hermitian systems the exceptional points (EP) are those that become
fundamental. To define the EP, consider a 2 × 2 Hamiltonian H where a pair of eigenstates is
obtained, which we will call right (R) and left (L), such that n is the eigenvalue index,

H|ΨR
n 〉 = En|ΨR

n 〉,

H†|ΨL
n〉 = E∗n|ΨL

n〉.

EP’s are defined by the complex energy En(k) = 0 whose states |ΨR
n 〉 and |ΨL

n〉 are joined
and therefore become orthogonal, that is, 〈ΨL

n |ΨR
n 〉 = 0 and the Hamiltonian becomes non-

diagonalizable [76, 77]. Later in this section, when we talk about the winding number, we will
come back to this issue.

Berry’s complex phase for non-Hermitian Hamiltonians is defined as [78]

γαβn = i

∮
C
〈ΨL

n(k)|∇k|ΨR
n (k)〉 · dk. (2.35)

It is important to note that the meaning and origin of equation (2.35) is the same as for
Hermitian systems that we explained in section 2.2 with equations (2.6) and (2.7). Because
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contour C encloses the EP’s, the winding number is finite and the amount of winding numbers
is determined by the number of EP within the contour [79]. Note that now γαβn is a complex
number. Therefore, the real part indicates the usual geometric phase that the system acquires
in each cycle and this is a topological invariant. The imaginary part indicates the decay of the
probability and it is not necessarily a topological invariant.

When the contour C of equation (2.35) is a surface and dk is replaced by an area element,
the corresponding topological invariant is known as the Chern number. This number is written
as [78,80]

CLRn =
1

2π

∫
BZ

εµνρFLRn,µνdSρ, (2.36)

where εµνρ is the order-3 Levi-Civita tensor, with µ, ν, ρ = x, y, z and FLRn = ∇k × ALRn is the
Berry curvature, with ALRn = i〈ΨL

n |∇k|ΨR
n 〉 as the Berry connection. The term dSρ in equation

(2.36) refers to the area section through which the Berry flux is considered. We emphasize that,
in general terms, CLRn is also a complex number.

For symmetric Hamiltonians, that is, H = HT , then |ΨL
n〉 is the conjugate complex of |ΨR

n 〉
and therefore the Berry phase and the Chern number are real.

Now, let’s consider the Hamiltonian H = hxσx + hyσy, where, in general hx, hy are complex,
for which we have the eigenstates |ΨR

±〉 = 1√
2

(
e−iφ(k),±1

)T and |ΨL
±〉 = 1√

2

(
eiφ(k),±1

)T where
φ(k) = tan−1(hy/hx). Thus, when k varies from 0 to 2π, the winding number is generalized in
the parameter space as [81]

µ =
1

2π

∮
C

hxdhy − hydhx
h2
x + h2

y

=
1

2π

∫ 2π

0
dk
hx∂khy − hy∂khx

h2
x + h2

y

.

(2.37)

From equation (2.37) it can be seen that the EPs are given by h2
x + h2

y = 0. The winding
number can be written as

µ =
1

2π

∮
C
∂kφdk. (2.38)

Since in general terms hx and hy are complex, then φ is complex and it can be written as φ =

φr + iφi. It can be proved that
∮
C ∂kφidk = φi(2π)− φi(0) = 0 and therefore the imaginary part

of φ has no effect on the integral of the winding number. On the other hand, φr can be written
as tan 2φr = (tanφ1 + tanφ2)/(1 − tanφ1 tanφ2) where tanφ1 = (hyr + hxi)/(hxr − hyi) and
tanφ2 = (hyr − hxi)/(hxr + hyi). Therefore it can be proved that the winding number can be
written as [81]

µ =
1

4π

∮
dk (∂kφ1 + ∂kφ2) . (2.39)

A fundamental condition for a non-Hermitian Hamiltonian to have topological invariants (like
the winding number) is that in the range of parameters where there is a gap, at least an EP is
allowed to be enclosed.

Although the importance of EP has already been emphasized in the topological analysis of non-
Hermitian Hamiltonians, experimentally its importance has also been evidenced [82–84]. Although
there was controversy a few years ago about bulk-boundary correspondence in non-Hermitian sys-
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tems, from different experiments and theoretical analyzes, it is known that when chiral symmetry
is present, edge states are localized with zero energy without dissipation.
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Chapter 3

Tight binding approximation

The concept of tight binding will be used in Chapter 4 to model the topological phases in
N-layer ABC-graphene boron-nitride in moiré superlattices and in Chapter 5 to build the non-
Hermitian topolectric circuit model that emulates a new type of complex hop SSH model.

Tight binding is an approximate method used for calculating the electronic structure of bands
based on a set of wave functions that overlap localized isolated atoms for each atomic site. The
fundamental basis of tight-binding approximation is that electrons are located in one atomic
position and the probability of finding it in another position vanishes. Thus, the Bloch wave
function in the crystal is assumed as a linear combination of the local Wannier function Φ(r−R)

centered at the lattice vector R,

Ψk(r) =
1√
N

∑
R

eik·RΦ(r −R), (3.1)

where N is the number of unit cells in the crystal. According to Bloch’s theorem, to represent
electrons in a perfect crystal, there is a basis for wavefunctions such that each is an energy
eigenstate. Also, each of those wavefunctions is a Bloch wave. Therefore, the Ψ wavefunction can
be written as

Ψ(r) = eik·ru(r), (3.2)

where u(r) has the same periodicity as the crystal’s atomic structure. Konschuh [85] verifies the
Bloch Theorem on crystals by shifting the wavefunction by a translation vector.

3.1 Tight binding in graphene systems

Graphene is a layer of carbons in which the conduction and valence band touch each other
at two distinct points of Brillouin zone. The simplest description of graphene employs two band
model for pz orbitals on the two equivalent atoms in the unit cell [21].

In the following sections, we will take the concept of tight-binding approach to analyze the
graphene. Initially, we will make an analysis of the geometry and the tight-binding concept to do
some topological analysis.
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3.1 Tight binding in graphene systems

3.1.1 Graphene geometry

In Figure 3.1, we show a Bravais lattice. In particular a1 = d(0,−1), a2 = d
2(−1,

√
3), with d

as the distance between sites. It is important to note that the Bravais lattice encloses the entire
crystalline lattice and it has the property of repeating itself throughout the direct space.

Figure 3.1: The Bravais lattice of a honeycomb hexagonal lattice.

Conveniently, for graphene lattice we selected a Bravais lattice with second neighbors, as we
show in Figure 3.2, with a1 = (

√
3d, 0) and a2 =

√
3d
2 (1,

√
3) and d ≈ 1.42Å [86].

Figure 3.2: The Bravais lattice of a honeycomb hexagonal lattice with second neighbors.

The reciprocal network is a consequence of the translational symmetry of functions that de-
scribe periodic physical quantities in the Bravais lattice. A Bravais lattice defined in the reciprocal
space is the set ofK-wave vectors that can be calculated from the translation of vectors according
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Chapter 3. Tight binding approximation

to eiK·R = 1, therefore,
K ·R = 2πη, η =

∑
i

nihi ⇒ η ∈ Z. (3.3)

The K-vectors can be written as

K =
2∑
j=1

hjbj ; hj ∈ Z, (3.4)

and the reciprocal lattice vectors b1, b2 are defined by ai · bj = 2πδij . Therefore, in graphene
b1 = 2π

3d (
√

3,−1) and b2 = 4π
3d (0, 1). This concept is useful to define the Brillouin zone, as we

show in Figure 3.3 in the blue hexagon.

Figure 3.3: Reciprocal lattice vectors b1 and b2. The Brilloine zone (blue hexagon) and the special
points Γ = 0b1 + 0b2, M = 1

2b1 + 0b2, K = 1
3b1 + 1

3b2 and K′ = 2
3b1 + 2

3b2

According Figure 3.2, we define the vectors of first neighbors as δ1 = d(0,−1), δ2 = 1
2d
(√

3, 1
)
,

δ3 = 1
2d
(
−
√

3, 1
)
, and the second neighbors as β1 = 1

2d
(√

3,−3
)
, β2 = d

(√
3, 0
)
, β3 =

1
2d
(√

3, 3
)
, β4 = 1

2 , d
(
−
√

3, 3
)
, β5 = d

(
−
√

3, 0
)
, β6 = 1

2d
(
−
√

3,−3
)
, where here we took

d = 2.6833a0 with a0 = 5.29× 10−11m as the Bohr radius, as is shown in Figure 3.4.

3.1.2 Electronic properties of graphene

From tight-binding model with nearest-neighbor hopping, the Bloch Hamiltonian for graphene
[87] is given by

H0(k) =

[
∆
2 t1f(k)

t1f
∗(k) −∆

2

]
= t1[Re(f(k))σx + Im(f(k))σy] +

∆

2
σz = h · σ, (3.5)
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3.1 Tight binding in graphene systems

Figure 3.4: Graphene first neighbor vectors (blue arrows) and second neighbor vectors (red arrows)

where t1 is the first neighbor hopping, ∆ is the so called mass term that is present whenever
there is a sublattice symmetry breaking perturbation and it is assumed to vanish in the case of
freestanding graphene [87], and f(k) = 1 + eik·a1 + eik·a2 is the form factor associated to first
neighbor hopping in the honeycomb lattice. The graphene energy bands are Dirac cones described
by

E±(k) = ±

√∣∣∣∣∆2
∣∣∣∣2 + |t1f(k)|2. (3.6)

Therefore, we can write the Bloch states of graphene as two component spinors (φ1, φ2)T . It
is reasonable to consider |φ1| = |φ2|. Then, those states are analogous to eigenstates of a pseudo-
spin under the influence of a magnetic field in plane, as Haldane’s Model [31]. That model was
motivated by the Quantum Hall effect without a magnetic field per unit cell and without the
Landau level structure [62]. The Haldane Hamiltonian is defined by

H = 2t2 cosφ
∑
i

cos(k · βi)I + t1
∑
i

[cos(k · δi)σx + sin(k · δi)σy] +

[
M − 2t2 sinφ

∑
i

sin(k · βi)

]
σz

=

[
M + 2t2

[
cosφ

∑
i cos(k · βi)− sinφ

∑
i sin(k · βi)

]
t1
∑
i [cos(k · δi)− i sin(k · δi)]

t1
∑
i [cos(k · δi) + i sin(k · δi)] −M + 2t2

[
cosφ

∑
i cos(k · βi) + sinφ

∑
i sin(k · βi)

]] ,
(3.7)

where σi are Pauli matrices, M is the inversion-symmetry-breaking on-site, t1 is a real hopping
between nearest neighbor on different sublattice and t2 is a real hopping term between second
neighbor site in the same sublattice. The φ angle is the phase acquired by t2 elements. δi is the
displacements from a site to its three nearest-neighbor sites, and βi is the set of displacements to
the six second neighbors, as Haldane expose in Figure 3.5.

The eigenvalues of each band of Haldane’s model is given by

E±(k) =∓

√√√√t12

(
cos

√
3dkx
2

cos
3dky

2
+ 2 cos

√
3dkx + 3

)
+M2+

4t2 cosφ

(
cos

d
(√

3kx + 3ky
)

2
+ cos

d
(√

3kx − 3ky
)

2
+ cos

√
3dkx

)
,

(3.8)
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Chapter 3. Tight binding approximation

Figure 3.5: The graphene lattice according the Haldane model. Nearest-neighbor bonds (solid lines)
and second-neighbor bonds (dashed lines). Image source: adapted from Haldane [31]

and the eigenvalues are given by

Ψ±(k) =


M∓

√
4t12 cos

√
3dkx
2

cos
3dky

2
+2t12 cos

√
3dkx+M2+3t12

t1
(

2 cos
√

3dkx
2

(
cos

dky
2

+i sin
dky

2

)
−i sin dky+cos dky

)

M±
√

4t12 cos
√

3dkx
2

cos
3dky

2
+2t12 cos

√
3dkx+M2+3t12

t1
(

2 cos
√

3dkx
2

(
cos

dky
2

+i sin
dky

2

)
−i sin dky+cos dky

)

 (3.9)

Haldane showed that, at the Fermi level and zero-temperature limit of a 2D periodic electron
gap system, the transverse conductivity has a behavior quantized by σH = νe2/h where ν takes
integer values. If |t2/t1| < 1

3 and |M/t2| < 3
√

3| sinφ|, there is a quantum Hall effect phases, it
is to say, ν = ±1. Therefore, the diagonal terms of are zero. On the other hand, if ν = 0 the
graphene behaves like a normal semiconductor (see Figure 3.6(a)).

47



3.1 Tight binding in graphene systems

Figure 3.6: (a) Phase diagram assuming |t2/t1| < 1
3 where zero-field quantum Hall effect phases

are shown as ν = ±1 region. The ν = 0 region is related to normal semiconductor phase. (Image
source: Haldane [31]). (b) Blue point in sketch (a). Eigenvalues of (3.7) with M/t2 = 0 and
φ = −π/2. (c) Red point in sketch (a). Eigenvalues of (3.7) with M/t2 = 3

√
3 and φ = 0. (d)

Green point in sketch (a). Eigenvalues of (3.7) with M/t2 =
√

3 and φ = π/2. In all cases, there
are 6 Dirac points in the reciprocal lattice.
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Method development
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Chapter 4

Topological phases in N-layer ABC-graphene boron-nitride

moiré superlattices

The formation of moiré patterns is due to the overlap of two or more periodic crystals with
slightly different lattice constants or simply with a twist among the layers, as we show in Figure
4.1. The electronic properties of van der Walls crystalline heterostructures [88,89] can be modified
by moiré superlattice potentials.

Figure 4.1: Example of two kind of moiré patterns: (a) the translation of a hexagonal layer on
another layer of the same geometry and (b) under the rotation.

.

The appearance of magic angles in twisted bilayer graphene has shown the formation of cor-
related insulating phases and the appearance of high temperature superconductivity [88, 90, 91].
In the case of two overlapping graphene layers, the coupling becomes stronger when the angle
between them becomes smaller [92]. However, in another view, the Fermi velocity vanishes at a
“magic angle”, leading to appeareance of flat bands and stronger conductivity [93].

Interestingly, the twisted graphene layers with the presence of Van Hove singularities [94] allow
the existence of new phases such as magnetism, superconductivity or charge density waves. It is
convenient to say that the electronic structure varies with the twist angle [95]. On the other hand,
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the electrical properties of multiple graphene layers can be altered by an in-plane magnetic field,
out-of-plane electric field and to the applied bias voltage along with the twist angle [96,97].

Heterostructures of various materials have widely studied from the point of view of their
electronic properties, such as MoS2 MoS2 and WS2 WS2 [98], germanium [99], monolayers of
WS2 MoS2 [100], MoSe2 WSe2 [101]. Each of these structures has topological properties that
could lead to the development of new materials from the identification of topological invariants
[102,103].

We studied the behavior of Chern numbers in heterostructures of graphene (monolayer (G),
bilayer (BG) or trilayer (TG))/hexagonal-boron-nitride (hBN) moiré superlattices. The main
object of our work is to identify the different valley Chern phases that appear in this kind of
superlattices as a function of the number of graphene layers and the dependence of scalar and
vector moiré vector potentials.

There are different properties of rhombohedral N-layer of graphene on other substrates that
have been discussed widely in the literature, such as SiC [104], Ni [105], SiO2 [106]. However,
the study of the interaction of an hBN sheet on 1, 2 or 3 layers of graphene opens the study to
understand the interactions with other substrates. Our work shows the importance of the scalar
and magnetic vector potential to generate topological phases in superlattices without making
rotations, which in practice can be complicated.

Song et al. [107] showed experimentally that the lattice mismatch between the graphene and
hBN generate moiré superlattices whose topological bands and the Berry curvature of the Bloch
topological bands are highly sensitive to the location of boron-nitride respect to the graphene
layer, and the sub-lattice interaction. Therefore, the electronic topology of the crystal can be
controlled by the proper alignment of the crystal axes.

In BG/BN case, recent experiments have shown that for certain magical angles the anomalous
Hall effect appears. In addition, the valence and conduction bands appear with Chern numbers
C = ±1 [108]. The possible explanation is that the 3/4-filling of the spin-valley polarized ferro-
magnetic insulator leading to electrons fill a Chern band. It is interesting to note that twisted
G/BN and BG/BN systems also have shown flat bands [109,110] and are relevant building blocks
of ongoing experiments that must be fully understood because they can be the origin of coupled
topological bands.

Recent experiments by Feng et al. [102], have shown the existence of a correlated Chern
insulator in the TG/BN moiré superlattice from changes in the magneto-transport by reversing the
vertical direction of the applied electric field. The TG/BN case has been theoretically studied [111]
and it provides an attractive platform to explore Chern insulators because it has almost flat moiré
minibands with an electrically tunable Chern number that depends on the valley. It is because the
Chern weights that add up to zero or finite integer value arise due to the primary and secondary
gaps depending on the choice of sub-lattice interaction.

It is further also revealed that, based on the structure of the moiré Hamiltonian, such as the
inclusion of off-diagonal terms, different Chern numbers can be configured due to unequal electron-
hole Chern weights. In a study of the G/BN [112], it is showed that the off-diagonal terms have
an important implication in the miniband spectra and therefore in the Berry connection.

According to the models explained in Section 6, for the calculation of the different Chern
diagrams for G/BN, BG/BN and TG/BN, the off-diagonal Hamiltonian terms are of fundamental
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superlattices

importance. These terms refer to gauge potential and mass terms, as will be seen in the model.

To understand the nomenclature that we will use in this chapter, in Figure 4.2, we show the
geometry of two stacked honeycomb lattices, where one moves over the other.

Figure 4.2: Schematic representation of two honeycomb layers with the top layer sites marked by
A2 and B2 and the bottom layer sites marked by A1 and B1. Figure a. shows the displacement in
the r direction of one layer over the other. In Figure b., we show the displacement r = (0, a/

√
3)

of the top layer over the bottom layer to form an AB stacking arrangement that is explained in
Figure c. from the shaded yellow area in Figure b.

In Figure 4.2a. we show the displacement r of the top layer (which we have named with sites
A2 and B2) on the bottom layer (named by sites A1 and B1). Figure 4.2b. shows a displacement
r = (0, a/

√
3) of the top layer on the bottom layer to configure an AB stacking, in which site

A2 is over site B1. Finally, Figure 4.2c. shows the AA, AB and BA stacking arrangements that
form in the yellow shaded area in Figure 4.2b. It is easy to see that under an AB arrangement
you can also configure BB stacking arrangement, if the displacement of layer 2 on layer 1 is in
direction r = (0,−a/

√
3) or equivalently, rotate 60° one sheet over the other.
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4.1 Hamiltonian model

4.1 Hamiltonian model

The Hamiltonian model to build the moiré patterns is based on symmetry and coupling co-
efficients of symmetric and anti-symmetric inversion terms [113]. Other method is based on the
transformation to the complex form, with amplitude Cµ and phase φµ factors of the sublattice
interaction parameters [114]. Here, we follow the later form of representation.

Based on the periodicity of the moiré potential [115], the effective K-valley Hamiltonian for
rhombohedral N-layer graphene coupled to an hBN layer is given by [111]

Hξ
N =

υN0
(−t1)N−1

[
0

(
π†
)N

πN 0

]
+ ∆σz +HR

N +HV
ξ +HA

ξ , (4.1)

where ξ = ±1 distinguishes the two types of possible alignments (0◦ and 60◦) between the layers
of graphene and BN, taking as a reference the side view of Figure 4.1(a) and the displacements
explained in figure 4.2, where the moiré pattern affect the low energy A (bottom) or B (top) sites
in the graphene layer contacting BN, as is shown in figure 4.3(b) and (c) [116].

Figure 4.3: Schematic representation of different symmetric stacking arrangements of G/BN. (a)-
(b) Each carbon atom is located on top of a nitrogen and a boron atom but the configuration AA
(ξ = 1) is rotated 60◦ in relation to configuration BB (ξ = −1). The square of red dashed lines
distinguishes one of the two sublattices of graphene. (c) A carbon atom sits on top of a nitrogen
atom and a carbon atom is in the middle of the BN’s hexagon. (d) A carbon atom sits on top of
a boron atom and a carbon atom is in the middle of the BN’s hexagon.

The first term in equation (4.1) describes the low-energy N-layer graphene 2× 2 Hamiltonian,
with the momentum operator π = νpx + ipy where ν = 1 is used for the principal valley K

of the graphene. The second term of (4.1) induces the interlayer potential difference which is
proportional to the mass term through ∆.

The HR
N term describes the remote hopping term corrections for N-layers. For TG/BN the

HR
3 term is given by [111],

HR
3 =

[(
2υ0υ3p

2

t1
+ t2

)
σx

]
+

[
2υ0υ4p

2

t1
−∆′ + ∆′′

(
1− 3υ2

0p
2

t21

)]
1, (4.2)

where υm =
√

3a|tm|/2~ with a = 2.46Å. υ0 is the Fermi velocity. ν3 and ν4 are the couplings
between the low energy and low-high-energy sites located on different layers, respectively. The
hopping parameters are given by t0 = −2.62 eV, t1 = 0.358 eV, t2 = −0.0083 eV, t3 = 0.293 eV,
t4 = −0.144 eV, ∆′ = 0.0122 eV and ∆′′ = 0.0095 eV [111,117].
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For BG/BN [118],

HR
2 = υ3p

(
p

t1
− 1

)
σx
υ0

t1

(
∆′υ0

t1
+ 2υ4

)(
π†π 0

0 ππ†

)
. (4.3)

For the case G/BN, HR
1 = 0 because there are no intermediate layers between graphene and

BN.
Specifically, the last two terms of equation (4.1) are of particular interest to us. The diagonal

term HV
ξ is given by

HV
ξ (r) = VM

AA/BB(r)
ξσz + 1

2
, (4.4)

where
VM
AA/BB(r) = 2CAA/BBRe

[
eiφAA/BBf ξ(r)

]
, (4.5)

with f ξ(r) as the triangular structure factor function, which is given by

f(r) =

6∑
m=1

eiξGm·r 1 + (−1)m

2
, (4.6)

where Gm = R̂ 2πm
6

G1 is the six moiré reciprocal lattices and G1 =
[
1− (1 + δ)−1R̂θ

] (
0, 4π

3a

)
are

the moiré pattern harmonics, where the lattice mismatch |δ| � 1, the misalignment angle θ � 1

and R̂ is the anticlockwise rotation matrix i.e. R̂ 2πm
6

. The equation (4.6) goes into the diagonal

terms, and ξσz+1
2 implies that, depending on the sign of ξ, only one of the terms of the diagonal

of the Hamiltonian is affected.
On the other hands, the intersublattice off-diagonal term HA

ξ is given by

HA
ξ (r) = Aξ(r) · σξxy, (4.7)

where
Aξ(r) = VM

AB∇rRe[eiφABf ξ(r)] (4.8)

is the pseudomagnetic vector potential where σξxy = (σx, ξσy) is the Pauli matrix vector and

VM
AB = 2CAB

[
cos θ̃ẑ × 1

|G|
− sin θ̃

1

|G|

]
, (4.9)

where cos θ̃ = (α cos θ− 1)/β, sin θ̃ = α sin θ/β with β =
√
α2 − 2α cos θ + 1 and α = 1 + ε where

θ is the relative twist and ε is the lattice constant mismatch between the graphene and hBN
layers. From ab initio calculations [89, 114] the parameters of graphene on hBN are giving by
CAA = −14.88 meV, φAA = 50.19◦, CBB = 12.09 meV, φBB = −46.64◦, CAB = −11.34 meV, and
φAB = −19.6◦.

Based on the last two terms of the equation (4.1), we will make a brief discussion of symmetric
and antisymmetric moiré patterns [113]. For different phase angles, in Figure 4.4 we illustrate the
HV
ξ and HA

ξ terms corresponding to equations (4.4) and (4.7), respectively.
The diagonal elements of the moiré potential (4.5) is defined as the sum of a symmetric and an

antisymmetric function. Indeed, for a configuration ξ = 1 where, in general terms CAA/BB = Cii
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Figure 4.4: d−depend intralayer Hamiltonian elements for different phase angles φii and φij. The
black line hexagonal represents the real space presentation of extended unit cell. In the real space
the neutral potential Hii is associated with φii = nπ but the neutral potential for Hij is associated
with φij = (2n+ 1)π/2 with n = 0, 1, · · · .

and φAA/BB = φii, we have

Mii(r) = 2CiiRe
[
f(r)eiφii

]
= Cii (f1(r) cosφii + f2(r) cosφii) ,

(4.10)

with f1(r) =
∑6

m=1 e
iGm·r as a symmetric function and f2(r) = i

∑6
m=1(−1)m−1eiGm·r as an

antisymmetric function. In figure 4.5, we show functions f1 and f2. It is important to note the
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symmetry and antisymmetry around the point (0, 0).

Figure 4.5: Symmetric and antisymmetric functions. (a) f1(r) and (b) f2(r).

Hence, the equation (4.10) is symmetric when φii = nπ, antisymmetric when φ = (2n+1)π/2,
and a combination of the two otherwise, as shown in Figure 4.6.

Figure 4.6: Dependence of the scalar moiré potential term M(r) = 2CRe
[
f(r)eiφ

]
on the phase

angle φ, the periodicity in the real space is between 0 < φ < π. Must be noted that the M(r) is
a combination of f1(r) =

∑6
m=1 e

iGmr (symmetric function) and f2(r) = i
∑6

m=1(−1)m−1eiGmr

(antisymmetric function), it is relevant to the parametrization of the moiré patterns.

Regarding the off-diagonal terms related to the equation 4.7, it describes the intersublattice
tunneling within the graphene or hBN layer. HA

ξ is related to the potential vector term Aξ(r)

which can be represented by its magnitude and orientation, as we show in Figure 4.7 and it is
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analytically deduced as

Aξ(r) = VM
AB∇rRe[eiφABf(r)]

= VM
AB∇rRe

[
6∑

m=1

ei(Gm·r+φAB)[1 + (−1)m]/2

]
= VM

AB∇r

∑
m=2,4,6

cos(Gm · r + φAB)

= VM
AB∇r

∑
m=2,4,6

cos(Gmxx+Gmyy + φAB)

= −VM
AB

∑
m=2,4,6

Gm · sin(Gm · r + φAB)

= −VM
AB

∑
m=2,4,6

sin(Gm · r + φAB){Gmy, Gmx, 0}.

(4.11)

Figure 4.7: Dependence of the vector moiré potential A(r) on phase angle φAB. Due to the moiré
superlattices, the inter-sublattice tunneling is behaving like a pseudo magnetic field (arrows) on a
surface, which is strongly depends on the phase angle φAB at the Dirac point (See Eq.(4.11)). dx
and dy are given in nm units.

The variations of Aξ(r) with {CAB, φAB} and VM
AA/BB with {CAA/BB, φAA/BB}, which de-

termine the Coulomb interactions, are determinant in the topological phase transitions that are
manifested in the Chern diagrams that we develop in Chapter 6.

4.2 Methodological discussion for Chern diagrams

For a better understanding of the results described in section 6 (Chern diagrams), we will
now delve into the procedure used to obtain the bands, the Bloch states and the Berry curvature.
Additionally, prior to the presentation of results, we argue about the bands.

For a better understanding about the electronic structure of the model under effects of the
off-diagonal moiré pattern that in equation (4.7), in Figure 4.8 we have varied the CAB parameters
to verify the effect it would have on the Chern number. In this regard, it is clear that there is
a phase transition depending on the band and the CAB value. Therefore, the pseudomagnetic
vector potential could explain the phase shift of |C| ≤ N that we will see in detail in Chapter 6.

In line with Figure 4.8, in Figure 4.9 we show the band structure for the ξ = 1, N = 3 and
∆ = 0.01 eV configuration while varying the off-diagonal pseudomagnetic field with CAB values
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superlattices

Figure 4.8: Chern number as a function of CAB, with φAB = 0 for N = 3 and N = 2 for ξ = 1
and ∆ = 0.01eV .

of 0 eV , 0.007 eV and 0.01 eV . It is observed that there are changes in the bands, however, we
obtained C = 0 in conduction band for the 3 cases, while in the conduction band C took the
values of 0, 2 and 3 according to the value of CAB.

Figure 4.9: Band structure for different CAB values and 3 layers of graphene on boron nitride in
ABC configuration.

The topological bands are driven for ∆ 6= 0. The, under the electric field, the gap at the
primary Dirac point and the gaps avoided at the limits of the mini-Brillouin zone (mBZ) of
moiré isolate the low-energy bands near charge neutrality. These isolated bands lead the Berry
curvatures and turn them to topological Chern bands. The Berry curvatures of the nth isolated
bands are calculated using [119]

Fn(k) = −2
∑
n′ 6=n

Im


〈
un

∣∣∣ ∂H∂kx ∣∣∣un′〉〈un′ ∣∣∣ ∂H∂ky ∣∣∣un〉
(En′ − En)2

 , (4.12)

where for every k-point we take sums through all the neighboring n′ bands, the |un〉 are the
moiré superlattice Bloch states and En are the eigenvalues. Note that equation 4.12 assumes the
sum over the neighboring bands, which is based on the usefulness of this method for numerical
calculations, in which the condition of a smooth phase choice of the eigenstates is not guaranteed
in the standard diagonalization algorithms. This method is widely used to evaluate the Berry
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curvature in crystals with the eigenfunctions provided from first principles calculations [120,121].
The adiabatic approximation of the equation 4.12 can be considered as a projection operation, in
other words, the dynamics of the system is restricted to the nth energy level. Therefore, the Berry
curvature can be considered as the result of the “residual” interaction of these projected energy
levels [119].

In Figure 4.10 we show the Berry curvature calculated from equation (4.12), where we can see
that the three valence bands of Figure 4.9 for different values of CAB. In this regard, we can see
that the closure of the Band gap is associated with the topological phase transition and this takes
place between K̃ and K̃ ′. From the Berry curvature, in Section 6 the Chern number of the nth

band is obtained from C =
∫

d2k Fn(k)/(2π) integrated in the Brillouin zone.

Figure 4.10: Berry curvature for the three valence bands giving the different Chern numbers.

Finally, we will discuss the effects of the magnetic vector potential on rotational symmetry. In
Figure 4.11(a) we show the Fermi surface in the Van Hove singularity (vHS) for the conduction
and valence bands. It is clear that there is a breaking of symmetry when CAB 6= 0. This fact is
reinforced when calculating the local density of states (LDOS) in real space, as shown in Figure
4.11(b).
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superlattices

Figure 4.11: Rotational symmetry breaking due to the effect of the magnetic vector potential. (a)
Fermi surface contours in vHS for valence and energy conduction bands. (b) Representation in
real space of the local density of states (LDOS) (D̃(r, E)) in each vHS for conduction and valence
bands where δD̃(r, E) = D̃CAB 6=0(r, E) − D̃CAB=0(r, E) and the normalized LDOS defined by
D̃(r, E) = D(r, E/max [D(r, E)]).
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Chapter 5

Topological circuit of a non-Hermitian SSH quantum sys-

tem

The SSH model [122] has been widely discussed in the literature [28,123]. It describes spinless
hopping in a one-dimensional lattice, as we shown in figure 5.1. Here, we are interested in a new
type of non-Hermitian SSH model with complex hoppings [124–126], and specifically in finding a
circuit representation that helps us to model the different quantum phenomena and the topological
properties.

Figure 5.1: SSH model of N cells and hoppings between sites A and B. Intracell hoppings (tAB)
with blue lines and intercell hoppings (tBA) with red lines.

The representation of quantum phenomena by means of electrical circuits has been recently
proposed [127–129]. Topological aspects of the matter have also been modeled with electrical
circuits, such as the phase transition in non-Hermitian systems [130] and Chern insulators [131].
In this chapter, we will take as a basis the existence of topological zero mode and the presence of
chiral symmetry in non-Hermitian SSH chains. The usefulness of our model, that involves complex
hoppings, is given by the possibility of developing long-range hopping in a topological interacting
boson chains [125], polariton crystals [126], plasmon chain [124], among others.

Next, we will expose some basic aspects of the SSH model and its circuit representation.
Subsequently, we will show the modification that we propose to represent the non-Hermitian SSH
model with complex hopping that will allow us to analyze novel topological behaviors.

5.1 Hermitian SSH model

In an SSH chain, like the one shown in figure 5.1, the Hamiltonian is given by

ĤSSH = tAB

N∑
n=1

(|n,B〉, 〈n,A|+ h.c) + tBA

N−1∑
n=1

(|n+ 1, A〉, 〈n,B|+ h.c) , (5.1)
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5.1 Hermitian SSH model

where the intracell hopping tAB and the intercell hopping tBA are positive and real. |n,A〉 and
|n,B〉 with n ∈ {1, 2, · · · , N} are the states of the lattice where the electron is in a unit cell n, at
the site of the sublattice A or B.

In the position space, the Hamiltonian (5.1) is written as a matrix of order 2N × 2N

HSSH =



0 tAB 0 0 · · · 0 0

tAB 0 tBA 0 · · · 0 0

0 tBA 0 tAB · · · 0 0
...

...
...

...
...

...
...

0 0 0 tAB · · · tAB 0


. (5.2)

From the Fourier transform, the Schrödinger equation that defines equation (5.1) in the mo-
mentum space is given by [?]

Ĥ(k)

[
a(k)

b(k)

]
= E(k)

[
a(k)

b(k)

]
, with Ĥ(k) =

(
0 tAB + tBAe

−ik

tAB + tBAe
ik 0

)
, (5.3)

and E(k) = ±|tAB + tBAe
−ik| = ±

√
t2AB + t2BA + 2tABtBA cos k.

Based on tight binding approximation, Lee [129] and Zhao [128] represented a Hermitian SSH
model using electrical circuits with LC components. Zhao used charge and electric flux concepts
to deduce the Euler-Lagrange equations. The circuital Hermitian model corresponding to the SSH
proposed by Zhao becomes in an LC circuit eigenvalue problem through

(
ω2

ω2
0

− η − η−1

)[
ϕ1(k)

ϕ2(k)

]
=

 0 −e
−ik

η
− η

− e
ik

η − η 0

[ϕ1(k)

ϕ2(k)

]
, (5.4)

where η =
√
L1/L2, ω0 = 1/(C

√
L1L2), C is the capacitance connected to ground, and Li i = 1, 2

are the circuit inductors (see Fig. 5.2(a)). The two bands are defined by functions ω(k),

ω2
±(k)

ω2
0

= η + η−1 ±
√
η2 + η−2 + 2 cos k. (5.5)

Figure 5.2: SSH Hermitian circuit proposed by (a) Zhao [128] and (b) Lee et al. [129].
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In Zhao’s model, ω0 does not depend on ω. On the contrary, in our model ω0 is a function of
ω(k), as we will see in Section 5.2.

Lee et al. [129] proposed another Hermitian SSH circuit by swapping capacitor and inductor
position relative to Zhao’s model, as we show in Fig. 5.2(b). They studied Hermitian SSH chain
topological properties by means of the analysis LC electrical circuit impedance with an external
voltage source at frequency ω.

Despite the differences between Zhao and Lee’s approaches, both models have positive real
valued intra and inter-cell hopping correlated through an inverse function, since electrical circuit
behavior is governed by the Laplacian, which is analogous to the Hamiltonian that describes the
energy of a system [129,132,133].

Although the SSH model considers that tAB and tBA are real positives, what happens if these
were complex quantities? That is, if these hopping had an associated magnitude and phase?. It
is easy to verify that Hamiltonian (5.3) becomes non-Hermitian, also the (5.2) one.

5.2 Non Hermitian model of complex hopping

It is known that the behavior of an electrical circuit is described by its Laplacian, which is
analogous to the Hamiltonian, and it describes the energy of the physical system [129, 132–134].
The Laplacian is defined by the structure of the circuit (electrical topology) and it is useful to
represent admittance between nodes [132]. Our objective is to represent the topological behavior
of a non-Hermitian system through the natural oscillation modes of an RLC circuit.

Thus, we propose a theoretical toy model that makes a bridge between electrical engineering
and materials science. It is important to note that the tight binding approach is fundamental
for the quantum behavioral representation of a crystal lattice [129, 133]. Therefore, the position
eigenstates |n, j〉, and j = A,B, n = 1, 2, · · · , N are restricted to the lattice sites [63,135]. In the
following lines, we will show the link between these concepts.

To introduce the circuit notation, the impedance Z of an inductance L and a series configu-
ration RC is given by ZL = iωL and ZRC = R + 1/iωC, respectively. ω is the frequency of an
oscillating driving voltage. The admittance is defined as Y ≡ 1/Z and therefore, YL = 1/iωL is
the admittance of an inductor L and YRC = 1

R+(iωC)−1 is the admittance of a RC series branch.

Figure 5.3: Two-mesh RLC circuit.

In figure 5.3, we show two meshes of an RLC circuit. The reason for the nomenclature in
the voltage nodes will be understood when we make the link between the circuit behavior and a
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5.2 Non Hermitian model of complex hopping

crystalline lattice. The following equations are obtained from Kirchhoff’s first law

i1 =[V2(1) − V1(1)]YR1C1 = [V1(1) − V2(2)]YR2C2 + V1(1)YL,

i2 =[V1(1) − V2(2)]YR2C2 = [V2(2) − V1(2)]YR1C1 + V2(2)YL.
(5.6)

As the Fourier transform generates a map in the spectrum of the k wave vector establishing
a band structure of the admittances in the circuit and therefore in the lattice [133], we consider
the transformations

Vj(n)(t) =
e−iωt√
N

∑
k

V ′j (k)eikn, (5.7)

with j = 1, 2. Therefore, we propose the following system of equations

0 =V ′1

(
YR1C1 + YR2C2 +

1

iωL

)
+ V ′2

(
−YR1C1 − YR2C2e

ik
)
,

0 =V ′1

(
−YR1C1 − YR2C2e

−ik
)

+ V ′2

(
YR1C1 + YR2C2 +

1

iωL

)
,

(5.8)

that can be written as(
0

0

)
=

(
C1
η1

+ C2
η2
− 1

ω2L
−C1
η1
− C2

η2
e−ik

−C1
η1
− C2

η2
eik C1

η1
+ C2

η2
− 1

ω2L

)(
V ′1(k)

V ′2(k)

)
, (5.9)

where η1 = iωR1C1 + 1 and η2 = iωR2C2 + 1. Note that due to there are 2N values of j(n), also
k is discretized in 2N values.

In particular, a hypothetical current Ij along node j is a component of vector I related to
the vector of potential differences V by I = LV , where L is the circuit Laplacian and it is
related to the admittance between nodes; with L = D − C + W , where D is a diagonal matrix
containing admittances for each node, C is a matrix with zeroes on the diagonal and admittances
between different nodes elsewhere, and W is a matrix that relates the admittances that lead to
the ground [129]. Therefore, the Laplacian circuit of Figure 5.3 is given by

L =

(
YR1C1 + YR2C2 + 1

iωL −YR1C1 − YR2C2e
ik

−YR1C1 − YR2C2e
−ik YR1C1 + YR2C2 + 1

iωL

)

=iω

(
C1

η1
+
C2

η2
− 1

ω2L

)
I− iω

[(
C1

η1
+
C2

η2
cos k

)
σx +

(
C2

η2
sin k

)
σy

]
,

(5.10)

Comparing the non-Hermitian Laplacian (5.10) with Zhao and Lee et al.’s [128,129], it coin-
cides if R1 = R2 = 0, i.e., there are no dissipative elements. In other words, their Hemitian model
is a particular case of ours when the circuit resistances are zero or approximately zero.

Then, we rewrite equation (5.9) as

(
1

ω2L
− C1

η1
− C2

η2

)(
V ′1
V ′2

)
=

(
0 −C1

η1
− C2

η2
e−ik

−C1
η1
− C2

η2
eik 0

)(
V ′1
V ′2

)
. (5.11)

It is important to note the mathematical similarity between the matrix on the right side of
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equation (5.11) and the expression for H(k) in equation (5.3), where

tAB = −C1

η1
=

√
C2

1

1 + C2
1R

2
1ω

2
e−i arctan (C1R1ω)

tBA = −C2

η2
=

√
C2

2

1 + C2
2R

2
2ω

2
e−i arctan (C2R2ω).

(5.12)

Therefore, our model explicitly relates the hopping parameters with the circuit parameters, and
additionally, the intra hopping is not necessarily the inverse of the inter hopping as in other
models [128,129], which gives us great versatility. Henceforth, we will call

Y(k) =

(
0 −C1

η1
− C2

η2
e−ik

−C1
η1
− C2

η2
eik 0

)
(5.13)

the admittance matrix for the non-Hermitian circuit.

Therefore, from equation (5.11), the eigenvalue

Λ(ω) =
1

ω2L
− C1

1 + iωR1C1
− C2

1 + iωR2C2
(5.14)

is the sum of the admittances in each node and emulates the bulk bands, where the gap is 2∆,
with ∆ = mink Λ. In Figure 5.4, we make a relationship between the circuit model in Figure 5.3
and the SSH chain shown in Figure 5.1.

Figure 5.4: SSH non-Hermitian topoelectric circuit. Each unit cell n consists of a pair of resistors
and capacitors with the same inductor L between each RC array. Circuit elements with subscript 1
(highlighted in blue) represent intracell hoppings and circuit elements with subscript 2 (highlighted
in red) represent intercell hoppings. An alternating voltage with frequency ω provides a driving
voltage. We use the notation Vm(n), where n is the cell and m the site.

From equation (5.14), our system is massless when L→∞ and Ci → 0. If that happens, the
impedance of the circuit would become infinite and there would be no hoppings in the lattice.
Therefore, under non-Hermiticity of the system, there is a gap in bulk when there are intra and
inter-cell hoppings.

From equation (5.11), it is easy to show that the Bloch bands are obtained from the relation

ω2

ω2
0

=
1

γ + γ−1 +
√
γ2 + γ−2 + 2 cos k

, (5.15)
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where ω2
0 =

√
η1η2

L
√
C1C2

and γ =
√

C1η2

C2η1
. The equation (5.15) is a sixth degree for ω as a function

of k. Two solutions correspond to bands in complex plane that are independent of the value of
k. These two solutions are ω1 = i/R1C1 and ω2 = i/R2C2, and correspond to flat energy bands
in the infinite (Λ → ∞). Our analysis will focus on the other four solutions ωi(k), i = 3, 4, 5, 6.
Normal oscillation modes ω should not be confused with the number of oscillations in a decreasing
complex exponential function from a source connected to the circuit. Rather, this term refers to
the index of exponential functions that describe the natural source-free response when capacitors
and/or inductors are charged [136].

Although (5.5) and (5.15) have similar mathematical structures, ω0 is function of ω in (5.15),
whereas this does not hold for (5.5). This dependence on ω makes a fundamental difference
between Zhao’s Hermitian system [128] and the non-Hermitian system proposed here, in addition
to hopping properties.

In Chapter 7, we will do the analysis of the model that we explained here. Then, we will
calculate the winding numbers, and the evidence of the skin effect, the bulk-edge correspondence,
and other aspects of topology in non-Hermitian systems.
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Chapter 6

Chern diagrams of N-Layer ABC graphene boron-nitride

moiré superlattices

In this chapter, we will show the results that are derived from the theoretical aspects of Section
4, where we explained that the behavior of the moiré potential is dependent on the choice of Cµ
and φµ for inter-sublatice interactions due to Coulomb interactions in moiré superlattices.

Here, we present the variations in Chern numbers for the N-rhombohedral layer of graphene
on hexagonal boron-nitride (hBN) superlattices on the choice of moiré potential parameters. The
arrangements of the graphene with boron nitride alignment, that is ξ = 1 implies that the potential
CBB = 0, while ξ = −1 implies that the potential CAA = 0. Additionally, we include the
off-diagonal moiré Hamiltonian terms {CAB, φAB} 6= 0 systematically to understand the new
topological phases.

Next, we sweep through continuous values of CAA, CBB, CAB, φAA, φBB and φAB, however,
given the number of parameters and for an easy visualization of the Chern diagrams we will
take as a basis the parameters CAA = −14.88 meV, CBB = 12.09 meV, CAB = 11.34 meV,
φAA = 50.195◦, φBB = −46.636◦ and φAB = 19.6◦ which were defined in recent theoretical
works [89,111] that are related to experimental works of Chen et al. [137] and Kim et al. [138]. In
particular, these parameters configure materials with large gaps at the Fermi level, where there
are a perfect hBN-Graphene vertical interaction. In Chern diagrams, these values change when
the hBN is not perfect or modified through strains, doping, imperfections, charges of B or N .
The modified hBN has a different dielectric constant compared to the unmodified.

Before showing the results, in section 4.2 we will make a methodological description for ob-
taining the diagrams. Then, in section 6.1 we will show the Chern diagrams for ξ = 1 and in
section 6.2 for ξ = −1. Since a contribution of our work is based on the implications of the moiré
potentials in the Chern numbers for different configurations of graphene on boron nitride, in Sec-
tion 6.3 we will describe the implications of including the moiré vector potential from equation
(4.7). Finally, in Section 6.4 we summarize the diagrams described in the preceding sections and
make some conclusions related to the physics of the diagrams.

6.1 Chern diagram for ξ = 1

For a configuration ξ = 1, we will vary the parameters of Hamiltonian (4.1), showing the
effects on the Chern diagrams. Although here and section 6.2 we will describe the diagrams for
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the configuration ξ = 1 and ξ = −1, respectively, in section 6.3 we will delve into the implications
of the terms HV

ξ and HA
ξ related to moiré potentials.

Figure 6.1: The Chern number phase diagrams of valence and conduction bands for N = 3 layers
of graphene with ξ = 1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

For φAA = φAB = 0, the numerical calculations for TG/BN with variation of CAA, CAB with
φAA = φAB = 0◦ shows Chern number of 0 or -1 in the conduction band and 1, 2 or 3 for the
valence band from the CAA and CAB values, as we show in the upper panel of Figure 6.1(b). For
smaller values of CAB with increasing value of CAA, it shows Chern value of C = 0 for conduction
band and C = 3 for valence band. Under the same conditions, for BG/BN, the conduction band
shows the topological phase of -1 even for a very small value of CAB unlike TG/BN (see the top
two panels in Figure 6.2(b)). However, the valence band is consistent with Chern value C = 2

when CAA > CAB in the range of 0 to 25 meV. The G/BN has a different behavior as compared
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Figure 6.2: The Chern number phase diagrams of valence and conduction bands for N = 2 layers
of graphene with ξ = 1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

to TG/BN and BG/BN. The topological bands are driven only for higher values of CAA and CAB,
moreover, the Chern values are shifted as compared to previous cases like now conduction band
show a Chern value of C = 1 and the valence band is C = −1 (see the top two panels in Figure
6.3(b)).

When we include a phase of φAA = 50.195◦ but keeping φAB = 0, in the TG/BN case it
increases the area of a trivial phase in the conduction band, such that C = 0 if CAA > CAB for
0 < CAA < 25meV. On the other hand, the phase φAA = 50.195◦ reduces the area where C = 3

in the conduction band. In Figure 6.1(b)(see the middle two panels), the conduction band has
Chern values of C = {−1, 0} and the valence band C = {0, 1, 2, 3}. For the case of BG/BN, in
Figure 6.2(b)(see the middle two panels), when CAB = 0 the conduction band has C = 0 and the
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6.1 Chern diagram for ξ = 1

Figure 6.3: The Chern number phase diagrams of valence and conduction bands for N = 1 layers
of graphene with ξ = 1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

valence band C = 2 for any value of CAA. On the other hand, when CAA = 0, then C = −1 in the
conduction band and C = 1 in the valence band. An interesting effect, which was also observed
in the TLG/BN case, is that for BLG/BN the inclusion of the φAA = 50.195◦ phase, increases
the area of C = 0 in the conduction band for CAA > CAB and also reduce the area of C = 2 for
0 < CAA < 25 meV. In the case of G/BN, the inclusion of the φAA = 50.195◦ phase is manifested
with the increase of the area where C 6= 0 for both bands, as we show in Figure 6.3(b) (see the
two middle panels).

The inclusion of two additional phases, φAA = 50.195◦ and φAB = −19.6◦, allows us to obtain
new phases in graphene boron-nitride moiré superlattices. For the case of TG/BN (see the two
bottom panels of Figure 6.1(b)), it shows important variations, especially when the value of CAB
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increases. In the conduction band, a C = −2 appears in the area where before C = −1 when
φAB = 0. On the other hand, the valence band shows the absence of a C = 2. In the BG/BN case,
it is not very sensitive to the phase φAB. In other words, there is no apparent difference between
the second and third rows of Figure 6.2(b). In G/BN case, for limited range of parameters space
has shown the topological bands, and another region the bands turns out to be trivial, as we can
see when comparing rows 2 and 3 of figure 6.3(b).

In summary, if the phases φAA = φAB = 0◦ and also CAB = 0, then C = 0 in the conduction
band and C = N in the valence band. Additionally, under the same conditions in the phases, if
CAA = 0 then the Chern number in the conduction band is given by C = −1 and in the valence
band C = N − 1 (except for N = 1 where C = N), for any value of CAB.

When φAA 6= 0, keeping the phase φAB = 0, does not substantially alter the conclusions that
we make in the case of φAA = φAB = 0, since when CAB = 0 then C = 0 in the conduction band
and C = N in the valence band, but when CAA = 0 then C = −1 in the conduction band and
C = N − 1 in the valence band, except for G/BN where C = N . Finally, it can be seen that
despite the inclusion of a φAB 6= 0, when CAB = 0 then C = 0 in the conduction band and C = N

in the valence band. However, when CAA = 0 it is no longer true that C = −1 for the conduction
band and that C = N − 1 for the valence band.

6.2 Chern diagram for ξ = −1

Taking into account that in section 6.1 we made a detailed analysis of the Chern diagrams
with ξ = 1, below we will highlight the most interesting and important aspects of the ξ = −1

configuration. In this section we will refer to Figures 6.4, 6.5, and 6.6.
In general terms, when CAB = 0 and φBB = φAB = 0 then C = 0 in the valence band and

C = −N in the conduction band. On the other hand, when CBB = 0 but CAB 6= 0 then C = −1

in the conduction band and C = N − 1 in the valence band. However, for the case of G/BN,
C = 0 (i.e. N-1) in the valence band only when CAB < 11meV.

Although in the first instance one could think of the existence of a certain symmetry between
the configuration ξ = 1 and ξ = −1, the binding energy between carbon and boron or nitrogen
atoms are different and depends on the distance to each atom. For greater clarity on this point,
it is suggested to see figures 4.2 and 4.3.

Since our interest is in the analysis and implications of scalar and vector moiré potential, in
section 6.3, we will do a more specific analysis of the inclusion of the terms CAB and φAB, to
understand their role in the construction of Chern diagrams.

6.3 Addition of off-diagonal terms

Next, we will vary the parameters CAB and φAB in the Hamiltonian (4.1) and we will show how
the different topological phases change. We have showed earlier that the φAB angle has important
implications in the symmetric or antisymmetric behavior of the components of the moiré band
Hamiltonian (Eq.(4.7)). Additionally, when the moiré potential is included with a φAB phase in
the Hamiltonian, then new topological phases appear.
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6.3 Addition of off-diagonal terms

Figure 6.4: The Chern number phase diagrams of valence and conduction bands for N = 3 layers
of graphene with ξ = −1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

When CAB = 0 and φAB = 0, for a specific configuration, i.e ξ = 1, numerical calculations in
the valence band for TG/BN predict a Chern number C = ±3, for BG/BN it is C = ±2 and for
G/BN it is C = ±1 [111]. In the top left two panels of the Figures 6.1(a), 6.2(a) and 6.3(a), the
conduction band has Chern number C = 0 and the valence band has Chern number of C = N .
It is noted that when the off-diagonal terms are zero, the Chern numbers are insensitive to the
scalar moiré potential parameter space. Interestingly, for φAA ∼ 60◦ & 180◦ the valence band
Chern number C = 0. We further show that the Chern number variation is more sensitive to the
moiré potential terms than to the number of layers.

For the TG/BN case (see the middle left two panels of Figure 6.1(a)), the conduction band
changes the Chern value from C = 0 to C = −1 with the addition of CAB 6= 0. It also shows
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Chapter 6. Chern diagrams of N-Layer ABC graphene boron-nitride moiré superlattices

Figure 6.5: The Chern number phase diagrams of valence and conduction bands for N = 2 layers
of graphene with ξ = −1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

a topological phase transition with the variation of φAA with the Chern value C = −2 in the
conduction band. However, for the higher values of CAA, the Chern value of conduction band
show C = 0. For the valence band, the Chern values shift from C = 3 to C = {1, 2, 3}, and it
has a topological phase transition with the variation of φAA. Figure 6.7(a-b) (first row) shows the
behavior when CAB and φAB vary. In accordance with the preceding sections when CAB = 0 and
ξ = 1 then C = 0 in the conduction band and C = N in the valence band. But if ξ = −1, then
C = −N in the conduction band and C = 0 in the valence band. On the other hand, from the
same figure 6.7, it is clear that in the TLG/BN case the variations of the Chern number with the
φAB phase do not occur for small values of CAB.

For the cases BG/BN and G/BN, new topological phases appear by the addition of the moiré
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6.3 Addition of off-diagonal terms

Figure 6.6: The Chern number phase diagrams of valence and conduction bands for N = 1 layers
of graphene with ξ = −1 alignment on BN. (a) For the parameter space 0 ≤ CAA ≤ 25meV,
0◦ ≤ φAA ≤ 180◦. The top left two panels are obtained with CAB = 0meV, φAB = 0◦, the middle
left two panel are obtained with CAB = 11.34meV, φAB = 0◦ and the bottom left two panels are
obtained with CAB = 11.34meV, φAB = 19.6◦. (b) for the parameter space 0 ≤ CAA ≤ 25meV,
0 ≤ CAB ≤ 25meV, the top right two panels are obtained with φAA = φAB = 0◦, the middle
right two panels are obtained with φAA = 50.195◦, φAB = 0◦, and the bottom right two panels are
obtained with φAA = 50.195◦, φAB = 19.6◦.

vector potential CAB. The Chern number phase diagrams for BG/BN case are shown in Figure
6.2(a) where we can see that the inclusion of a φAB = 19.6◦ phase does not alter significantly
the Chern diagram. A different behavior shows the Figure 6.3(a) where in G/BN case the Chern
diagrams show new topological phases in conduction band with φAB = 19.6◦. From Figure 6.7
(second row panels) it is clear that in the BG/BN case, there is a low variation of the Chern
number with the variation of φAB, while in the G/BN case (third row of figure 6.7) the variations
of φAB (keeping the same value of CAB), noticeably change the value of the Chern number.
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Figure 6.7: The Chern number phase diagrams of valence and conduction bands for the N =
{1, 2, 3} layers of graphene on BN for parameter space 0 ≤ CAB ≤ 25 meV and 0◦ ≤ φAB ≤ 180◦

with alignment (a) ξ = 1 with parameters CAA = −14.88 meV, φAA = 50.19◦ and (b) ξ = −1
with parameters CBB = 12.09 meV, φBB = −46.64◦.

6.4 Summary and analysis of Chern diagrams for 1, 2 and 3 layers
of ABC-graphene on hBN moire superlattices

It is known that the configurations of 1, 2 or 3 layers graphene on boron nitride host nearly flat
topological bands that present spontaneous quantum Hall phases, under an appropriate polariza-
tion [93, 111, 139]. From the low-energy model for rhombohedral N-layer graphene (N = 1, 2, 3)
aligned with hexagonal boron-nitride we verify the importance of the off-diagonal moiré vector
potential terms in the configuration of the valley Chern numbers. The terms HA

ξ and HV
ξ tends to

be overlooked in the literature and those are a possibly explanation for recent experiments for hBN
aligned graphene trilayers where C = 3 was expected but signatures of C = 2 were obtained [102].
Thus, our analyzes suggest that the topological phase transitions of flat bands can be triggered
by pseudomagnetic vector field potentials associated with moire strain patterns.

In this work, we have verified that there is a proportionality of |C| = N in the valence or
conduction band depending on the configuration ξ = ±1. According to Chittari et al. [111], the
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6.4 Summary and analysis of Chern diagrams for 1, 2 and 3 layers of ABC-graphene on
hBN moire superlattices

Chern number that is obtained for each combination of parameters is due to the contribution of the
primary (due to interlayer potential difference) and secondary (due to moiré potential parameters)
Chern weight, Ce/h = w

e/h
P + w

e/h
S , where the superscripts e and h refer to electrons and holes,

respectively.
As can be seen from figures 6.1, 6.2, and 6.3 for ξ = 1 and 6.4, 6.5, and 6.6 for ξ = −1, the off-

diagonal interlayer coherence moiré pattern term given by CAB 6= 0 modifies the Chern diagram,
such that |C| ≤ N . This behavior is due to the moiré vector potential term HA

ξ of equation (4.7)
that we show in figure 4.7 and that defines a pseudospin field of graphene on hBN.Therefore,
the introduction of the off-diagonal interlayer coherence moiré patter terms through the CAB
magnitude and the phase φAB allows to trigger topological phase transitions. From our results,
the vector potential moiré patterns should no longer be ignored in the low energy Hamiltonian
models of N-chiral multilayer of graphene on BN superlattices.

As a summary, in tables 6.1, 6.2 and 6.3 we summarize the possible Chern numbers in the
conduction and valence bands for potential magnitudes between 0 and 25 meV and phase between
0 and π, according to the ξ alignment and the presence or absence of the potential vector moiré
patterns.

If CAB = 0
ξ = 1 (CAA 6= 0) ξ = −1 (CBB 6= 0)

Conduction Valence Conduction Valence
TG/BN 0 3 -3 0
BG/BN 0 2 -2 0
MG/BN 0 1 -1 0

Table 6.1: Chern number with CAB = 0 for the alignment ξ = ±1.

If CAB 6= 0 and φAB = 0
ξ = 1 (CAA 6= 0) ξ = −1 (CBB 6= 0)

Conduction Valence Conduction Valence
TG/BN -3, -2, 0 2, 3 -3, -2 0, 1, 2
BG/BN -1, 0 1, 2 -2, -1 -1, 0, 1
MG/BN -1, 0, 1 1 -1, 0 0

Table 6.2: Chern number with CAB 6= 0 and CAB = 0 for the alignment ξ = ±1
.

If CAB 6= 0 and φAB 6= 0
ξ = 1 (CAA 6= 0) ξ = −1 (CBB 6= 0)

Conduction Valence Conduction Valence
TG/BN -3, -2, -1, 0 0, 1, 2, 3 -3, -2, -1 0, 1, 2
BG/BN -1, 0 1, 2 -2, -1, 0 -1, 0, 1
G/BN -1, 0, 1 0, 1 -1, 0 0, 1

Table 6.3: Chern number with CAB 6= 0 and CAB = 0 for the alignment ξ = ±1
.
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Chapter 7

Topological properties of non-Hermitian SSH circuit model

Based on the theoretical development of Chapter 5, we will analyze the topological implications
of our circuit model. Initially, we do an analysis of the topological implications of the frequency
ω in the the non-Hermitian SSH chain model. Then, we will analyze each of the represented
topological properties, such as the topological invariant winding number, the edge states, the skin
effect and the bulk-edge correspondence with periodic boundary conditions.

7.1 Relationship between frequency ω and hoppings

As we saw in Section 5.1 the non-Hermitian SSH model depends on the frequency ω. In Figure
7.1, we show the behavior of the hoppings tAB and tBA as a function of ω according to equation
(5.12).

Figure 7.1: (a) Magnitude and (b) phase of hopping tAB and tBA depending on the values of Ri,
Ci and ω. In the lower plane of each figure we show the magnitude and phase in the R−|ω| plane,
respectively.

It is very interesting that the SSH model of equation (5.9) and its respective solution of ω(k)

in (5.15), has a decay in the magnitude of hoppings tAB and tBA when the frequency ω increases.
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7.2 Non-Hermitian SSH system topology

An equally interesting aspect is that when R increases the magnitude of tAB and tBA decreases,
however, the hoppings rapidly acquire a phase that tends to π/2. Our model also shows that, for
ω close to zero and small values of Ri (compared to capacitance), the behavior of tAB and tBA
hoppings is similar to an Hermitian SSH system.

Although (5.11) is true for natural oscillation modes, hopping exhibits a continuum in complex
space and ω = ωR+ iωI due to freedom in choosing the circuit parameters. In figure 7.2 it is clear
that when ω →∞, the magnitude of hoppings tAB and tBA tend to zero asymptotically [140]. In
the left panel it is observed that when ωI = Im(ω)→ −1 and also ωR = Re(ω)→ 0 the magnitude
of the hopping tends to infinity.

Figure 7.2: Magnitude (right) and phase (left) of hoppings tAB and tBA as a function of the
frequency ω = ωR + iωI .

7.2 Non-Hermitian SSH system topology

A dissipative topolectric model can have real or complex admittance spectra for normal oscil-
lation modes ω(k). The proposed matrix (5.13) allows both spectral types for Λ. Specifically, Λ

is real for the four ω solutions for (5.15) and the parameters described Fig. 7.3; whereas Λ’s can
be complex for the parameters described in Fig. 7.4.

The eigenstates of Y(k) (see equations (5.11) and (5.13)), are such that notation Λi(k), i =

3, 4, 5, 6 refers to the ωi solutions of (5.15). Therefore, Y(k)|ul(k)〉 = Λi,l(k)|ul(k)〉, with l =

1, 2, · · · , 2N where |ψl(k)〉 = |k〉 ⊗ |ul(k)〉 with |ul(k)〉 = al(k)|A〉 + bl(k)|B〉. For a chain of N
unit cells, we can write the following eigenvalue equation



0 tAB 0 0 · · · 0 tBA

tAB 0 tBA 0 · · · 0 0

0 tBA 0 tAB · · · 0 0
...

...
...

...
...

...
...

tBA 0 0 tAB · · · tAB 0





a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

...
a(k)eNik

b(k)eNik


= Λ(k)



a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

...
a(k)eNik

b(k)eNik


. (7.1)
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Chapter 7. Topological properties of non-Hermitian SSH circuit model

Figure 7.3: Real eigenvalues Λ(k) from equation (5.11) for each solution of ω with parameters
R1 = 82.4, R2 = 17.3, C1 = 17.3, C2 = 17.3 and L = 1.4.

Next, we show that our RLC model fits well enough to theoretical topological models. For
example, Fu [141] proposed a model that comprising a binary waveguide array with alternating real
and imaginary couplings, hence tAB is imaginary (R1 � C1) and tBA is real (R2 → 0) in our RLC
circuit model. The physical model proposed by Pocock et al. [124] and subsequently Lieu [142] can
also be adjusted to our proposed circuital model results. The non-Hermitian physical models for
complex hopping that they analyzed, exhibited bulk-edge correspondence when the next nearest
neighbor was zero, i.e., the Hamiltonian diagonal was zero, for any tAB and tBA magnitude and
phase. Next, we will delve into the topological properties of our model.

7.2.1 Topological Winding number and protected edge states

Next, we will talk about the winding number in the non-Hermitian SSH model that we have
presented here. If we write Y(k) as a two band non-Hermitian system

Y(k) = hxσx + hyσy =

(
−C1

η1
− C2

η2
cos k

)
σx +

C2

η2
sin kσy (7.2)

then we can prove that our model has chiral symmetry, which implies that k varies from 0 to 2π
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7.2 Non-Hermitian SSH system topology

Figure 7.4: Complex eigenvalues Λ(k) from equation (5.11) for each solution of ω with parameters
R1 = 3.2, R2 = 2.6, C1 = 3.4, C2 = 3.1 and L = 2.7.

in a closed loop. Indeed

σzY(k)σz = σz

((
−C1

η1
− C2

η2
cos k

)
σx +

C2

η2
sin kσy

)
σz

=

(
C1

η1
+
C2

η2
cos k

)
σx −

C2

η2
sin kσy

= −Y(k).

(7.3)

According equation (2.37), the winding number can be expressed as

µ =
1

2π

∫ 2π

0
dk
Yx∂kYy − Yy∂kYx

Y2
x + Y2

y

, (7.4)

where there is a winding number for each family of normal oscillation frequencies ωi.
We simulate 600 random R1, R2, C1, C2 and L parameters. For each set of parameters, we

compute the evaluated winding number in the allowed solutions of ω. Table 7.1 shows example
winding numbers for a particular parameter set.

The percentage distribution of winding numbers in each solution of ω is shown in Figure 7.5.
We are surprised that solutions ω3 and ω6 have similar winding number distribution. On the other
hand, solution ω5 seems to have a high probability of having winding numbers with values 0 or 1.
Solution ω4 is also interesting because the probability of obtaining a value of 0 or 1 or one other
than these two is practically the same. The study of these probabilities is a valuable source of
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Table 7.1: Circuit parameters with respective winding numbers for each solution ωi(k).

R1 [Ω] R2 [Ω] C1 [F ] C2 [F ] L [H] µ3 µ4 µ5 µ6

1.34 0.17 0.95 0.45 0.81 -1 1 1 0
0.03 0.14 1.50 0.26 0.57 0 0 2 0
1.45 0.14 0.22 0.54 1.11 1 0 0 1
0.05 1.41 0.03 1.34 1.17 2 1 -1 0

study for further developments related to machine learning [143].

Figure 7.5: Percentage distribution of the winding number for each solution of ω, from the random
selection of 600 parameters.

Yin et al. introduced the complex angle tanφ = Yy/Yx to calculate the winding number in
non-Hermitian systems, where φ can be decomposed as φ = φr + iφi and only φr affects the
winding number. Thus,

φr = Re
[
tan−1

(
− tBA sin k

tAB + tBA cos k

)]
(7.5)

for the system proposed here.

In particular, exceptional point in the real parts of Yx and Yy occur at (0, 0) and 1
2π

∮
∂kφrdk

takes integer multiples of 2π, which implies that the winding numbers are integers. Hence we
obtain four possible values for the winding number for each normal oscillation frequency: µ =

{−1, 0, 1, 2}, as shown in Fig. 7.6 by trajectories in the plane Re[Yx], Re[Yy] around the exceptional
point.

Physical meanings for µ = 0 (trivial) and µ = 1 (topological) in a non-Hermitian SSH model
are described elsewhere [81,140,144], but we briefly winding numbers µ = −1 and µ = 2.

The winding number in a 1D topological system characterizes topological properties for the
Z class, which is related to the quantized Zak phase. Therefore, a negative winding number
(µ = −1) represents a skew polarization [145], i.e., occupied bands are negatively polarized, and
hence the admittance matrix winds once in a clockwise direction (considering positive as meaning
counterclockwise), as shown in Fig. 7.6(c). On the other hand, winding number µ = 2 is related to
a topological phase in the SSH model with non-negligible long range hoppings [146] that connects
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7.2 Non-Hermitian SSH system topology

sites within the same sublattice, preserving chiral symmetry and allowing edge states.

Matrix Y(k) represents a non-Hermitian chiral-symmetric system [147], which implies bulk-
edge correspondence [148]. We have shown above that the proposed circuit model’s admittance
matrix adequately represents non-Hermitian SSH system properties. Therefore, non-Hermitian
SSH model hopping properties are preserved in the circuit model by hypothetical hopping electrical
charge on the capacitors.

Numerical simulations verified that (5.15) generates integer winding numbers characteristic
of an extended non-Hermitian SSH model for certain parameters (see Table 7.1). Since ω is a
function of k and the circuit parameters, the function is difficult to simplify or generalize, and
hence so are the hoppings, since they are a function of ω.

Normalized eigenfunction magnitude tends to accumulate on the edge for the simulated system
in Fig. 7.6 in a topological system (µ = 1 or µ = −1), whereas eigenfunction magnitude tends
to zero throughout the chain for an ordinary system (µ = 0). In particular, module absolute
value decays slowly into the bulk when µ = 2 [149]. Thus, bulk-edge correspondence relates the
boundary system winding number to the number of edge protected states, such that the number
of states at each edge = |µ| [148,150], as shown in Fig. 7.6(a).

Bulk-boundary correspondence shown in Fig. 7.6 is justified from previous studies [81, 151]
where the winding number is a topological invariant that characterizes chirality at the exceptional
points.

Figure 7.6: Eigenvector magnitude for the parameter set from Table 7.1, row 4. Each figure
shows the admittance matrix determinant for skin effect existence and the trajectory (clockwise or
counterclockwise) around the exception point for the real part of Y(k) to determine the winding
number. (a)–(d) show low-energy states, but only (a)–(c) have topological edges states and (b) and
(d) show skin effect. (e) shows the counterpart of (b) with small perturbations in some elements
of the circuit around the middle of the chain, where the states of the topological edge (red) remain
stable while the Bloch states (yellow) and the skin effect (blue) are disturbed.
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7.2.2 Topological skin effect

The skin effect is manifested in the location of the bulk eigenstates that crowd the boundaries
for non-reciprocal tight binding lattices with open edges [152], and this non-Hermitian topological
effect can be evaluated on the complex plane [153,154], as we will explain below. By evaluating

w(E0) =
1

2πi

∫ 2π

0
dk

d

dk
log det[Y(k)− E0], (7.6)

the concept can be better understood [153, 154], where k is the momentum and E0 is any point
on the complex energy plane. The non-Hermitian skin effect exists if and only if there is E0 in
the complex energy plane, such that w(E0) 6= 0. Because the trajectory of k from 0 to 2π in
the complex plane of det [Y(k)− E0] is a closed curve, then w(E0) 6= 0 if the trajectory does not
collapse into an arc or a line, that is, the closed curve has a finite area. In our system, considering
the chiral symmetry of the non-Hermitian admittance matrix Y, it is equivalent and convenient
to study directly the trajectory of det [Y(k)] in the complex plane.

Figure 7.6 clearly shows the skin effect for some solutions of natural frequency in the system
with 300 sites and the other parameters as shown in Table 7.1, row 4. The absence or presence
of skin effect clearly corroborates with such theoretical prediction. Note that skin states, even
if located towards the edges, are distinguished from edge states. To this end, in Figure 7.6(e)
we slightly modify the effective jumps tAB and tBA by 5% at the three sites in the center of the
chain compared to the case in Figure 7.6(b). While Bloch and especially the blue skin states are
altered, the red edge topological state remains stable. This is because the edge states, thanks to
the massive edge matching topological protection, are stable against small disturbances. On the
other hand, while the existence of the skin effect has a different topological origin, the state of the
individual skin is not robust against such disturbances.

Considering 1D non-Hermitian admittance matrix Y chiral symmetry, det [Y(k)] trajectory in
the complex plane varies from 0 to 2π. If the closed curve has finite interior area, then there is
a skin effect in the system; otherwise the system has no skin effect, i.e., if det [Y(k)] collapses in
a line. Figure 7.6 shows the skin effect for a system with 300 sites and the other parameters as
shown Table 7.1, row 4 occurs for some natural frequency solutions.
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Chapter 8

Papers and events

8.1 Paper I

“Topological insulators in spintronics” Published in Revista de la Facultad de Ciencias,
Volumen 8, Número 1, p. 100-123, 2019. ISSN electrónico 2357-5549. ISSN impreso

0121-747X.
https://doi.org/10.15446/rev.fac.cienc.v8n1.74526

In this work, topological insulators are considered as materials for the development of spin-
tronic devices. First a all, we introduce topological insulator term and we explain its associated
properties. Subsequently, the concepts of spin currents on which spintronics is based are studied,
then we show some theoretical and experimental developments that have been carried out with
the topological insulators. Finally, there is an overview of the challenges and opportunities for
the future.

8.2 Paper II

“Topological phases in N-layer ABC graphene/boron nitride moiré superlattices” Published in
Physical Review B, American Physical Society. Volume 103, Issue 16, p. 165112,

April, 2021.
https://link.aps.org/doi/10.1103/PhysRevB.103.165112

Rhombohedral N = 3 trilayer graphene on hexagonal boron nitride (TLG/BN) hosts gate-tunable,
valley-contrasting, nearly flat topological bands that can trigger spontaneous quantum Hall phases
under appropriate conditions of the valley and spin polarization. Recent experiments have shown
signatures of C = 2 valley Chern bands at 1/4 hole filling, in contrast to the predicted value of
C = 3. We discuss the low-energy model for rhombohedral N-layer graphene (N = 1, 2, 3) aligned
with hexagonal boron nitride (hBN) subject to off-diagonal moire vector potential terms that can
alter the valley Chern numbers. Our analysis suggests that topological phase transitions of the
flat bands can be triggered by pseudomagnetic vector field potentials associated to moire strain
patterns, and that a nematic order with broken rotational symmetry can lead to valley Chern
numbers that are in agreement with recent Hall conductivity observations.
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8.3 Paper III

8.3 Paper III

“Topological circuit of a versatile non-Hermitian quantum system”. Published in SCIENCE
CHINA Physics, Mechanics & Astronomy, DOI: 10.1007/s11433-021-1783-3

http://engine.scichina.com/doi/10.1007/s11433-021-1783-3

We propose an RLC electrical circuit to theoretically analyse and fully simulate a new type
of non-Hermitian Su-Schrieffer-Heeger (SSH) model with complex hoppings. We formulate its
construction and investigate its properties by taking the advantage of the circuit’s versatility.
Rich physical properties can be identified in this system from the normal modes of oscillation
of the RLC circuit, including the highly tunable bulk-edge correspondence between topological
winding numbers and edge states and even the non-Hermitian skin phenomenon originated from
a novel complex energy plane topology. The present study is able to show the wide and appealing
possibility of electric circuits in exploring topological physics and is readily generalizable to a
plenty of both Hermitian and non-Hermitian nontrivial systems.

8.4 Event I

Name of the event: APS March Meeting 2021
Event date: March 15 - 19, 2021.
Host country: United States
Talk name: Topological phases in N-layer ABC-graphene boron-nitride moire superlattices
Talk date: March 16, 2021
More information in:

• https://meetings.aps.org/Meeting/MAR21/Session/E46.7

• http://meetings.aps.org/Meeting/MAR21/APS_epitome

8.5 Event II

Name of the event: 2021 KPS Spring Meeting
Event date: April 21 - 23, 2021.
Host country: South Korea
Talk name: Topological phases in N-layer rhombohedral graphene boron-nitride moire superlat-
tices
Talk date: April 22, 2021
More information in:

• http://www.kps.or.kr/conference/event/content/content.php?_mid=1140,1154

• http://www.kps.or.kr/conference/event/content/program/search_result_abstract.

php?id=3185&tid=367

• http://www.kps.or.kr/conference/event/content/program/search_result_session.php?

id=367#
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Chapter 8. Papers and events

Note: This work was selected to participate in the category "Excellent Presentation Prize"

8.6 Event III

Name of the event: I Postgraduate Symposium of the University of Antioquia
Event date: June 15 - 17, 2021
Host country: Colombia
Talk name: Topological circuit of a non-Hermitian quantum system
Talk date: June 15, 2021
More information in:

• https://bit.ly/3iCantI

• https://www.facebook.com/fcenudea/videos/338267381267099

• https://www.facebook.com/fcenudea/photos/a.246666345454728/6186494828138487/

Note: This work was the winner of the first place for best presentation.
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Chapter 9

Summary and outlook

Two scientific contributions were presented in this thesis, both related to topological aspects
of the subject. The main conclusions and reflections of these works are expressed below.

9.1 About Chern diagrams in N-Layer ABC-graphene boron-nitride
moiré superlattices

Regarding topological phases in N -layer ABC-graphene boron-nitride moiré superlattices, the
Chern bands are found for either the valence or conduction bands depending on moiré pattern
potential [111]. We have verified up to trilayers that, depending on the system parameters the
Chern number is defined as C = Nνξδsign(∆)·ξ,b (see Section 6).

The Berry curvature hot spots near the mBZ boundaries and trigonal warping band edges
are essential for the non-zero and zero Chern numbers. The zero Chern number is due to the
exact cancellation of opposite Berry curvatures at mBZ boundaries that to trigonal warping band
edges exactly cancel out. And that unequal weights at these band edges gives out the non-
zero Chern numbers. The different Chern numbers within the same direction of the electric
field with the inclusion of off-diagonal terms can be quantified with the Chern weights at the
primary gap (trigonal warping band edges) and the secondary gaps (mBZ boundaries). In previous
studies [111], it is considered that the primary Chern weight wP ∼ sign(∆)bν N/2 near each valley
whose sign depends on sign(∆), the hole or electron band character b = ±1, as well as valley
ν = ±1. On the other hand, due to moire patterns, the K and K ′ principal valleys are having
gaps near the mBZ boundaries with Chern weights we/hS , where weS or whS are the secondary Chern
weights for electron and hole bands.

According to what we explained in Chapter 6, the secondary Chern weight can be altered by
the introduction of the off-diagonal interlayer coherent moiré pattern from the magnitude CAB
and the phase φAB and this allows to trigger topological phase transitions, like the ones we present
in sections 6.1, 6.2 and 6.3.

9.2 About the topological analysis of a circuit representation of a
non-Hermitian SSH model

We proposed an electrical circuit model with R, L and C elements that corresponds to a
non-Hermitian quantum model similar to SSH with complex hoopings and it is suitable for both
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9.2 About the topological analysis of a circuit representation of a non-Hermitian SSH
model

periodic and open boundary conditions. The proposed model is based on natural oscillation
frequencies as a function of the circuit parameters, as we explained in chapters 5 and 7.

Our circuit model, accurately exhibits several interesting topological properties, such as in-
teger winding number, bulk-edge correspondence, and non-Hermitian skin effect. Therefore, the
current study on topolectric circuits exemplifies a promising path that relies on the correspon-
dence between readily available electrical circuits and the modeling of topological phenomena in
quantum systems.

One of the advantages of the model is that the intra and inter site hoppings can be configured
independently, unlike other similar models. This allows high versatility and the theoretical and
experimental development of new topological properties.

We worked with a non-Hermitian system with complex hopping amplitudes that converges
to a Hermitian system when the resistance disappears. Complex hopping is very useful to help
understand different physical phenomena in non-Hermitian systems [124, 126]. The circuit that
we propose here provides a useful tool to analyze such systems and will serve to develop more
interesting circuits that allow exploring non-Hermitian phenomena.

The existence of the winding number in our model is guaranteed by the existence of chiral
symmetry, however, the non-Hermiticity generates novel winding numbers (µ = −1 and µ = 2)
that preserve the bulk-edge correspondence. With our model we have found topological (µ = 1)
and trivial (µ = 0) configurations, however, other configurations have appeared that produce
novel winding numbers. Specifically, for µ = −1 the zero-state densities accumulate at the edge
while at bulk it is zero. When µ = 2 the magnitude of the wavefunction decays slowly towards
the center of the bulk.
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