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Abstract. We present in this paper ultimate boundedness results for a third order nonlinear
matrix differential equations of the form

...
X +AẌ + BẊ + H(X) = P (t,X, Ẋ, Ẍ),

where A,B are constant symmetric n × n matrices, X, H(X) and P (t,X, Ẋ, Ẍ) are real
n×n matrices continuous in their respective arguments. Our results give a matrix analogue
of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case
in which we do not necessarily require that H(X) be differentiable.
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1. INTRODUCTION

Let M denote the space of all real n × n matrices, IRn the real n-dimensional

Euclidean space and IR the real line −∞ < t < ∞. We shall be concerned here with

certain properties of solutions of differential equations of the form

...

X +AẌ + BẊ + H(X) = P (t,X, Ẋ, Ẍ) (1)

where X : IR −→ M is the unknown, A,B ∈ M are constants, H : M −→M and

P : IR ×M×M×M −→M, and the dots indicate differentiation with respect to

t. We shall assume throughout that H ∈ C(M) and P ∈ C(IR×M×M×M).

Definition 1. The solutions of (1) will be said to be ultimately bounded if there

exists a constant D > 0 and if corresponding to any α > 0, there exists a T (α) > 0

such that for

{‖X(t0)‖2 +‖Ẋ(t0)‖2 +‖Ẍ(t0)‖2} < α ⇒ {‖X(t)‖2 +‖Ẋ(t)‖2 +‖Ẍ(t)‖2} < D

for t0 ≥ 0 and t ≥ t0 + T (α).

The object of this paper is to prove ultimate boundedness results under some

specified conditions on H(X) and P (t,X, Ẋ, Ẍ). Specifically, unlike [6], we shall only

assume that H(X) ∈ C(M) and that for any X, Y ∈ M, there exists an n × n real

continuous matrix C(X,Y ) such that

H(X) = H(Y ) + C(X, Y )(X − Y ). (2)

For the special case in which (1) is an n−vector equation (so that X : IR −→ IRn,

H : IRn −→ IRn and P : IR × IRn × IRn × IRn −→ IRn) a number of boundedness,

stability and existence of periodic solutions results have been established, see [1, 2,

3, 4, 5] and the references contained therein. The conditions obtained in each of

these previous investigations are generalizations of the well-known Routh-Hurwitz

conditions

a > 0, c > 0, ab− c > 0 (3)
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for the stability of the trivial solution of the linear differential equation

...
x +aẍ + bẋ + cx = 0 (4)

with constant coefficients, see [7].

The result in this paper is the matrix analogue of the results obtained in [1], [4]

and an extension of the matrix result obtained in Tejumola [8] to (1).

The motivation for the present investigation has come from the papers mentioned

above. It should be also noted that the condition imposed on H(X) here is different

from that imposed in [6].

2. NOTATIONS

Some standard matrix notation will be used. For any X ∈ M, XT and xij i, j =

1, 2, . . . , n denote the transpose and the elements of X respectively while (cij) with

cij =
n∑

`=1

xi`y`j will denote the product matrix XY of the matrices X, Y ∈ M.

Xi = (xi1, xi2, . . . , xin) and Xj = (x1j, x2j, . . . , xnj) stand for the ith row and jth

column of X respectively and X = (X1, X2, . . . , Xn) is the n2 column vector consist-

ing of the n rows of X.

Corresponding to the constant matrix A ∈ M we define an n2 × n2 matrix Ã

consisting of n2 diagonal n × n matrix(aijIn) (In being the unit n × n matrix) and

such that (aijIn) belongs to the ith− n row and jth− n column (that is, counting n

at a time) of Ã. In the special case n = 2, Ã is the 4× 4 matrix




a11I2 a12I2

a21I2 a22I2


 .

Next we introduce an inner product 〈., .〉 and a norm ‖ · ‖ on M as follows. For

arbitrary X, Y ∈ M, 〈X, Y 〉 = trace XY T . It is easy to check that 〈X, Y 〉 = 〈Y, X〉
and that ‖X − Y ‖2 = 〈X − Y, X − Y 〉 defines a norm of M. Indeed, ‖X‖ = |X|n2

where | · |n2 denotes the usual Euclidean norm in IRn2
and X ∈ IRn2

is as defined

above.
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Lastly the symbol δ, with or without subscripts, denote finite positive constants

whose magnitudes depend only on A,B, H and P . Any δ, with a subscript, retains

a fixed identity throughout while the unnumbered ones are not necessarily the same

each time they occur.

3. STATEMENT OF RESULTS

It will be assumed throughout the sequel that H ∈ C(M) and that

P ∈ C(IR×M×M×M).

Our main result in this paper is the following, which is a matrix analogue of results

in [1], [4].

Theorem 1. Let H(0) = 0 and suppose that

(i) there exists an n × n real continuous matrix C(X, Y ) for any X,Y ∈ M such

that (2) is satisfied;

(ii) the matrices Ã, B̃, C̃(X,Y ) are associative and commute pairwise. The eigen-

values λi(Ã) of Ã, λi(B̃) of B̃ and λi(C̃(X, Y )) of C̃(X, Y ) (i = 1, 2, . . . , n2)

satisfy

0 < δa ≤ λi(Ã) ≤ ∆a (5)

0 < δb < λi(B̃) ≤ ∆b (6)

0 < δc < λi(C̃(X,Y )) ≤ ∆c (7)

where δa, δb, δc, ∆a, ∆b, ∆c are finite constants. Furthermore,

∆c ≤ kδaδb, (8)

where k = min

{
α(1− β)δb

δa(α + ∆a)2
;

α(1− β)δa

2(δa + 2α)2

}
(9)

α > 0, 0 < β < 1 are some constants,

(iii) P satisfies

‖P (t,X, Y, Z)‖ ≤ δ0 + δ1(‖X‖+ ‖Y ‖+ ‖Z‖) (10)
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for arbitrary X, Y, Z ∈ M, where δ0 ≥ 0, δ1 ≥ 0 are constants and δ1 is sufficiently

small.

Then every solution X(t) of (1) satisfies

‖X(t)‖ ≤ ∆1, ‖Ẋ(t)‖ ≤ ∆1, ‖Ẍ(t)‖ ≤ ∆1 (11)

for all t sufficiently large, where ∆1 is a positive constant the magnitude of which

depends only on δ0, δ1, A, B, H and P .

The condition (10) can be relaxed to

‖P (t,X, Y, Z)‖ ≤ θ1(t) + θ2(t)(‖X‖2 + ‖Y ‖2 + ‖Z‖2)
1
2 (12)

where θ1(t) and θ2(t) are continuous functions of t satisfying

0 ≤ θ1(t) < α0 for all t in IR (13)

and

0 ≤ θ2(t) < α1 for all t in IR. (14)

It will, however, be convenient to deal first with Theorem 1 in its present form and

later (see Section 6) to indicate what modification are necessary to convert the meth-

ods to the case which the matrix P satisfies (12).

We can obtain some other results on Eq. (1). A particular case which extends

Corollary 1 in [1] to the case considered is the following:

Corollary 1. Suppose that P = 0 and that the conditions (i) and (ii) of Theorem

1 above hold. Suppose further that H(0) = 0, then every solution of (1) satisfies

‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)‖2 → 0 (15)

as t →∞.
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4. SOME PRELIMINARY RESULTS

In this section, we shall state some standard algebraic results required in the

proofs.

Lemma 1. [1] Let D be a real symmetric `× ` matrix, then for any X ∈ IR` we

have

δd‖X‖2 ≤ 〈DX,X〉 ≤ ∆d‖X‖2,

where δd, ∆d are the least and greatest eigenvalues of D, respectively.

Lemma 2. [2] Let Q,D be any two real ` × ` commuting symmetric matrices.

Then

(i) the eigenvalues λi(QD) (i = 1, 2, . . . , `) of the product matrix QD are all real

and satisfy

max
i≤j,k≤`

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤`

λj(Q)λk(D);

(ii) the eigenvalues λi(Q + D) (i = 1, 2, . . . , `) of the sum of matrices Q and D are

real and satisfy

{
max
i≤j≤`

λj(Q) + max
1≤k≤`

λk(D)
}
≥ λi(Q + D) ≥

{
min
1≤j≤`

λj(Q) + min
1≤k≤`

λk(D)
}

.

5. PROOF OF RESULTS

Our main tool in the proof of the results is the scalar Lyapunov function

V : M×M×M→ IR

adapted from [4] and defined for any function X, Y, Z ∈M by

2V = {〈β(1− β)BX, BX〉+ 〈2αA−1BY, Y 〉+ 〈βBY, Y 〉
+〈αA−1Z, Z〉+ 〈α(Z + AY ), Y + A−1Z〉
〈Z + AY + (1− β)BX, Z + AY + (1− β)BX〉}

(16)
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where α > 0, 0 < β < 1 are some constants.

Lemma 3. Assume that all the conditions on matrices A,B and H(X) in Theo-

rem 1 are satisfied. Then, there exist positive constants δ2 and δ3 such that

δ2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) ≤ 2V ≤ δ3(‖X‖2 + ‖Y ‖2 + ‖Z‖2). (17)

Proof of Lemma 3. See [6, pages 191-192].

Proof of Theorem 1

Let us for convenience replace Eq. (1) by the equivalent system of differential

equation
Ẋ = Y

Ẏ = Z

Ż = −AZ −BY −H(X) + P (t,X, Y, Z).

(18)

To prove our results it therefore suffices to prove that

‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≤ ∆1

for any solution (X, Y, Z) of (18).

The proof of the ultimate boundedness result depends on our being able to prove

that V satisfies

(i) V (X, Y, Z) →∞ as ‖X‖2 + ‖Y ‖2 + ‖Z‖2 →∞ and

(ii) dV
dt
≤ −1

along paths of any solution (X, Y, Z) of (18) for which ‖X‖2 + ‖Y ‖2 + ‖Z‖2 is large

enough.

Property (i) is obviously taken care by Lemma 3. Thus, we are only left to prove

property (ii) for V. Let (X, Y, Z) be any solution of (18). Then, the total derivative

of V with respect to t along this solution path is

V̇ = −U1 − U2 − U3 + U4 (19)



90

where

U1 = 〈1− β

2
BX, H(X)〉+ 〈βABY, Y 〉+ 〈α

2
Z, Z〉

U2 = 〈1− β

2
BX, H(X)〉+ 〈αZ,Z〉+ 〈(A + αI)Y, H(X)〉

U3 = 〈1− β

2
BX, H(X)〉+ 〈α

2
Z, Z〉+ 〈(I + 2αA−1)Z, H(X)〉

U4 = 〈(1− β)BX + (A + αI)Y + (A + αI)Y + (I + 2αA−1)Z, P (t,X, Y, Z)〉.
Because of the representation of H(X) as

H(X) = H(0) + C(X, 0)X (20)

from (2) and if H(0) = 0 with condition (7) satisfied, we obtain

〈1− β

2
BX, H(X)〉 = 〈1− β

2
BX, C(X, 0)X〉

=
1− β

2

n∑

i=1

|BC(X, 0)X i|2n

≥ 1− β

2
δbδc‖X‖2,

(21a)

〈βABY, Y 〉 = β
n∑

i=1

|ABY i|2n
≥ βδaδb‖Y ‖2,

(21b)

and

〈α
2
Z,Z〉 =

α

2

n∑

i=1

|Zi|2n ≥
α

2
‖Z‖2. (21c)

The estimates above are valid since
n∑

i=1

|X i|2n =
n∑

i=1

|Xi|2n = |X|2n2 for any X ∈M.

Combining these estimates (21a)-(21c), we clearly have

U1 ≥ 1

2
(1− β)δbδc‖X‖2 + βδaδc‖Y ‖2 +

α

2
‖Z‖2

≥ δ4(‖X‖2 + ‖Y ‖2 + ‖Z‖2),

(22)

where δ4 = min 1
2
{(1− β)δbδc, 2βδaδc, α}.

Next, we give estimates for 〈(A + αI)Y, H(X)〉 and 〈(I + 2αA−1)Z, H(X)〉.
For some k1 > 0, k2 > 0, conveniently chosen later, we have

〈(A + αI)Y,H(X)〉 = ‖k1(A + αI)
1
2 Y + 2−1k−1

1 (A + αI)
1
2 H(X)‖2

−〈k2
1(A + αI)Y, Y 〉 − 4−1k−2

1 〈(A + αI)H(X), H(X)〉
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and

〈(I + 2αA−1)Z, H(X)〉 = ‖k2(I + 2αA−1)
1
2 Z + 2−1k−1

2 (I + 2αA−1)
1
2 H(X)‖2

−〈k2
2(I + 2αA−1)Z,Z〉

−〈4−1k−2
2 (I + 2αA−1)H(X), H(X)〉,

thus,

U2 = ‖k1(A + αI)
1
2 Y + 2−1k−1

1 (A + αI)
1
2 H(X)‖2

+〈4−1(1− β)BX − 4−1k−2
1 〈(A + αI)H(X), H(X)〉

+〈[αB − k2
1(A + αI)]Y, Y 〉,

and
U3 = ‖k2(I + 2αA−1)

1
2 Z + 2−1k−1

2 (I + 2αA−1)
1
2 H(X)‖2

+〈4−1(1− β)BX − 4−1k−2
2 (I + 2αA−1)H(X), H(X)〉

+〈[α
2
I − k2

2(I + 2αA−1)]Z,Z〉.
By Lemmas 1 and 2, and using (20), we obtain

U2 ≥ {XT [4−1(1− β)B̃ − 4−1k−2
1 (αĨ + Ã)C̃(X, 0)]C̃(X, 0)X

+Y T [αB̃ − k2
1(αĨ + Ã)]Y }

and
U3 ≥ {XT [4−1(1− β)B̃ − 4−1k−2

2 (Ĩ + 2αÃ−1)C̃(X, 0)]C̃(X, 0)X

+ZT [
α

2
B̃ − k2

2(Ĩ + 2αÃ−1)]Z}
Furthermore, by using Lemmas 1 and 2, and (5)-(7), we obtain

U3 ≥ {1

4
δc

[
(1− β)δb − k−2

2 (1 + 2αδ−1
a )∆c

]
‖X‖2 +

[
α

2
− k2

2(1 + 2αδ−1
a )

]
‖Z‖2}

Thus, we obtain, for all X, Y in M,

U2 ≥ 0 (23a)

if k2
1 ≤

αδb

α + ∆a

with

∆c ≤ k2
1(1− β)δb

(α + ∆a)
≤ α(1− β)δ2

b

(α + ∆a)2
, (24a)

and for all X, Z in M,

U3 ≥ 0 (23b)
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if k2
2 ≤

αδa

2(2α + δa)
with

∆c ≤ k2
2(1− β)δaδb

(2α + δa)
≤ α(1− β)δ2

aδ
2
b

2(2α + δa)2
. (24b)

Combining all the inequalities in (23) and (24), we have for all X,Y, Z in M, U2 ≥ 0

and U3 ≥ 0, if

∆c ≤ kδaδb

with

k = min

{
α(1− β)δb

δa(α + ∆a)2
;

α(1− β)δa

2(2α + δa)2

}
< 1.

Finally, we are left with U4. Since P (t,X, Y, Z) satisfies inequality (10), by Schwarz’s

inequality, we obtain

|U4| ≤ {(1− β)∆b‖X‖+ (α + ∆a)‖Y ‖+ (1 + 2αδ−1
a )‖Z‖}‖P (t,X, Y, Z)‖

≤ δ5(‖X‖+ ‖Y ‖+ ‖Z‖)[δ0 + δ1(‖X‖+ ‖Y ‖+ ‖Z‖)]
≤ 3δ1δ5(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + 3

1
2 δ0δ5(‖X‖2 + ‖Y ‖2 + ‖Z‖2)

1
2 ,

(25)

where δ5 = max{(1− β)∆b; α + ∆a; 1 + 2αδ−1
a }.

Combining inequalities (22), (23) and (25) in (19), we obtain

V̇ ≤ −2δ6(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + δ7(‖X‖2 + ‖Y ‖2 + ‖Z‖2)
1
2 , (26)

where δ6 = 1
2
(δ4 − 3δ1δ5), δ1 < 3−1δ−1

5 δ4, δ7 = 3
1
2 δ0δ5.

If we choose (‖X‖2 + ‖Y ‖2 + ‖Z‖2)
1
2 ≥ δ8 = δ7δ

−1
6 , inequality (26) implies that

V̇ ≤ −δ6(‖X‖2 + ‖Y ‖2 + ‖Z‖2). (27)

Then, there exists δ9 such that

V̇ ≤ −1 if ‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≥ δ2
9.

The remainder of the proof of Theorem 1 may now be obtained by the use of the esti-

mates (17) and (27) and an adaptation of the Yoshizawa [9] type reasoning employed

in [4]. 2
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6. THE OTHER FORM OF P

We can now turn to the case mentioned in Section 3, in which the matrix P

satisfies inequality (12) instead of (10). The proof of our result in this case follows

the lines indicated in Section 5 above, except for some minor modifications. The main

modification occurs in our estimate for |U4| defined in (19). If matrix P (t,X, Y, Z)

satisfies inequality (12), then

|U4| ≤ δ10(‖X‖2 + ‖Y ‖2 + ‖Z‖2)
1
2‖P (t, X, Y, Z)‖

≤ δ10

{
θ2(t)(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + θ1(t)(‖X‖2 + ‖Y ‖2 + ‖Z‖2)

1
2

}
,

where

δ10 = 3
1
2 max{(1− β)∆b; α + ∆a; 1 + 2αδ−1

a }.

Now, by (13), δ10θ1(t) < δ10α0 and by (14), δ10θ2(t) < δ10α1 for all t in IR. Thus, we

have

V̇ ≤ −2δ11(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + δ12(‖X‖2 + ‖Y ‖2 + ‖Z‖2)
1
2 ,

where δ11 = 1
2
(δ4 − δ10α1), α1 < δ4δ

−1
10 and δ12 = δ10α0. Following the procedure

indicated in Section 5, we then conclude that V̇ ≤ −1 for (‖X‖2+‖Y ‖2+‖Z‖2)
1
2 ≥ δ13.

7. PROOF OF COROLLARY 1

If P = 0, then in the proof of Theorem 1, U4 = 0 and if hypotheses (i) and (ii) of

Theorem 1 hold then we have

V̇ ≤ −δV (t),

for some constant δ > 0. By integrating and with the aid of inequalities (17), we can

easily conclude that (15) is valid as t →∞. This completes the proof of Corollary 1.

2
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