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Director: PhD. Álvaro Jaramillo Duque, PhD. Juan Bernardo Cano

Universidad de Antioquia
Facultad de Ingenierı́as
Maestrı́a en Ingenierı́a

Medellı́n
2022

mailto:afernando.perez@udea.edu.co


Citar/How to cite [1]

Referencia Bibtex @mastherthesis{Pérez2022,
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ABSTRACT

This report proposes a strategy that determines the coverage path in unmanned air vehicles over Photo-
voltaic (PV) plants. The report evaluates three image analysis methods for delineating PV plants from
images in a database, also assesses three coverage path planning methods, and checks the coverage
path planning methods implemented in two UAVs to cover three PV plants in the Gazebo simulation
environment. The manuscript consists of 8 chapters and two of these are previously published journal
articles.
The first chapter evaluates some of the image analysis or computer vision methods for the delimitation
of photovoltaic plants from a database, existing in the literature of the state of the art. The use of a
convolutional neural network structure is proposed to perform the extraction of the PV plant (semantic
segmentation) using the u-net model and then comparing the results with the models proposed by other
authors. Finding that the u-net model has a more robust performance according to the most used standard
metrics for the task, with respect to the other proposed methods.
The second chapter specified a method for coverage path planning in geometric areas of photovoltaic
plants. Three CPP methods with several performance metrics were programmed, three simulate PV plants
were modeled and two UAVs were selected. Six experiments were carried out with each PV plant varying
the CPP width. From the results obtained in these experiments, one of the metrics was selected and
interpolated with respect to energy consumption, a study of energy consumption was carried out for each
of these possibilities, where the CPP with the lowest energy consumption is the Boustrophedon exact cell
decomposition when it has the widths in a range between 0 and 7 meters, on the other hand, the Grating
Based Wavefront Coverage methods has the lowest energy consumption when the CPP width is greater
than 7 meters.
Concluding that UAVs with a short flight time from 10 to 15 minutes, can be used for the inspection of
small PV plants (such as roofs, rooftops, canopies, and facades), where energy consumption is enough to
do the inspection and return home, as well as, UAVs such as the Typhoon with up to 25 minutes of flight
are appropriate for larger photovoltaic plants, also some other results were obtained from the experiments
in Gazebo simulation environment.
The information generated with this work could be valuable for the inspection of photovoltaic plants, with
cameras of UAV, whose resolution is less than 12 Megapixels, in addition, the results obtained served to
identify a set of recommendations for future work with UAVs in Operation and maintenance (O&M) of
PV plants.

Keywords: Deep Learning (DL); Unmanned Aerial Vehicle (UAV); image-processing; image segmenta-
tion; semantic segmentation; Photovoltaic (PV) plants; Coverage Path Planning (CPP)
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I. INTRODUCTION

This work intends to present a novel approach for a future inspection of photovoltaic plants with unmanned
aerial vehicles (UAV), since the use of these robots in this context has been in the focus of research groups.
Similarly, The Research Group in Efficient Energy Management (GIMEL) does not want to be left out of
this context, therefore considering the growth and the importance of photovoltaic energy, that these have
been experiencing lately worldwide and regionally, it is expected that the operation and maintenance of
these plants, will be a primary factor to maintain production in optimal conditions, since the number of
problems related to poor production have relationship with the installation site, caused by problems such
as dirt and the environment, as a consequence these tend to grow. To ensure the reliability of these plants,
UAVs are used in operation and maintenance (O&M).
This work has focused on finding an automatic coverage path planning (CPP) strategy combining image
analysis to perform inspection of a PV plant as used in other of robotics application fields , the result to
the research question, What automatic coverage path planning strategy would be the most suitable when
inspecting PV plant. Because PV plant inspections require good resolution quality when performing the
task and CPPs could help to solve this problem.
As a result of experimentation with various PV plant images, CPPs and UAVs in the Gazebo simulation
environment and the ROS framework, a roadmap was found that could be used to implement a CPP in a
real experiment on any type of PV plant.
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II. PROBLEM STATEMENT

Lately, the world has been transitioning towards renewable energy sources, due to the necessity to decrease
environmental impact [1], diversify energy sources, safeguard the world energy supply. As result there
has been an unprecedented growth of renewable energies in the world. In the year 2015 the market share
of renewable energy was a notable 14% and it is expected a 63% market share by 2050 [2]. In 2017, one
important renewable energy, the photovoltaic (PV) solar energy underwent an expansion of 98 GW while
wind energy 52 GW to a global level. Solar energy has had an annual growth of 25% on a global scale.
As an example of this, in 2017 there were 404 GW of installed power, however, this number increased
to 505 GW in 2018 [3].
Colombia had an electricity generation capacity in the national interconnected system of 17,603.61
MW (Net effective capacity) in September 2020, according to XM [4]. 11,937.09 MW corresponds to
hydroelectricity; 5,451.34 MW to thermal generation; 149.00 MW to co-generation; 18.42 MW to wind
generation and 47.76 MW to solar energy. This shows the great dependence that Colombia has on hydraulic
energy sources, thermal energy and the scarce investment in non-conventional sources of renewable energy
[5].
The Non-Conventional Sources of Energy (FNCER standing for ”Fuentes No Convencionales de Energı́a”)
in Colombia have had a 48% average growth from the year 2000 to the year 2017 [3]. Statistics from
Unidad de Planeación Minero Energética de Colombia (UPME), show that during 2019 (cut to October
31st) the number of FNCER requests were 239. The number was higher that year when compared to the
215 requests in 2018 and 194 in 2017. The 239 requests received in that period show the prevalence of
solar systems (219), and also the preponderance of small scale systems (less than 1MW) [6]. In short,
these data show an increase in the total solar panels installed, many of them exploiting the roofs.
On the other hand, as energy projects increase so does the demand. The statistics of energy consumption
in Colombia show that an average increase of 2.99% could be achieved in the period from 2016 to 2032
in the average scenario, as shown in Figure 1.

Fig. 1. Electricity demand projection in Colombia3

.
3Image of own creation
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In order to face the growing consumer demand, it has been proposed the implementation of decentralized
generation systems which facilitates the production of electricity in different areas, and which will be
available to consumers [7]. In addition, the prices of PV plants have experienced a decreasing curve of
24% in the last 39 years due to the increase in their manufacturing volume. Also, the facilities produce
clean net electricity for approximately 95% of their useful life, assuming that the useful life is 30 years or
more [8]. Together, these systems installed in a home could, for example, provide one third of the energy
needed in a day, changing from the public network to another source the power consumed by electrical
appliances [9]. According to the study carried out by [10], it was concluded that the most profitable
option for Colombian households is the implementation of residential PV plants without batteries or
storage technologies. In this way, the user saves money while producing electric power.
PV plants can be installed on rooftops of residential or commercial buildings [11]. Likewise, they have
been employed on farms to power the facilities with renewable sources [12]. These photovoltaic systems
have several advantages such as the type of technology, the easiness of installation, and the time needed
to recover the investment, currently ranges from 0.7 to 1.5 years [8], which makes it a profitable business.

One of the challenges that PV plants present on rooftops, and farms is access. Therefore, maintenance,
and detection of possible problems in the panels such as manufacturing defects, tanning or discoloration,
cracked or burned cells, corrosion, white spots, broken parts, snail traces, bubbles, joint failures, dirty
spots, and other types of defects [13] are not easy to detect. Additionally, failures caused by weather, and
pollution must be considered as they produce an indirect effect in increasing degradation, and decrease
the energy production of the panels which affects the energy performance of the PV plant [14]. Some of
these problems are addressed in this paper [15].
In order to solve these problems, research groups have been working on the development of automated
systems with robots to cope with the effects caused by soiling, in fact increasing the reliability and
efficiency of PV plants. Such as, in [16] was found 2,678 families of patents related to panel cleaning
technologies in the period ranging from 1962 to September 2018. The vast majority, that is 65% of them,
were patents on robots that work on top of the panel; 18% other type of cleaning scheme; 10% cleaning
trucks; 6% autonomous cleaning robots and only 1% of these patent families included some type of
aircraft that cleans the panel. Even though, checking and cleaning PV panels is a simple task that can be
done manually by a technician using a cloth and a little of detergent [17]. PV installations in general are
distributed over large geographic areas or are located in places difficult to access. This means that manual
inspection and monitoring of the operating conditions of these PV plants can take a long time. Trained
and certified personnel are needed to carry out this type of work, when it is at heights, a practice that
puts the integrity of people, equipment and photovoltaic installations at risk [18].

Finally, cleaning and inspection techniques of photovoltaic systems could be combined to achieve highly
complex and autonomous equipment, which not only allows the identification of faults in the panels but
can also try to solve faults due to dirt, perform a cleaning of the cell, all automatically [19]. Within this
group of projects, which is still under development, there are several types of designs; among these is
the use of drones to perform the identification of dirt and faults as shown in [20] and then perform the
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cleaning of the cells as indicated in [21]. However, within this task, there may be several challenges,
one of which is that the resolution of the images and the correct flight plan are substantial to improve
the quality of these images, a key factor if you do not have a high-resolution camera to find defects
in photovoltaic systems [14], [22]. Consequently, an automatic coverage path planning strategy would
be suitable when inspecting the PV plant, considering the width, height, and flight speed of the CPP to
perform an automatic inspection of PV plants. i.e., when imaging from an UAV over PV plant [23], since
most defects occur on at centimeter or millimeter scale, and this poses a challenge to currently available
sensors. [24].



III. OBJECTIVES

A. GENERAL OBJECTIVE

To propose a strategy that determines the coverage path for unmanned aerial vehicles, using the delimitation
of photovoltaic installations through image analysis in a suitable simulation environment, for a future
inspection of solar panels.

B. SPECIFIC OBJETIVES

• To Evaluate image processing techniques for the extraction of area boundaries of photovoltaic
installations.

• To specify a method for coverage routes planning over the geometric area of the PV installations.
• To evaluate the system performance in the simulation environment, verifying its operation in at

least two PV installations and creating a set of recommendations to deploy the system based on a
simulation environment.
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IV. METHODOLOGY

For the development of this project, the methodology implemented was that of modular work, which
means that first each of the parts of the system was worked on individually and finally, when each of
the parts worked correctly, they were integrated to have the overall system in operation, as shown in the
Figure 2, where the first specific objective of the work is shown in green, the second objective is shown
in orchid and the third in olive green, each with the necessary steps for its fulfillment.

Fig. 2. Problem Tree4
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A. Structure of the report

This work is divided into ten chapters. The first chapter was the Abstract, the second was the Introduction,
the third was the problem statement, the fourth was the objectives, the fifth was the methodology used to
solve the problem. The fifth chapter consists of an article already published in MDPI, where the fulfillment
of objective 1 of the proposal is evidenced. The sixth chapter was also published (in the journal Applied
Science of MDPI) where objectives two and three of the proposal are covered. The seventh chapter
(results and discussion) is a summary of the work to clarify the reader’s doubts regarding the scope and
recommendations for future activities that can be carried out as a result of this project and the last chapter
is the general conclusions; it presents the conclusions on the work carried out.

4All the following images are my own creation
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V. AUTOMATIC BOUNDARY EXTRACTION FOR PHOTOVOLTAIC PLANTS USING THE DEEP LEARNING

U-NET MODEL

A. abstract

Nowadays, the world is in a transition towards renewable energy solar being one of the most promising
sources used today. However, Solar Photovoltaic (PV) systems present great challenges for their proper
performance such as dirt and environmental conditions that may reduce the output energy of the PV
plants. For this reason, inspection and periodic maintenance are essential to extend useful life. The use of
unmanned aerial vehicles (UAV) for inspection and maintenance of PV plants favor a timely diagnosis.
UAV path planning algorithm over a PV facility is required to better perform this task. Therefore, it is
necessary to explore how to extract the boundary of PV facilities with some techniques. This research
work focuses on an automatic boundary extraction method of PV plants from imagery using a deep
neural network model with a U-net structure. The results obtained were evaluated by comparing them
with other reported works. Additionally, to achieve the boundary extraction processes, the standard metrics
Intersection over Union (IoU ) and the Dice Coefficient (DC) were considered to make a better conclusion
among all methods. The experimental results evaluated on the Amir dataset show that the proposed
approach can significantly improve the boundary and segmentation performance in the test stage up to
90.42% and 91.42% as calculated by IoU and DC metrics, respectively. Furthermore, the training period
was faster. Consequently, it is envisaged that the proposed U-Net model will be an advantage in remote
sensing image segmentation.
keywords: Deep Learning (DL); Unmanned Aerial Vehicle (UAV); Photovoltaic (PV) systems; image-
processing; image segmentation; semantic segmentation.

B. Introduction

In the last decade, the world began the transition towards renewable energy the harvesting of solar energy
one of the most promising sources used today. Photovoltaic (PV) energy production is a fast-growing
market: The Compound Annual Growth Rate (CAGR) of cumulative PV plants was 35% from year
2010 to 2019. The main reasons for this accelerated growth are: production cost of PV panels have
decreased, return on investment ranging from 0.7 to 1.5 years. Some countries offer economic benefits
for new facilities and the performance ratio (which informs how energy-efficient and reliable PV plants
are against its theoretical production) is better nowadays. Before 2000 it was 70%, today performance
ranges from 80% to 90% [1], [25].
Nonetheless, PV plants present some challenges for maintaining proper performance with failures and
defects being the most common ones. In general, failures on PV systems are more concentrated in the
inverters and PV modules. In the PV modules, because of dirty equipment, environmental conditions, or
manufacturing problems the PV plant energy output can be reduced by 31% [13], [26], [27]. To detect
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these problems, it is necessary to consider that the PV systems are commonly located on roofs, rooftops,
and farms. Therefore the access, maintenance, and detection of possible problems in the panels should
be carried out by trained and qualified personnel working at heights to detect these problems. These
procedures can put the integrity of people, equipment, and PV Plants at risk [28]. Manual inspection can
take up to 8 h/MW, depending on the number of test modules. This period can be more than double for
rooftop systems, depending on the characteristics of the installation [29].
As an alternative to use trained personnel for maintenance, the use of an Unmanned Aerial Vehicle (UAV)
has many advantages: it reduces the risks in maintenance labours, increases reliability, and increases
effectiveness of PV plants. As a result, research teams are currently working on developing equipment
that can automatically inspect and clean PV systems, as shown in [16], [30].
Compared to traditional methods, UAVs could perform an automatic inspection and monitoring with
lower costs, cover larger areas, and achieve faster detection. The cameras installed on UAVs take photos
[31], and through image processing, the area of the PV systems can be identified in a process called
boundary extraction [32]. Once the area is identified, the ground control station calculates the Coverage
Path Planning (CPP) that guides the UAV in the automatic plant inspection. Any faults are detected with
the inspection, the required maintenance is scheduled.
This work focused on the boundary extraction of PV systems which is a key aspect for UAVs to conduct
autonomous inspections and enhance Operation and Maintenance (O&M) [32].
Several inspections and defect detection methods have been proposed in the literature. Lately, UAVs have
been used for the inspection of different PV plants, to identify the correlation between altitude and the PV
panel defects detection as: shape, size, location, color, among others [14], [18], [33]–[35]. Many attempts
have been committed to developing a reliable and cost-effective aerial robot with optimum efficiency over
PV plant inspection [31], [36]–[38] For autonomous inspection, large volumes of information or big data
are required from PV systems. These datasets improve the inspection by means of automatic learning
algorithms during the O&M process [29]. The O&M process of photovoltaic plants is an important aspect
for the profitability of investors. Autonomous inspection of PV systems is a technology with great potential,
mainly for large PV plants, roofs, facades and where manual techniques have notable restrictions in terms
of human risk, performance, time and cost.
Traditional Image Processing (TIP) has been used extensively by other authors. In this study [14], [39]–
[43], the authors used TIP to defect recognition in the inspection of photovoltaic plants. Furthermore,
using HSV transformation, color filtering and segmentation, techniques have been implemented in many
projects, especially for defect detection [44], to enumerate photovoltaic modules[40], [45] and identification
of limits [46]. This technique has a restriction for unsupervised procedures; the user should assist in the
image processing by adjusting the filter to the particular color of each target the technique aims to find.
Therefore, TIP is not a proper method for autonomous aerial inspection of photovoltaic plants.
The boundary extraction is referred to as an image segmentation technique. This technique divides an
image into a set of regions, and it is performed by dividing the image histogram into optimal threshold
values [47], [48]. The aim is to substitute the representation of an image into something easily analyzable
to obtain detailed information on the region of interest in an image and aid to annotate the scene of
the object [49]. Image segmentation is necessary to identify the content of the photo. Accordingly, edge
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detection is an essential tool for image segmentation [50] and can be achieved by means of traditional
image processing techniques [46], [51] or through artificial vision techniques [52].
The image segmentation techniques with TIP were developed to identify objects such as the area of
PV Plants out of an orthophoto [31], [53], [54]. Later, the Machine Learning (ML) and Deep Learning
(DL) image segmentation techniques, also known as semantic segmentation, were proposed [55], [56]. In
semantic segmentation each pixel is labeled with the class of its enclosing object or region [52]. Con-
volutional Neural Networks have been used for semantic segmentation , such as the Fully Convolutional
Network (FCN) model [52], and U-Net network model [57], which drastically enhances the segmentation
certainty compared with TIP method results, and ML technique results [55], [56].
The convolutional neural networks are used for extracting dense semantic representations from input
images and to predict labels at the pixel level. To perform this task, it is necessary to obtain or create a
dataset, perform a pre-processing of the data, select an appropriate model and train it based on metrics,
and then evaluate the results as shown in [32]. This is a fundamental challenge in computer vision with
wide applications in scene interpretation, medical imaging, robot vision, etc. [58]. Once the segmentation
is done, the next step is to obtain the automatic Coverage Path Planning (CPP).
Although advances in GPS systems have improved and accuracy is around 10 cm in low-cost Real Time
Kinematics (RTK) GPS systems [59]. Most of the projects use software tools that provide companies like
Mission Planner [60] or development groups as QgroundControl [61]. These tools are based on simple
polygonal coverage areas and a coverage pattern of zigzag path. They require time when the area is of
complex geometry, or when the plant is in continuous expansion. Additionally, the programmer preloads
waypoints without optimal coverage. As a consequence, to develop a real-time path-planning algorithm
for an autonomous monitoring system, it is a hard task in this platform. Therefore, it is first necessary to
determine the boundary of the PV plant. By taking out the boundaries of PV plants, aerial photogrammetry
and mapping can be faster, effective, economical and customizable [46], they motivate to make this work.
The key contributions of this work are as follows:

• In the revised literature, there is no report of U-net model to extract the boundaries of PV Plants;
this work proposes such a model.

• The IoU and DC metrics were not used in previous related research works. For the trained and
tested of Unet and FCN model, this work uses these metrics and finds a better solution.

This paper is structured as follows. In Section C, the necessary definitions and techniques to obtain the
results are described. In Section D, the three techniques implemented for boundary extraction are compared
to show the best method. Finally, in Section E some conclusions are shown.

C. Materials and Methods

1) Samples Collection: Before the segmentation, training samples were collected, based on the
orthoimage and PV plant on-farm, rooftop, and roof photos. The samples collected to cover the spectral
variability of each class of PV panel and consider the lighting variation in the scene, also in different
parts of the world. For CNN, the samples were converted in a tagged image file format (.jpg) file and
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mask image file format (.png) with a shape of 240× 320. The total of this dataset was found in the Amir
dataset [62].

2) Boundary Extraction Procedure: UAVs must have a precise set of coordinates to define the
coverage path planning correctly and thus fly over the total area of PV Plants in the inspection mission.
To achieve this task automatically, it is necessary to explore how to extract the boundary of photovoltaic
facilities with some techniques. There is a process called semantic segmentation, where each pixel is
labeled with the class of its enclosing object or region, which can extract the PV Plants as a particular
object in an image [32], but with the constraints that this work addresses. Two techniques have been
implemented so far: Traditional Image Processing (TIP) [31] and Deep Learning (DL) [32]. Figure 3
shows the steps followed to reach that result by TIP and DL-based techniques.

Fig. 3. Steps of boundary extraction by image analysis with two techniques.

3) Traditional Image Processing (TIP): The process to obtain the boundary pixels of a target can be
achieved by means of traditional image processing techniques with functions that extract, increase, filter,
and detect the features of an image and obtain its segmentation [46], [51]. The main stages were used
to remove the borders of PV plants out of an image, as shown in Figure 3 [31]. In the first stage, the
original image was filtered using “filter2D” function from OpenCV, that is a convolution filter with 5 ×
5 averaging filter kernel, as shown at Algorithm 1. This filter is compound with various Low-Pass Filters
(LPF) and High-Pass Filters (HPF). LPF helps in removing noise, blurring images. HPF filters help in
finding edges in images.
In the second stage, the filtered image is transformed into the HSV (hue, saturation, and value) represen-
tation. The transformation lessens reflection caused by environmental light during aerial image collection.
Furthermore, this transformation helps in the color-based segmentation required in the next stages.
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In the third stage, each channel was processed separately to extract the area of the PV plants. This was
achieved by applying thresholding operations on the HSV image. To extract the PV blue color out of
the image, the HSV range limits for thresholding where determined: from (50, 0, 0) to (110, 255, 255).
Thresholding was implementing using the inRange function of OpenCV.
At the fourth stage, two morphological operators were applied: the “erode” and “dilate” functions. Together
these operations helps to reduce noise and to better define the boundaries of the PV devices, the application
of erosion followed by dilation is also known as opening operation. Erosion and dilation requires an
structuring element (also known as kernel) to be applied to the images. In this case, a rectangular kernel of
2 × 2 pixels (MORPH RECT,(2, 2)) was used for both operations. Lines 13, 14 and 15 from Algorithm 1
show the creation of the structuring element and the successive use of the erode and dilate functions.
Then, the “findCountours” function was used to help in extracting the contours from the image. The
contour can be defined as a curve joining all the continuous points in the boundary of the PV installation.
The input parameters for this function are: the image (dilated image from previous stage), the type of
contour to be extracted (in this case only the external contours, RETR EXTERNAL) and the contour
approximation method (in this case not approximation, CHAIN APPROX NONE). Finally the area was
recognized using a multi-stage algorithm to detect a wide range of edges in images, known as the Canny
edge detection “Canny” [63].
The pseudo-code of the Traditional Image Processing is shown in Algorithm 1, and was implemented in
Python 3 using OpenCV library.

Algorithm 1: TIP algorithms.
1. input : A image Im of size w × l
2. output: A Boundary of the image

3. initialization
4. import cv 2, np
5. for i in range(n):
6. I← cv 2.imread(Im)
7. Irgb←cv 2.cvtColor(I[w, l],COLOR BRG2RGB)
8. Kernel←np.ones([5, 5])

nlIdst← cv 2.filter 2D(Irgb[w, l],−1,Kernel)
9. Ihsv←cv 2.cvtColor(Idst[w, l],COLOR BRG2hsv)/* Transformation from

RGB to HSV */
10. LowerBlue← np.array([55, 0, 0])
11. UpperBlue←np.array([110, 255, 255])
12. mask←cv 2inRange(Ihsv[w, l],LowerBlue,UpperBlue)
13. K← cv 2.getStructuringElement(MORPH RECT ,(2, 2))
14. Ierosion←cv 2.erode(mask[w, l],K,iteration = 3)
15. Idilation← cv 2.dilate(Ierosion[w, l],K,iteration = 8)
16. cnt← cv

2.findCountours(Idilation[w, l],RETRE XTERNAL,CHAIN APPROX NONE)
17. mask2← cv2.zeros([w, l])
18. cc← cv 2.drawContours(mask2,cnt,−1,255,−1)
19. edge← cv2.Canny(cc,100,105)
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4) Deep Learning: Another approach to ascertain the boundaries of PV plants uses a DL-based
technique which consists of several steps:

a) Data Specifications
The first step is to select the data for training the Neural Networks. The parameters to take into account
are: PV Plants in orthophotos and aerial images with the respective masks for each image [32].

b) Data Understanding
The data preparation phase can be subdivided, into at least four steps. The first step is data selection
inside the dataset. The second step involves correcting the individual data, which are assumed to be noisy,
apparently incorrect, or absent. The third step involves resizing the data as needed. Finally, most of the
available implementations assume that the data are given in a single table, so if the data are in several
tables, they must be parsed together in a single one [64].

c) Modeling
In the literature, the semantic segmentation task has many existing models that can be selected for the
desired task. In this work, two methods based on deep learning have been selected, taking into account
the following criteria: the most competent for the type of task, the amount of data to be processed, the
execution time, and the ease of implementation to predict each label for each pixel. The methods were
selected according to [32], [65]–[68]. The FCN model was the first one selected, which was proposed by
[52] and used by [32]. The network architecture is delineated in Figure 4. The second one is the U-Net
model, first proposed by [57] and selected for this project. The network architecture is illustrated in Figure
5.

Fig. 4. FCN model.
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Fig. 5. U-net Model.

Fully Convolutional Network (FCN) model: This model has two blocks. The first block is a series of
13 layers in order to create a modified version of a VGG16 backbone Figure 4, which was introduced
for the first time by [69]. The VGG16 backbone has 16 convolutional layers and its creators belong to
the team “Visual Geometry Group”, hence its name VGG16. The backbone is the network that takes the
image as input and extracts the feature map upon which the rest of the network is based. The second
block consists of a series of deconvolutional layers that simply reverses the forward and backward passes
of convolution. The last layer uses a softmax function to predict the probability of the category as shown
in Figure 4. As a result, the input of FCN model is an RGB image, and the output is the predicted mask
of the PV plants. For more details, read [52]. The parameters for the training process were depicted in
Table II.
The U-net network model: This model has two blocks: a decreasing path and an increasing path, respec-
tively, which gives it the u-shaped architecture or horizontal hourglass shape [70]. The decreasing path is
a typical convolutional network that consists of repeated application of convolutions, each followed by a
rectified linear unit (ReLU) and a max-pooling operation. During the decrease, the spatial information is
reduced whereas feature information is increased. The increasing pathway combines the feature and spatial
information through a sequence of upsampling layers followed by two layers of transposed convolution
for each step [57], [71], as illustrated in Figure 5. The parameters for the training process were depicted
in Table II. Its architecture is shown in Table III. The platform used for FCN and Unet models by this
work was Tensorflow with Keras backend [72]. The U-net model had never been used for this kind of
application so far.

TABLE II. SUMMARY OF THE FCN AND U-NET MODEL PARAMETERS FOR THE TRAINING
PROCESS

Activation (last
layers)

Activation (in-
ner layers)

Optimizer Loss funct Metrics Epoch Batch size

Sigmoid Relu RMS Binary Cros N/A 150 1
Sigmoid Elu Adam Binary Cros IoU, Dice 15 8
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The FCN and U-net models additionally have a binary cross-entropy function (Hp) to calculate the loss
in the process of training the neuronal network [73]. As the problem at hand is a semantic segmentation
task, Equation (1) is used. This function examines each pixel and compares the binary-predicted values
vector with the binary-encoded target vector.

Hp(q) = −
1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (1)

where y is the label of each pixel, it takes the value of 1 for the PV plants area and 0 to indicate other
areas or elements, and p(y) is the probability of the pixel belonging to the PV plants area for all N points.
The Adam optimization function is used to optimize the models [74]. Because semantic segmentation is
the task at hand, it is essential to implement metrics to ensure the model performs well.

H

TABLE III. ARCHITECTURE OF THE U-NET

Layer(type) Output Shape Parameters
Input Layer (None, 240, 320, 3) 0

Lambda (None, 240, 320, 3) 0

Conv2D (None, 240, 320, 16) 448

Dropout (None, 240, 320, 16) 0

Conv2D (None, 240, 320, 16) 2320

MaxPooling2D (None, 120, 160, 16) 0

Conv2D (None, 120, 160, 32) 4640

Dropout (None, 120, 160, 32) 0

Conv2D (None, 120, 160, 32) 9248

MaxPooling2D (None, 60, 80, 32) 0

Conv2D (None, 60, 80, 64) 18496

Dropout (None, 60, 80, 64) 0

Conv2D (None, 60, 80, 64) 36928

MaxPooling2D (None, 30, 40, 64) 0

Conv2D (None, 30, 40, 128) 73856

Dropout (None, 30, 40, 128) 0

Conv2D (None, 30, 40, 128) 147584

Continued on next page
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TABLE III – continue from previous page
Layer(type) Output Shape Parameters

MaxPooling2D (None, 15, 20, 128) 0

Conv2D (None, 15, 20, 256) 295168

Dropout (None, 15, 20, 256) 0

Conv2D (None, 15, 20, 256) 590080

Conv2D Transpose (None, 30, 40, 128) 131200

Concatenate (None, 30, 40, 128) 73856

Conv2D (None, 30, 40, 128) 295040

Dropout (None, 30, 40, 128) 0

Conv2D (None, 30, 40, 128) 147584

Conv2D Transpose (None, 60, 80, 64) 32832

Concatenate (None, 60, 80, 128) 0

Conv2D (None, 60, 80, 64) 73792

Dropout (None, 60, 80, 64) 0

Conv2D (None, 60, 80, 64) 36928

Conv2D Transpose (None, 120, 160, 32 8224

Concatenate (None, 120, 160, 64) 0

Conv2D (None, 120, 160, 32) 18464

Dropout (None, 120, 160, 32) 0

Conv2D (None, 120, 160, 32) 9248

Conv2D Transpose (None, 240, 320, 16) 2064

Concatenate (None, 240, 320, 32) 0

Conv2D (None, 240, 320, 16) 4624

Dropout (None, 240, 320, 16) 0

Conv2D (None, 240, 320, 16) 2320

Conv2D (None, 240, 320, 1) 17

d) Metrics
The metrics evaluate the similarities between the predicted mask (N) and the original mask (S). Such
similarity assessment can be performed by considering spatial overlapping information, that is, by com-
puting the true positives (TP), false positives (FP) and false negatives (FN) given by TP = |N ∩ S|,
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FP =
∣∣N \ S∣∣, and FN =

∣∣S \N ∣∣, respectively.
There are three standard metrics commonly employed to evaluate the effectiveness of the proposed
semantic segmentation technique [48], [67], [68], [75]. The three metrics, namely, pixel accuracy (Acc),
region Intersection over Union (IoU ), and Dice Coefficient (DC).
Pixel accuracy is the ratio of correctly classified PV plants pixels to the total number of PV plants pixels
in the original mask image [76], which can be mathematically represented as Equation (2).

Accuracy =
TP

TP + FN
(2)

The IoU metric (the Jaccard index) is defined by Equation (3). This equation is a ratio between the
intersection of the predicted mask N , and the original mask S and the union of both. More details can
be found in [77].

IoU(N,S) =
|N ∩ S|
|N ∪ S|

=
TP

TP + FP + FN
(3)

The DC metric [75], [77], [78] is expressed as Equation (4). This equation divides the intersection of the
predicted mask N , and the original mask S times two by the sum of N and S.

DC(N,S) =
2.|N ∩ S|
|N |+ |S|

=
2.TP

2.TP + FP + FN
(4)

To validate the results of the techniques described above, the FCN and U-net models were trained and
their performance was evaluated by validating and testing samples of the Amir dataset [62]. The next
section describes such results and compares the models in detail.

D. Results and Discussion

1) Database Specification: For this work, the DeepSolar [79], Google Sun-Roof [80], OpenPV
[81], and Amir’s databases were accessed [62]. Only the last database met the established parameters. It
contained PV plants in orthophotos and aerial images with their respective masks. Furthermore, the PV
plants images were from different countries around the world. Therefore, the ”Amir” dataset was selected.

2) Results with TIP Technique: The results obtained in this work were compared with the results
obtained in previous investigations where the TIP and the deep learning techniques were used alongside
the FCN model [32].
The stages to obtain the results are shown in Figure 6. In the First Stage, a 2D filter was applied, depicted
in Figure 6a. In the second stage, the filtered image is transformed into the HSV representation, Figure
6b. In the third stage, the blue color was filtered out, Figure 6c. At the fourth stage, the opening function
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was used, as seen in Figure 6d. Finally, the area was recognized using the canny method illustrated in
Figure 6e. The results were satisfactory and can be modified depending on the environment.
The results are shown in Table IV. The TIP technique was obtained by randomly selecting images out of
the test dataset, then applying the functions described in the methodology section (Section C), and finally
comparing the mask obtained with the original mask. The IoU metric obtained was 71.62% and the DC

was 71.62%.

Fig. 6. Steps of boundary extraction by TIP.

c) Results with DL-Based Techniques
The training data consisted of 2864 aerial images selected at random: 90% of the training dataset in
the Amir database. The validation data were the remaining 10% of the same training dataset. Figure 7a
shows the loss function and IoU metric of the FCN model during the training and validation process. The
general trend of the two curves is consistent, showing that the network converges rapidly and is stable at
iteration 30, and the loss value tends to 0.04%. Figure 7b shows the DC metric of the model during the
training and validation stage. The general trend of the two curves is consistent at iteration 30.
On the other hand, using the same metrics, the U-net model proposed in this work shows a better
performance. Figure 8a shows the loss function and IoU metric of the model during the training and
validation stage. The common trend of the two curves shows the network converges quickly and is stable
at iteration 16, and the loss value tends to 0.03%. Figure 8b shows the DC metric of the model all along
the training and validation phase. The prevalent trend of the two curves is consistent and in iteration 16.

Fig. 7. Performance and metrics of the FCN model using the training and validation sets.
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Fig. 8. Performance and metrics of the U-net model obtained using the training and validation sets.

In the evaluation stage, 716 images were used along with the trained FCN model for PV plant detection.
Some relevant results are shown in Figure 9. In this figure, the columns correspond to different PV plants.
The first row contains the original images; the second row, the original masks; and, the third one, the
predicted masks. The images used were taken in deserted regions and vegetation zones. The FCN model
detects the PV plants in vegetation zones with some false positives. As an example, the second and third
predictions of Figure 9 identify a lake and vegetation as part of the PV plants. In deserted regions, PV
plants are detected more precisely. Although these images have very high precision, their predicted shape
does not fully correspond to the original mask. Hence, it was necessary to review the performance metrics
of the algorithm [82].
The segmentation results in the evaluation stage, using the same 716 images and the trained U-Net model,
are shown in Figure 10. The arrangement is the same as in the previous Figure 9. It is noteworthy that
this model correctly segments the photovoltaic plant while the other model does not achieve this result,
as can be seen in the second and third predictions in Figure 10.

Fig. 9. Evaluation with test data FCN Model.
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Fig. 10. Evaluation with test data U-net Model.

Afterwards, the trained model tested 716 samples. Table IV shows the results and comparison among the
TIP technique, the U-net proposed model and the FCN model used by [32], which was replicated in this
study. The FCN and the proposed U-net models were compared. The accuracies obtained for the FCN
model in the stages of training and testing were 97.99% and 94.16% respectively [32]. For U-Net proposed,
the accuracy obtained in the stages of training and testing were 97.07% and 95.44%, respectively. Both
results can be seen in Table IV.
To compare the FCN model proposed by Amir [32], and the U-net model proposed in this work, the two
most used metrics in semantic segmentation problems were used. The FCN model was implemented with
the standard IoU metric, whose result for the training stage was 94.13%,and the validation stage was
90.91% and for test stage was 87.47%. The DC metric of the validation 92.96% and test 89.61% which
deviates a little from the training 95.10%. However, using the same metrics the U-net model proposed
in this work shows a better performance. The IoU metric obtained was 93.57% in the training stage,
93.51% in the validation stage, and 91.42% in the test stage. The DC metric of the validation 94.44%
was almost the same as that of the training 94.03% which deviates a little from the test 91.42%. Table
IV shows these results. Due to this, a difference was found between the FCN and U-net model for the
first metric of 2.95% and for the second metric used of 1.81% difference was calculated. All files and
logs from the experiments are available at GitHub in [83].



Coverage Path Planning with Unmanned Aerial Vehicles over Photovoltaic Plants using Image... 29

TABLE IV. COMPARISON BETWEEN THREE TECHNIQUES.

Parameter TIP method FCN used by[32] U-Net proposed
Metrics N/A N/A IoU, F1 scor

Acc train N/A 97.99% 97.07%

Acc test N/A 94.16% 95.44%

IoU metric N/A 94.13% 93.57%

Dice coef metric N/A 95.10% 94.03%

val IoU metric N/A 90.91% 93.51%

val Dice coef N/A 92.96% 94.44%

test IoU metric 71.62% 87.47% 90.42%

test Dice coef metric 71.62% 89.61% 91.42%

3) Discussion: The U-net model proposed reconstructs the segmented image and protects the original
image shape characteristics by storing the grouping indices of the max-pooling layer, a process that is not
done in the FCN model.
The training and testing accuracy is the percentage of pixels in the image that are classified correctly
and cannot be taken as indicators of how similar the predicted PV plants and the original mask are [84].
For the purpose of comparing the similarity in the results, the IoU metric was used. This metric varies
from 0 to 1 (0–100%) with 0 meaning no similarity and 1 meaning total similarity between original and
predicted masks [82].
The U-net model proposed in this work aimed to obtain a value closer to 1 in the IoU metric. The iteration
times show the model used is faster and therefore reliable for the training and processing stages obtaining
results virtually in real time [85]. The DC is the other metric used in this work. This metric also ranges
from 0 to 1, with 1 signifying the greatest similarity between the predicted and original masks [82]. Both
metrics were used to determine if the U-net model was better than the FCN model in the validation and
test stages. The values of the IoU and Dice metrics in Table IV showed the U-net model had a better
performance when compared to the FCN model. This work was implemented with VGG16 as an encoder
because it was the encoder used by Amir [32], which is a comparison work, but in future work, it is
possible to use other encoders like ResNet, AlexNet, etc. [56].
Finally, the results obtained with the TIP and FCN model agree with the results obtained by other authors
[14], [32]. The authors mentioned they did not use the standard metrics for these kinds of problems and
the bias in the results were expected. On the contrary, this work did take these metrics into account and
found satisfactory results. The U-net network increased the processing speed, veracity in the segmentation
process, and the overall performance of the model.

E. Conclusions

This work used three techniques, namely, the TIP technique, the DL-based FCN and U-net models. This
work applied the U-net model to PV plants. All the models were used for the extraction of the PV plants
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boundaries out of an image. As a consequence, the TIP technique can be very precise but requires constant
adjustment depending on the image, whereas the FCN and U-net network models are more useful when
it comes to unknown PV plants.
The U-net network model is novel for this kind of problem. It allows greater processing speeds and
performance when predicting the area of PV plants, also better features. The results obtained open the
door for further investigation of this model in this problem.
The U-net technique turned out to be satisfactory compared to the TIP technique and the FCN model used
in previous studies. The values obtained in the implemented metrics guarantee that the areas predicted for
the PV plants are similar to the real ones. The results also help to predict possible false positives, such
as lakes in the vicinity of photovoltaic plants. The relevant features of an object can be obtained using
this technique while using the FCN technique is not possible.
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VI. COVERAGE PATH PLANNING WITH SEMANTIC SEGMENTATION FOR UAV IN PV PLANTS

This third chapter was also published (in MDPI’s Applied Science magazine) where objectives two and
three of the proposal are covered.

A. abstract

Solar energy is one of the most strategic energy sources for the world’s economic development. This
has caused the number of solar photovoltaic plants to increase around the world; consequently, they are
installed in places where their access and manual inspection are arduous and risky tasks. Recently, the
inspection of photovoltaic plants has been conducted with the use of unmanned aerial vehicles (UAV).
Although the inspection with UAVs can be completed with a drone operator, where the UAV flight path
is purely manual or utilizes a previously generated flight path through a ground control station (GCS).
However, the path generated in the GCS has many restrictions that the operator must supply. Due to these
restrictions, we present a novel way to develop a flight path automatically with coverage path planning
(CPP) methods. Using a DL server to segment the region of interest (RoI) within each of the predefined
PV plant images, three CPP methods were also considered and their performances were assessed with
metrics. The UAV energy consumption performance in each of the CPP methods was assessed using two
different UAVs and standard metrics. Six experiments were performed by varying the CPP width, and the
consumption metrics were recorded in each experiment. According to the results, the most effective and
efficient methods are the exact cellular decomposition boustrophedon and grid-based wavefront coverage,
depending on the CPP width and the area of the PV plant. Finally, a relationship was established between
the size of the photovoltaic plant area and the best UAV to perform the inspection with the appropriate
CPP width. This could be an important result for low-cost inspection with UAVs, without high-resolution
cameras on the UAV board, and in small plants.
keywords: deep learning (DL); unmanned aerial vehicle (UAV); photovoltaic (PV) plants; semantic seg-
mentation; coverage path planning (CPP).

B. Introduction

According to REN21, over the past two years, global photovoltaic (PV) plants capacities and annual
additions have grown and expanded rapidly. For instance, 621 GW were installed in the year 2019 and
760 GW in the year 2020 [86], despite the reduction in electricity consumption and shifted daily demand
patterns due to the COVID-19 pandemic [87]. Additionally, it has become one of the most profitable
options and is an energy resource that has recently decreased in cost. As a result, solar electricity generation
has grown in residential, commercial, and utility-scale projects [88]. The future of PV generation will
focus on optimizing hybrid systems [89] and improving the performance of each element of the system,



Coverage Path Planning with Unmanned Aerial Vehicles over Photovoltaic Plants using Image... 32

as well as reducing their cost due to large-scale production [90]. Furthermore, the sector trend has been
asking for low prices, and the competitive market has encouraged investment in solar PV technologies
across the entire value chain, particularly in solar cells and modules, to improve efficiencies and reduce
the levelized cost of energy (LCOE) [86]. As a result, PV power plants could grow almost sixfold over
the next ten years, reaching a cumulative capacity of 2840 GW globally by 2030 and rising to 8519 GW
by 2050, according to [91].
Thus, it is established that the number of PV plants and generated power have increased around the
world. This implies specific technical challenges in their maintenance and operation (O&M) [34]. Some
of these threats affect their production, which increases cost, and decreases profitability. The most common
threats are the failures in the inverters and PV modules [92]. Through dirty equipment, the state of the
environment, or manufacturing defects in the PV modules, PV plant energy generation can be curtailed
by 31% in the worst cases [13], [26], [27].
One must consider that PV plants are commonly installed on roofs, rooftops, canopies, or facades for
urban environments. Likewise, solar farms utilize rural environments, such as deserts, plains, and hills [1],
[34], [93]. Depending on the location of PV plant, the manual inspection tasks could be exhausting and
take up to 8 h/MW, if the number of modules are considerable. The amount of inspection time increases
for solar PV plants on rooftops or canopies, by virtue to the aspects of the installation [29]. In addition,
the inspection to detect threats in the panels must be conducted by trained personnel. In some cases,
problems occur in elevated installations, for which special training and certificate is required. These jobs
could put people and facilities at risk [28].
In recent decades, Unmanned Aerial Vehicles (UAVs) have been increasingly used in inspection and
patrol tasks [16], [30], [31]. UAV-based applications for PV plants inspection have many advantages in
comparison with the manual inspection methods. The main advantages are flexibility, lower cost, larger
area coverage, faster detection, higher precision, and the capacity to perform a superior and automatic
inspection [16], [27], [30], [94]–[96].
There are many approaches to performing an inspection with UAVs in PV modules. One of them used
UAVs with a thermal imaging camera to take photos in the infrared spectrum to evaluate the UAVs
parameters, such as height, speed, viewing angle, sun reflection, irradiance and temperature, all of which
are necessary to perform defect inspection [97]. In a second approach, UAVs were implemented to inspect
different solar PV plants, wherein analysis of the correlation between altitude and the pixel resolution
was used to detect PV panel defects and features like shape, size, location, and color, among others, of
a particular defect were also detected [14], [18], [33]–[35]. In a third approach, the authors proposed PV
plant fault inspection with UAVs using image mosaics combined with orthophotography techniques to
create a digital map; image mosaics were combined with multiple visible and/or infrared range images
into a single mosaic image covering a large area [29], [44], [98]. Whereas the orthophotography technique
is a vertical photograph that shows images of objects in true planimetric position [99]. Thus, these two
techniques were integrated with previous works to achieve an advanced tool that allows monitoring and
taking actions in the operation and maintenance (O&M) of PV plants [34]. In short, this tool has been
used to detect defects and dust or dirt in PV modules [98]. Apart from this, some approaches have been
developed for the detection of defects in PV modules using artificial vision techniques, machine learning,
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deep learning, and the integration therewith of the previous approaches [14], [34], [45], [100]–[102].
Additionally, these approaches to planning the UAV’s flight path were configured from a ground control
station (GCS) program. Irrespective of these approaches, an important aspect is that the UAV should
automatically follow the path to cover important points in PV plants. Many research efforts have been
made to calculate the paths of and solve the waypoint planning problem for UAV inspection of solar PV
plant applications [46], [103]–[105], but none of them propose the coverage path planning (CPP) as a
method to complete this task. definimos las CPP aqui vamos The CPP, given a region of interest (RoI) in
a 2D environment, consists of calculating the path that passes through each one of the points that make up
the desired environment and must be found considering the limitations of movement [106], [107]. CPP is
classified as a classical NP-hard problem in the field of computational complexity. These problems were
initially analyzed for indoor environments with mobile robots. However, with the development of GPS,
CPPs began to be used for missions with UAVs. Due to the environment in which the task is performed
and the obstacles present, precise localization in the environment is an arduous task, which makes the CPP
a difficult problem [108].Additionally, it is classified as a motion planning subtopic in robotics, and has
two approaches, heuristic and complete. In heuristic approaches, the robots follow a set of rules defining
their behavior, but do not present a guarantee for successful full coverage. These guarantee using the
cellular decomposition of the area, which involves space discretization into cells to simplify the coverage
in each sub-region, unlike complete methods, which cannot afford such processing. Another important
issue mentioned by the authors of reference [107] is the flight time to fully cover the area, which can be
reduced using multiple robots and by reducing the number of turning maneuvers. Finally, the available
RoI information is important; several approaches accept previous knowledge of the robot’s respecting
the search RoI (offline), while sensor-based approaches collect such information in real-time along the
coverage (online) [109].
In the literature, CPP approaches are needed in several application areas, such as floor cleaning [110],
agriculture [111], [112], wildfire tracking [113], bush trimming [114], power line inspection [115], pho-
togrammetry [107], visual inspection [116], and many more. Also, many surveys regarding CPP presents
several approaches and techniques to perform mostly missions with land vehicles [109], [117], [118]. The
research interest in aerial robots (indoor and outdoor) has surely motivated the research of CPP [119].
This can be implemented in many UAV platforms like fixed-wing, rotary-wing, and hybrid UAV (VTOL)
[107]. Rotary-wing UAVs are inexpensive and have good maneuverability, and their small payload capacity
limits the weight of on-board sensors and flight time. Hence, they are more suitable for CPP missions on a
small scale. Additionally, the increasing usage of UAVs in applications with complicated missions has led
to CPP methods being a very active research area for single and multiple UAVs, especially recently [107],
[120]–[122]. As evidenced in a previous work [111], the classic taxonomy of coverage paths in UAVs are
classified into no decomposition, exact cellular decomposition, and approximate cellular decomposition.
The first performs the coverage with a single UAV, for which no decomposition technique is required,
because the shape of the RoI has a non-complex geometry. The second divides the free space into simple,
non-overlapping regions called cells. The union of all cells fills the free space completely. The cells in
which there are no obstacles are easy to cover and can be covered by the robot with simple movements.
The third is based on grids. They use a representation of the environment decomposed into a collection of
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uniformly squared cells [123], considering rectangular, concave, and convex polygons for RoIs. In addition
to this, CPP performances were assessed with applied metrics according to [107]. The elemental approach
most used to solve offline CPP problem sis the area decomposition into non-overlapping sub-regions [124],
to determine the appropriate visiting sequence of each sub-region and to cover each decomposed region
in a back-and-forth movement to secure a complete coverage path. As a result, the methods for obtaining
complete coverage of an RoI are the exact and approximate cellular decomposition methods [125]–[127].
On the other hand, image processing helps to obtain a map of the robot or RoI. Robots, such as UAVs,
need to know the RoI before commencing CPP [128], which represents where the PV plants are and
can be determined in a process called boundary extraction [47], [48]. Then, the deep learning (DL)
image segmentation technique, also known as semantic segmentation [52], is achieved by applying deep
Convolutional Neural Networks (CNN), such as U-Net network model [57], [129], which dramatically
enhance the segmentation results. Once the segmentation is done and the mask is obtained or the RoI is
identified, the GCS calculates the CPP that guides the UAV in the automatic plant inspection, during which
it captures images of PV plants [23]. Most of the failures occur at the centimeter or millimeter level, and
that poses a challenge for the inexpensive sensors available today [24]. Tests of coverage paths it can be
conducted with drones in a real or simulated environment. The most viable option for this stage of the work
is simulation, as verified by other research [130]–[133]. Simulation has been recognized as an important
research tool; initially, simulation was an academic research tool, but with the advancement of computers,
simulation has reached new levels. It is a remarkable tool that guarantees support in design, planning,
analysis, and making decisions in different areas of research and development. Of course, robotics, as
modern technology, has not been an exception [134], [135].
This work is focused on implementing the best strategy of coverage path planning (CPP) over PV plants
with UAVs using semantic segmentation in a deep learning server to obtain the RoI. The experimental
results were obtained by simulating the CPP methods and using UAVs, such as the 3DR Iris and Typhoon
aerial robots.
The key contributions of this work are as follows:

• This work proposes CPPs as a novel strategy for conducting an inspection flight over a PV plant
with an UAV, since there are no previous reports of such work.

• This work used three CPP methods over three PV plants, which were modeled in a simulation
environment to evaluate metrics and parameters. As a result, a relationship was found between the
CPP width and energy consumption, and according to that, the best CPP method to implement.

• This work proposes a hybrid CPP method that uses image processing and a DL server to find the
RoI quickly and accurately, becoming a semi-automatic process.

• A free simulation tool is provided, with an interface to simulate the inspection of PV plants with
UAVs.

This paper is structured as follows. In Section C, necessary definitions, and techniques to obtain the results
are described. In Section D, the three CPP methods implemented are compared to show relationships
among the CPP width, number of maneuvers, and energy consumption, with the aim of finding the best
CPP method to implement. Finally, in Section E some conclusions are given..
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C. Materials and Methods

In this work, three PV power plants were select that met the image requirements of no light distortions,
non-complex geometry and grouped panels. These plants are in different parts of the world. The first PV
plant has an area of 35, 975 square meter, located in Brazil (-22.119948323621525, -51.44666423682603),
known as Usina Solar Unioeste 1 [136]. The second PV plant has an area of 25, 000 square meters, located
in Iran (34.0504329771808, 49.796635265177294), known as Arack power plant [46] . The third PV plant
is in the United States (38.55989816199527, -121.42374978032115), the plant has an area of 1, 344 square
meters and is part of PV plant located on the roof of the California State University Sacramento Library
(CSUSL) [137].
These plants were subjected to a series of processing stages, as shown in Figure 11. The RoIs were
obtained from Google Maps satellite images with a predefined altitude, and limits, from which the image
(Input Image) of the desired PV plant was obtained as the first stage, shown in the Figure 11. In the
second stage, the image was entered into the DL server that was developed in this work, taking in to
account the previous work [129]. The DL server was launched with TensorFlow [138] and flask [139].
This stage obtains a mask (Image Segmentation) of the PV plant, as shown in Figure 11. In the third
stage was necessary to apply a series of OpenCV functions (Post-Processing), as referenced in Algorithm
2 in the appendix A, to adjust the mask (output mask) to the PV plant area, as seen in Figure 11. Then,
the output mask or RoI was introduced in the GUI interface, where the CPP method was selected to
internally execute. Later, the path GPS positions (CPP computed) were sent to the UAV through MAVlink
commands [140], [141]. The UAV executed these commands in the Gazebo platform (CPP simulation)
and, at the same time, the simulation data was fed back the GUI interface. Simultaneously all GPS points
reached by the UAV were drawn in the GCS platform (CPP). In this stage, the trajectory was validated.
Each stage is described in greater detail in the following sections.
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Fig. 11. Stages for Coverage path planning with semantic segmentation for UAV in PV plants .

https://goo.gl/maps/7K8tjx3Zng6JCLCc6
https://goo.gl/maps/6t8KERvmZUSrz1tQ6
https://goo.gl/maps/WpzfriJmHwtjwqwa7
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1) Deep-Learning (DL) server for segmentation: The Deep-Learning (DL) server for segmentation
was necessary to extract the RoIs from the Google Maps images. Additionally, the server was used to
achieve this task automatically with the process called semantic segmentation, wherein each pixel is labeled
with the class of its enclosing object [32], [129]. In previous work, a convolutional neural network was
proposed, wherein a public database was used; this data was prepared, resized for training, and assessed
with two network structures. The U-net network had the best performance, in terms of metrics, in the
semantic segmentation task [129]. Then a DL server was employed to perform image segmentation and
obtain the RoI [142].

2) Post processing: In this step, a set of OpenCV functions were applied with Python 3.7. For
example, in the first function, morphological operators like “Erode” and “Dilate” were applied to the
images, then the “FindCountours” function was applied to help extract their contours. The contour can
be defined as a curve that joins all the continuous points at the boundary of the PV installation. So, the
“ContourArea” function was then used to find the area of the previous contour. Following this pattern,
the area was compared with 400 others to filter the bigger area and eliminate the little areas belonging
to false positives. Then the “ApproxPolyDP” function was used to approximate a shape of the contour
to another shape with fewer vertices. Subsequently, the “DrawContour” function was used to draw the
resulting contour [143], [144]. Finally, the “Erode” morphological operators were used again, to expand
the known area and compensate for the limitations of the mask with regard to the CPP method and some
faulty occurrences caused by the false positives of the DL server. The pseudocode of the openCV functions
used is shown in algorithm 2 in the Appendix A.

3) 2D coverage path planning method on The GUI interface: In previous studies of CPPs, there
were many existing methods from which to select to solve the CPP problem. In this work, three methods
based on CPP were selected, considering the following criteria: time of execution, ease of implementation,
and more, which were used to cover the RoI. The methods were selected according to [106], [107].
The boustrophedon exact cellular decomposition (BECD), which was proposed by [145], was the first
selected. The CPP method is delineated in Figure 12.
The second was grid-based spanning tree coverage (GBSTC), which works with cellular decomposition,
first proposed by [146], and depicted in Figure 13.
The third method selected for this project was grid-based wavefront coverage (GBWC), first proposed by
[147]. The method is illustrated in Figure 14. Each of these CPP methods is explained in more detail in
the following sections.

a).The boustrophedon exact cellular decomposition (BECD) Method: This method takes the robot’s
free space and obstacles and splits them into cells. These cells are covered by the robot using a back-
and-forth pattern from the initial point to the final point, using maneuvers of 90 degrees to change
direction from south to north or vice versa, as shown in Figure 12. This method improves the trapezoid
decomposition technique, as it exploits the structure of the polygon to determine the start and end of an
obstacle, and thus is able to divide the free space into a few cells that do not require a redundant step,
and it permits the coverage of curved areas [145].
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BECD

I
F

Fig. 12. The RoI and the path generated from Initial point (I) to final point (F) by BECD

b). Grid-Based Spanning Tree Coverage (GBSTC): This method is based on approximate cell decom-
position and differs from the previous method in that the following postulates were considered. First, the
method divides the space into grids of side L. Second, the robot only moves in perpendicular directions
to the sides of the grid. Third, every grid is subdivided into four grids of side L/2. Finally, GBSTC
discards space that is partly occupied by obstacles. Consequently, considering these previous postulates,
the method consists of several stages: in the first stage, a graphic structure is defined, S(N,E), where N

is nodes, defined as the central point of each grid, and E is edges, defined as the line segments connecting
the centers of adjoining grids, as shown in Figure 13a. In the second stage, the method builds a spanning
tree for S, and employs this tree to plan a cover path as follows. Starting in grid I with a sub-grid of
side L/2, the robot begins by travelling between adjoining sub-grids along a path that moves around
the spanning tree at a constant distance and in a counterclockwise direction, finishing when the initial
sub-grid, I , is found again, which means it is also in the final point, F [146]. An example of this method
is illustrated in Figure 13b. The approximation depends on the side length, L, of the grid
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grid of side Lsub grid of 
side L/2

b)

GBSTCspanning tree

I F

Fig. 13. a) Approximate cell decomposition in grids and sub grids. b), Coverage path generated with the
GBSTC method.

c). Grid-based Wavefront Coverage (GBWC): The first grid-based method proposed for CPP, GBWC
is an offline method that uses a grid representation, in addition to applying a full CPP method. The method
requires an initial grid, I , and a final grid, F . A distance transformation that propagates a wavefront from
the final to the initial point is used to assign a specific number to each item on the grid. That is, the method
first assigns a zero to the final item, and then a one to all its surrounding grids. Then all unmarked grids
adjoining those marked one are numbered two. The process is incrementally repeated until the wavefront
reaches the initial grid [147], as illustrated in Figure 14a.
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Fig. 14. a) Wavefront distance transform for the selection of the initial position (I), final position (F). b)
Coverage path generated using the wavefront distance transform with the selection of the initial position
(I).

Once the distance transformation is determined, a coverage path can be found by starting at the initial
grid, I , and selecting the adjoining grid with the highest number that has not been explored. If two or
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more are unexplored, and adjoining grids share the same number, one of them is randomly selected, as
shown in Figure 14b.

d) Metrics
The metrics evaluate the performance of the three CPP methods. Such assessment can be performed by
considering five commonly used metrics to evaluate the effectiveness of the proposed CPP methods both
theoretically and in simulation (dynamically) [34], [48], [109], [111]. These five metrics are covered path
length, flight time, energy consumption, redundancy of points traveled, and percentage of coverage of the
total area. Each of these metrics is described below.
The Lct metric (covered path length), is the length of the entire path covered by the UAV from the initial
to the final point. For a trajectory in the 2D plane composed of n points, assuming the initial point as
(x1, f(x1)) and the end point as (xn, f(xn)). The Lct can be computed as shown in Equation (5):

Lct =
n−1∑
i=1

√
(xi+1 − xi)2 + (f(xi+1)− f(xi))2 (5)

Where (xi, f(xi)), where i = 1, 2, ..., n are all the n points of the UAV flight path in the 2D coordinates.
More details can be found in [148].
The flight time metric of the PX4 SITL Gazebo model is the time required to travel the total flight path
(takeoff, path travel, and landing) with a dynamic speed that considers the inertia and the variation in
speed due to UAV turns angles. These data are collected through sensors in the Gazebo plugins [149].
The redundancy of points traveled, R%, corresponds to the number of points that are visited more than
once from the total number of points that the path contains, Equation (6).

R% =
Ppc

Pvmo

(6)

where Ppc, and Pvmo correspond to the number of points the trajectory contains, and the number of points
visited more than once [150].
Percentage of coverage of the total area C%, measures the number of effectively covered points within
the total number thereof by the points the area to be covered contains, given by Equation (7).

C% =
Pv

PT

(7)

Where Pv and PT correspond, respectively to the total number of points visited and the total number of
points in the area [107].
Moreover, the number of maneuvers metric, which is the number of turning maneuvers the UAV performs
on a path, is often used as the main performance metric in coverage [151], [152].
The energy consumption metric is computed from the voltage and current data from the power module of
the PX4 SITL model [153]. Its value depends on parameters, such as the CPP width between lines and
the speed and the height of the UAV at the time of implementing the CPP, which were configured in the
interface and were simulated in Gazebo.
To validate the results of the methods described above, the BECD, GBSTC, and GBWC methods were
implemented in two UAVs, simulated in Gazebo, and their performances were assessed by the metrics
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presented above [107]. The next section describes the results and compares the models in detail.

4) Simulation and Validation Platform: Based on [154], the Gazebo platform was selected to execute
the simulation experiments, as it has extensive documentation on its webpage. In addition, it is the most
mentioned and used simulation platform in previous work [134], [135], that implemented path planning or
CPP, used UAV sensors, or deployed several UAVs [154]. Gazebo also allows the modeling of commercial
UAVs using the PX4 autopilot software [153], as shown in Figure 15. In addition, this figure shows one of
the experiments conducted with the Typhoon UAV, flown over the CSUSL plant. The UAV sonar sensor,
represented by blue lines, is also shown, as is the UAV camera, in the box at the upper right.

Fig. 15. UAV over the PV plant, simulated in Gazebo

The interaction between Gazebo [154], PX4 [153], Python and the CPP methods was implemented using
ROS (Robot Operating System) as middleware [155]. This tool allows communication among nodes. The
nodes are processes, and each node has a task associated with it, such as sending a Mavlink command
to control the UAV trajectory and permitting reading messages from the UAV to discern its status in
flight, using a simulation mode referred to as software in the loop (SITL). This simulator provides the
ability to run different vehicles, such as a plane, copter, or rover, without a need for any microcontrollers
or hardware [156]. In addition, two PX4 autopilot rotary wing UAVs, the 3DR Iris and Typhoon UAV,
were chosen because they have good maneuverability and are more suitable for small-scale CPP missions.
Furthermore, these UAVs have been widely used in other research [23], [131], [157].
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The GCS software (QGroundControl) was selected to validate the CPP calculated for each UAV and PV
plant obtained, because it is the most compatible tool with the PX4 autopilot. It is also recommended
on the PX4 webpage. On other hand, another compatible tool, namely a GUI, was designed using Qt to
modify and vary the parameters and to convert the way points from RoI pixels to geo-referenced points
[61].

D. Results and Discussion

The procedure described above—DL-server, post-processing, CPP, and metrics evaluation, represented
in Figure 11, was applied to three different PV plant images. The results obtained are described in the
following sections.

1) Results with Deep server and OpenCV functions: OpenCV functions and a DL server were
combined to accurately extract the mask and to trade off the DL server results of the PV plant area.
Then, the CPP methods used the mask as a region of interest (RoI).
The stages to obtain the results of the RoI in the three images are shown in Figures 16–18. In the first
stage, a high-resolution image from Google Maps, of predefined height and width, was obtained, and used
as an input image in the DL server, depicted in Figure 16a. In the second stage, the output image of the
DL server was the mask, shown in Figure 16b. In the third stage, the opening function was used in the
mask, Figure 16c. In the fourth stage, the RoI was obtained using the draw contour method, as seen in
Figure 16d. Finally, the RoI was blended with the input image with the aim of comparing the results in
Figure 16e. The results were satisfactory and can be adapted, depending on the environment.

Fig. 16. Steps of boundary extraction by DL server and OpenCV functions in Unioeste 1 PV plant.

Fig. 17. Steps of boundary extraction by DL server and OpenCV functions in Arak PV plant.
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Fig. 18. Steps of boundary extraction by DL server and OpenCV functions in CSUSL PV plant.

2) Results of CPP Methods: The CCP method results were obtained from six experiments that
implemented the five metrics previously described. Each experiment was conducted by selecting a PV
plant and a UAV, then choosing the CPP method and the width, speed, and height of the UAV over the
flight path. All of this was done in the implemented GUI interface. The six tests were conducted by
varying the CPP width parameter, while other parameters were not varied, and the same experimental
conditions were maintained throughout.
For these experiments two UAVs were selected, the Typhoon [158] and 3DR Iris [159] as mentioned in
Section 4. Three simulated PV plants were also chosen, as highlighted in Section C. The metrics referenced
in Section 3 were assessed for each test. Battery consumption was obtained from the GCS software with
the SITL parameter activated. The rest of the data was collected from the Gazebo simulations. The
experiments are explained in detail in the following sections, and some results are discussed.

a) The Three First Experiments with a Typhoon UAV
The three first CPP experiments were conducted with a Typhoon UAV, varying the CPP width between
0 and 20 m, depending on the PV plant being covered. For example, in the first and second PV plants,
Unioeste 1, and Arak, respectively, the CPP widths were varied between 5 and 20 m. In the third CSUSL
PV plant, the width was varied between 1 and 8 m, due to the method’s restrictions on running in small
areas with a large width. Then, in each of these experiments, the resulting metrics were annotated in
Tables, as shown in Appendix B.
The logged metrics were utilized to draw a clustered columns and lines chart for experiments 1, 2 and
3, performed with the Typhoon UAV, to highlight the most important information and to determine their
correlations with each other. In these graphs the vertical axis was scaled logarithmically and the horizontal
axis was labeled with the type of CPP method in use; in this way, it is possible to visualize the correlation
of flight time, number of maneuvers, and covered path length with the energy consumption by each CPP
method, as shown in Figures 19–21. In addition, the relationship between the redundancy metric and
the CPP width is identified, showing that this metric is higher in BECD, but does not affect energy
consumption, which is the primary metric of interest.
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Fig. 19. Performance metrics of Typhoon UAV on Unioeste PV plant (Experiment 1).

Fig. 20. Performance metrics of Typhoon UAV on Arak PV plant (Experiment 2).

Fig. 21. Performance metrics of Typhoon UAV on CSUSL PV plant (Experiment 3).
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The UAVs’ energy consumption, in conjunction with the CPP widths, were obtained from the energy
consumption results logs, then a new Table V was composed of three large columns, corresponding to all
the assessed PV plants, and each PV plant column is made up of three CPPs with their respective values
of consumed energy. The rows of the table contain the CPP widths in increasing order from top to bottom,
as shown in Table V. Where it can be observed, some parameters, such as the energy consumption with
regard to CPP width, were due to the size of the RoI. Additionally, it can be observed that the greater
the CPP width, the lower the energy consumption, as seen in the columns of Table V. For example, for
the BECD CPP in Unioeste 1, with a width of 5 m, the percentage of energy consumed was 98%, while,
for a width of 20, the energy consumed was 29%. It is also observed that the larger the PV plant, the
UAV consumed all its energy in CPPs with narrow widths; on the other hand, if the plant is small, with
the same width, the UAV does not have energy consumption problems. As can be seen in the row with
a width of 8 m, where, for the Unioeste 1 and Arak PV plants, a lot of energy was consumed, between
88% and 52%, unlike the CSUSL plant, in which where the energy consumed was very little, between
7% and 5%. In the experiments for which energy consumption, with respect to CPP width, cannot be
observed, (N/A) was used to annotate these results, which happened when the CPP width was very large
with respect to the RoI, as this does not allow the generation of the route, or when the CPP width was
very small with regard to the RoI causing a flight path in which the UAV consumes all its energy. In
short, the UAV used can be undersized or oversized with respect to its intended PV plant.

TABLE V. COMPARISON OF THREE CPP METHODS WITH RESPECT TO THE CPP WIDTH,
SIMULATED IN A TYPHOON UAV ON THREE PV PLANTS

Energy Consumption
PV plant Unioeste 1 (35, 975m2) Arak (25, 056m2) CSUSL (1, 344m2)

Width (m)
CPP

BECD GBSTC GBWC BECD GBSTC GBWC BECD GBSTC GBWC

1 N/A N/A N/A N/A N/A N/A 35% 47% 43%

2 N/A N/A N/A N/A N/A N/A 20% 23% 24%

3 N/A N/A N/A N/A N/A N/A 14% 15% 15%

4 N/A N/A N/A N/A N/A N/A 11% 12% 12%

5 98% 100% 100% 80% 94% 94% N/A N/A N/A

6 N/A N/A N/A N/A N/A N/A 9% 8% 8%

8 74% 85% 88% 52% 62% 63% 7% 6% 5%

10 56% 62% 63% 41.5% 45% 43% 5% N/A 5%

12 47% 54% 55% 36% 37% 35% N/A N/A N/A

15 38% 43% 45% 27% 29% 26% N/A N/A N/A

20 29% 32% 31% 21% 20% 19% N/A N/A N/A

The graphs in Figure 22 were constructed from Table V by quintic polynomial interpolations, which
requires six data points to form a curve that passes through all given data points [160], where the abscissa
axis is the CPP width and the ordinate axis is energy consumption. For the experiment conducted at
the PV plant Unioeste 1, the graph in Figure 22a shows that the BECD method had the lowest energy
consumption when the CPP width was in the range of 5 to 16 m, while GBSTC and GBWC had the



Coverage Path Planning with Unmanned Aerial Vehicles over Photovoltaic Plants using Image... 45

lower energy consumption when the CPP width was in the range of 16 to 20 m. For the experiment
tested at the Arak PV plant, the graph in Figure 22b shows that the BECD method had the lowest energy
consumption when the CPP width was in the range of 5 to 10 m, while the GBSTC and GBWC had
similar energy consumption when the CPP width was in the range of 10 to 15 m, and GBWC had the
lowest energy consumption when the CPP width was in the range of 15 and 20 m. For tests conducted
at the CSUSL PV plant, the graph in Figure 22c shows that the BECD method had the lowest energy
consumption when the CPP width was in the range of 1 to 5.5 m, while the method GBSTC had the
lowest energy consumption when the CPP width was in the range of 5.5 to 8 m. All plants were recreated
in a simulation environment with their real dimensions.

Fig. 22. Performance test of UAV Typhoon varying the CPP width.

The Last Three Experiments with 3DR Iris UAV
The last three CPP experiments were conducted with a 3DR Iris UAV, varying the CPP width between 1
and 20 m, depending on the PV plant covered. For example, in the first and second PV plants, Unioeste 1
and Arak, respectively, the CPP widths were varied between 8 and 20 m; in the third PV plant, CSUSL,
the width was varied between 1 and 8 m, due to the restrictions of the method requiring it be run in
small areas with a large width. Then, in each of these experiments, the resulting metrics were annotated
in tables, as shown in Appendix C.
As in the previous chapter, the recorded metrics were used to create bar and line graphs for Experiments
4, 5 and 6, which are those conducted with the 3DR Iris UAV, to highlight the most important information
and to determine correlations among the metrics. In these graphs, the vertical and horizontal axes were
scaled logarithmically and labeled in the same manner as above, with the aim of visualizing the correlations
between flight time, number of maneuvers and covered path length, with regard to energy consumption
by each CPP method, as shown in Figure 23–25. Furthermore, the relationship between the redundancy
metric and CPP width is identified, showing behavior similar to the previous UAV’s data.
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Fig. 23. Performance metrics of 3DR Iris UAV on Unioeste PV plants (Experiment 4).

Fig. 24. Performance metrics of 3DR Iris UAV on Arak PV plants (Experiment 5).

Fig. 25. Performance metrics of 3DR Iris UAV on CSUSL PV plants (Experiment 6).
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The UAV energy consumption and CPP widths were obtained from the energy consumption results logs,
then a new Table VI was established, in which three large columns correspond to the PV plants, where
each PV plant column contains three CPPs with their respective values of consumed energy, and the rows
of the table contain the CPP widths in an increasing direction from top to bottom. Here it can be observed,
as in the last table, that some parameters’ values, such as the energy consumption by CPP width, are
due to the size of the RoI. It can also be observed that the greater the CPP width, the lower the energy
consumption, as seen in the columns of Table VI. For example, using BECD at Unioeste 1 with a width
of 10 m, the percentage of energy consumed was 100%, while for a width of 20 m, the energy consumed
was 48%. It is also observed that, for larger PV plants, the UAV consumed all its energy in a CPP with a
small width, whereas, for small plants of the same width, the UAV did not have energy waste problems.
As can be seen in the row corresponding to a CPP width of 8 m, at the Unioeste 1 and Arak plants a lot of
energy was consumed, between 100%, and 88%, unlike at the CSUSL plant, where the energy consumed
was very little, between 9%, and 8%. Similarly, in the previous experiments, wherein the UAV’s energy
was exhausted and the CPP width did not allow the generation of the route or when the CPP width was
large with regard to the RoI, the results were scored with (N/A). To summarize, the UAV used is suitable
for the last PV plant.
On the other hand, the 3DR Iris UAV, with its design, size, autonomy, and performance is suitable when
the PV plant to be inspected is small, of an approximate size of 5000 square meters or less, such as the
CSUSL PV plant, at 1344 square meters. Owing to such PV plant sizes, any coverage method used in
this work can be used to cover an area with a CPP width of 1 meter, while minimizing the metrics of
covered path length, flight time and maneuverability, to obtain lower energy consumption, as shown in
the Table VI. In addition, this UAV did not perform well at large or medium-sized plants, since, to cover
them using the CPP method, the width that must be provided is greater than 8 m; therefore, though the
UAV’s inspection of the PV plant had no high-resolution cameras on board, they were needed; without
them, the inspection cannot be guaranteed.
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TABLE VI. COMPARISON OF THREE CPP METHODS WITH RESPECT TO THE CPP WIDTH,
SIMULATED IN A 3DR IRIS UAV ON THREE PV PLANTS

Energy Consumption
PV plant Unioeste 1 (35, 975m2) Arak (25, 056m2) CSUSL (1, 344m2)

Width (m)
CPP

BECD GBSTC GBWC BECD GBSTC GBWC BECD GBSTC GBWC

1 N/A N/A N/A N/A N/A N/A 52% 72% 72%

2 N/A N/A N/A N/A N/A N/A 30% 35% 38%

3 N/A N/A N/A N/A N/A N/A 21% 24% 22%

4 N/A N/A N/A N/A N/A N/A 17% 17% 15%

5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

6 N/A N/A N/A N/A N/A N/A 12% 12% 11%

8 100% 100% 100% 88% 98% 98% 9% 9% 8%

10 96% 100% 100% 70% 76% 71% 7% N/A 7%

12 80% 92% 95% 60% 63% 59% N/A N/A N/A

15 64% 73% 78% 45% 48% 43% N/A N/A N/A

17 60% 68% 67% N/A N/A N/A N/A N/A N/A

20 48% 55% 54% 26% 26% 25% N/A N/A N/A

The graphs in Figure 26 were constructed from Table VI using quintic polynomial interpolations, wherein
the abscissa axis is CPP width and the ordinate axis is energy consumption.
Additionally, the graph in Figure 26a shows that the BECD method had the lowest energy consumption;
when the CPP width spanned the entire test range, the GBSTC and GBWC methods showed a higher
energy consumption at the Unioeste 1 PV plant. The graph in Figure 26b shows that the BECD method
had the lowest energy consumption when the CPP width was in the range of 8 to 10 m, whereas BECD
and GBWC had similar energy consumption, leaving the GBWC method with the lowest consumption,
when the CPP width was in the range of 10 to 15 m. On the other hand, the GBWC method had the
lowest energy consumption when the CPP width was in the range of 15 and 20 m; this test was conducted
at the Arak PV plant. Finally, the graph in Figure 26c shows that the BECD method had the lowest energy
consumption when the CPP width was in the range of 1 to 3 m, and the GBWC method had the lowest
consumed energy when the CPP width was in the range of 3 to 8 m. The test was performed at CSUSL’s
PV plant.
Summary Tables of the results of the metrics for each of the tests with the Typhoon UAV and 3DR Iris
UAV are shown. All files, and logs for the experiments are available on GitHub at [161].

3) Discussion: The proposed strategy allows a semi-automatic and faster solution for achieving
effective results when inspecting PV plants in geometrically simple areas, with certain limitations, although
some results obtained in this work are theoretical results, such as from CPP width, for example; in practice,
a camera of 14 megapixels is not adequate to inspect a PV plant with a CPP width of 20 m [46], [162].
The results obtained in this work indicate that the most adequate method is BECD for a specific range
of CPP widths, although it also shows adequate performance for various CPP widths in some RoIs. The
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Fig. 26. Performance test of UAV 3DR Iris varying the CPP width.

GBWC showed a good performance when using a CPP width greater than 7 m in some RoIs, and all
showed a relationship with the area to be covered, as shown in Tables V and VI.
An analysis of the metrics used in this work, such as redundancy, R%, which does not represent a significant
factor when comparing these three CPP methods, showed that, although the BECD was the method with
the highest redundancy, it was also the method with the lowest consumption of energy. On the other hand,
the other metrics, such as the Lct metric, flight time metric, and the number of maneuvers, are directly
related to energy consumption, as can be seen in Appendix B and C. It also helps to conclude that the
BECD method is more suitable for widths in a range between 0 and 7 m, due to the lower number of
maneuvers in these ranges, as other authors have also mentioned [163], [164]. The percentage of coverage
of the total area, C%, always showed that coverage was total
The Lct metric, flight time and number of maneuvers were directly related to the consumption of energy
for all the experiments performed, as seen in Figures 19–21 and 23–25, and as confirmed by other authors
[151], [152], in addition to helping to reinforce that the most appropriate CPP for certain ranges is the
BECD.
The BECD method is the best method among the three methods tested, in a specific width range, from
0 to 7 m, for all the RoIs tested, which means that for a 10 Megapixel camera with a horizontal field of
view of 7 m, the CCP method’s good images, in terms of what to inspect of a PV plant can be obtained
[33].
The implemented BECD method divided the RoI into small regions, and then, over these regions, it
implemented the round-trip coverage pattern, called boustrophedon [106], [107]. This pattern allows
spending less energy consumption with small widths, due to its low number of maneuvers compared
with the other methods, as shown in Appendix B and C.
On the other hand, the GBWC method allowed lower energy consumption, according to the results of the
simulations, in widths greater than a certain value, but depending on RoI size; this method also allows an
approximate coverage outside the RoI, a characteristic that is very important in this type of application,
and that, perhaps, is not very attractive for terrestrial robotics, from which this type of method originates
[147].
A RoI with many concave points is a great challenge for performance metrics, since they increase
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with the distance of travel, and also increase the number of maneuvers and therefore increase energy
consumption, according to these results in the following works [23], [164], a more detailed analysis on
these characteristics was made.
In future works, the methods (BECD, GBWC) could be implemented in UAVs with characteristics similar
to those used in this work; these characteristics are shown in Tables VII and XI. Additionally, with
these UAVs, an inspection could be conducted in at least one PV plant. Where one can think about the
implementation of an expert system that selects the coverage path between the two types of methods
(BECD, GBWC), according to the CPP width size, required for a camera with a certain resolution, and
focal length.
Finally, the results obtained with the BECD, and GBWC methods differ from the results obtained by
other authors [46], [103]–[105]. Who did not implement CPPs to solve these types of problems; they used
other types of solutions that have restrictions when inspecting PV plants with UAVs. On the contrary, this
work considers the CPPs, and obtained interesting results for future real implementation. The proposed
CPP will increase the possibility of using inexpensive UAV systems for the inspection of PV systems on
roofs of houses, and commercial buildings, and also, of the use of CPP with small widths to complete
inspections at centimeter scales of the panel where the flaws can be better seen.

E. Conclusions

In this work, a method for implementing CPP in UAV for PV plant inspection was presented. The method
consisted of a series of steps, one of these was the deployment of a DL-based U-net model to establish
a DL service system from which to extract the limits of PV plants by extracting the boundaries of PV
plants from an image. To summarize, the method was accurate, and fast without depending on the image,
with low request latency and response.
This experiment focused on three novel path planning methods in the PV inspection missions in order
to find the best path for covering each of the three PV power plants with less energy consumption. A
GUI interface was used to order the UAV’s maneuvers in the inspection of the simulated PV plants. The
results of each CPP method in the simulation were compared. The best CPPs was the BECD, for a range
of CPP widths of 0 to 7 m. These path planning algorithms can be performed by any multirotor UAV
that receives Mavlink commands, can carry a camera sensor, and transmit real-time video to GCS.
Performance on the CPP tasks was measured using two different types of flying robots, a Typhoon UAV
and a 3DR Iris UAV. It was demonstrated that the Typhoon UAV (or one with similar characteristics) is
better suited for large or medium-sized PV plants (such as those in deserts, plains, and hills); instead, the
drone-like 3DR Iris UAV is more suitable for small-sized PV generation (such as on roofs and rooftops,
canopies, and facades). The proposed strategy allows such comparisons to be made and enables the
selection of the most suitable UAV for each type of installation.
The values obtained for the metrics collected from each of the tests show a correlation between covered
path length, flight time, number of maneuvers as regards energy consumption, and ensuring that the CPPs
implemented in UAVs to inspect photovoltaic plants could be similar when implemented in real plants. The
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results also help to predict the energy consumption of a given UAV when performing a plant inspection.
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VII. RESULTS AND DISCUSSION

A. abstract

This chapter presents a summary of the results obtained and the scope developed from the general objective
of this work, which was to propose a strategy to determine the coverage route in unmanned aerial vehicles,
from a delimitation of photovoltaic installations through image analysis and in a suitable simulation
environment, for a future inspection of solar panels. and to achieve this objective, three specific objectives
were proposed and developed in a modular way in two stages. Where satisfactory results were obtained
that achieved a great contribution in the state of the art, such as a technique to delimit geometric area of
photovoltaic plants, a CPP technique that is suitable for the task in a range of specific CPP widths and the
implementation of the entire system with a GUI interface and a simulation platform, to select different
photovoltaic plants and drones where the system was put into operation and through these experiments
a series of recommendations for implementation of a system, were obtained. Thus fulfilling the specific
objectives and the general objective.
keywords: deep learning (DL); unmanned aerial vehicle (UAV); photovoltaic (PV) plants; semantic seg-
mentation; coverage path planning (CPP).

B. Introduction

The main objective of this work was to propose a strategy to determine the coverage flight path in
unmanned aerial vehicles, based on a boundary mapping of photovoltaic plants through image analysis
and in a suitable simulation environment, for a future inspection of solar panels.
To achieve this goal, a series of specific objectives per stage were proposed. In the first stage, the proposed
objective was to evaluate image processing techniques for the extraction of the area limits of a photovoltaic
plant. In the second stage, the proposed objective was to specify a method for planning coverage routes
over the area of photovoltaic installations. The last proposed objective was to evaluate the performance
of the system in the simulation environment, verifying its operation on at least two PV installations and
creating a set of recommendations for system deployment based on a simulation environment.
In two stages several results were found, each of which will be explained in the following paragraphs and
additionally the scope developed and achieved in the work will be explained.

C. Summary results and scope of work

1) Primera Etapa: In the first stage, as a result of the first specific objective, several contributions
were achieved: the first one was the selection of the ”Amir” dataset among many others, through a process
of database specification, where the main characteristics on which the selection of the dataset was based
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were: that the images of the photovoltaic plants had their respective masks and that they had low resolution
to facilitate the training of the neural network.
As a result of this objective, several contributions were achieved: the first was the search and selection
among many options of the ”Amir” dataset, this was done through a process of database specification,
where the main characteristics on which the selection of the dataset was based were: that the images
of the photovoltaic plants had their respective masks and that they had a low resolution to facilitate the
training of the neural network.
Secondly, the values obtained in this work with the TIP technique and those obtained by other authors were
compared. This process was carried out by randomly selecting test images and applying the functions
described in the methodology section, and then comparing the mask obtained with the original. The
comparison of the obtained mask with the original one gave the following results: for the IoU metric
it was 71.62% and DC was 71.62%. The results were accurate and can be modified depending on the
environment.
Third, a comparison was made between the results obtained with the TIP technique and the deep learning
techniques (the FCN model [32] and the proposed U-net model). To perform this comparison, the two most
commonly used metrics in semantic segmentation problems were used. For example, for the implemented
FCN model the result of the standard IoU metric in the training stage was 94.13%, for the validation
stage it was 90.91% and for the test stage it was 87.47%. In addition, in the DC metric in the training
stage it was 95.10%, for the validation stage it was 92.96% and for the test stage it was 89.61%, which
have similar values. On the other hand, using the same metrics of the proposed U-net model, it is found
that the IoU metric obtained in the training stage was 93.57%, in the validation stage 93.51% and in the
test stage 90.42%. Likewise, the DC metric for the training stage was 94.03%, for the validation stage it
was 94.44% and for the test stage it was 91.42%. Due to this, a large difference was found between the
TIP models and the DL-based models, a not so marked difference between the FCN and U-net model for
the first metric of 2.95% in the testing stage and for the second metric used a difference of 1.81% was
calculated in the same stage, resulting in a better performance in the metrics of the U-net model of Deep
Learning.
Finally, the general trend of the FCN model behavior during the training and validation stage is consistent,
showing that the network converges and is stable at iteration 30, and the loss value tends to 0.04% On
the other hand, for the U-net model proposed in this work showed a better performance. The common
trend of the two metrics and the network, converges in less time and is stable at iteration 16, the loss
value tends to 0.03%. Having less loss and therefore higher performance.
To sample the above inputs, 716 images with the FCN model and the trained U-net model were used in
the evaluation stage, where the U-net model shows better performance when comparing the FCN model
test data. As shown in Figure 9 and 10, For example, in one of the images showing a photovoltaic plant
and a lake, the U-net model differentiates between the lake and the photovoltaic plant, which is not the
case with the FCN model.
The training and testing accuracy is a proportion of the number of pixels from the original image that are
correctly classified in the predicted image and this cannot be taken as indicators of the similarity between
the predicted PV plants and the original mask for the semantic segmentation task [85].
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To confront the results of the original and the predicted mask, the IoU metric was used. This metric varies
from 0 to 1, with 0 being the lack of similarity and 1 being the complete similarity between the masks
[82], so the U-net model proposed in this work obtained a value closer to 1 in the IoU metric. In addition,
the iteration times show that the model used is faster and therefore reliable for the training and processing
stages, obtaining results in less time [85].As a result, the U-net model performed better compared to the
FCN model, allowing the specific objective of the first stage to be met.

2) Second Stage (Objective 2 and 3): SIn the second stage, the specific objective is to specify a
method for planning coverage routes over the geometric area of photovoltaic installations.
In the literature on CPP, several methods have been used to solve the CPP problem. In this work,
three methods based on CPP were selected, considering the following criteria: execution time, ease of
implementation and easy understanding, which were used to cover the RoI. The methods were selected
according to [106], [107]. These three methods were: Boustrophedon exact cellular decomposition (BECD),
grid-based spanning tree coverage (GBSTC), which works with cellular decomposition, and grid-based
wavefront coverage (GBWC).
In addition, the environment of the CPP work was mapped using Deep Learning Server and combined
with OpenCV functions to extract the mask of the PV plant more accurately and to compensate for
any incompatibility that the result could present with the region of interest (RoI) required by the CPP
methods. As verified in the last part of this process, where the RoI was blended with the input image in
order to compare the results, they were satisfactory and could be automatically adapted according to the
environment.
The CCP methods were evaluated with five metrics (path length covered, flight time, energy consumption,
redundancy of points traveled and percentage coverage of the total area) dynamically in six experiments
that were implemented in a simulation environment, each experiment was configured by selecting one
PV plant out of three possible, one UAV out of two possible, one CPP method out of three possible, one
speed, one UAV height above the flight path and only the CPP width was varied for one configuration,
i.e. 6 variations for each configuration, for a total of 108 simulated runs, all of the above was performed
in the implemented GUI interface.
From the experiments with the CPP methods, some contributions were obtained, i.e., it is possible to
specify the most suitable CPP in terms of the metrics that directly influence the energy consumed to
meet the second specific objective, i.e., the results obtained in this work indicate that the most suitable
method is BECD for a specific range of CPP widths from 0 to 7 meters, although it also shows adequate
performance for several CPP widths in some RoIs. On the other hand, the GBWC method showed good
performance when using a CPP width greater than 7 meters in some RoIs.
Continuing in the second stage, the third specific objective consisted of evaluating the performance of the
system in the simulation environment, verifying its operation in at least two PV installations and creating
a set of recommendations for implementing the system based on the results of the simulation environment.
The same six experiments of the second stage were used, but the behavior of the selected plants and UAVs
were analyzed, for these experiments two UAVs were selected, the Typhoon [157] and the 3DR Iris [158]
widely used in research works, also three simulated photovoltaic plants were chosen (Unioeste, Arack, and
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CSUSL) , where were evaluated for each test, the battery consumption and metrics performance where it
was found that the best UAV to perform the Inspection task in small plants is the 3DR Iris based, also
the inspection task was evaluated with the Typhoon, which presented a better performance in medium or
large size plants.
On the other hand, based on the results obtained in the simulation and considering that the objective of
the overall project is to implement the system in plants located on terraces and roofs, according to the
result of the evaluation of simulated photovoltaic plants, the UAV to be used would be the 3DR Iris, with
a low resolution camera.
Finally, thanks to the experimental analysis and the simulation environment used, it is considered that
other projects of this research group can be supported by this work, some ideas are presented here:
- Swarm flight: start implementing other quadcopters with the same structure, in the same simulation
environment to work on the interaction between several UAVS and the GCS ground station, thus achieving
a faster inspection of medium and large PV plants.
- Integration of the video stream: the real-time video stream can be integrated into the design to be
processed by another more up-to-date convolutional neural network structure, identifying problems in the
PV plants in real time and being able to solve some problems immediately.
- In future work, an automatic flight controller on the PX4 Platform with Pixhawk brand hardware and
a computer (Raspberry Pi) could be implemented on the UAV board to perform automatic flight and
semantic segmentation of images on the same device.
- Currently there are many projects in development with the PX4 platform that are commercializing
these devices that are open platforms that do not present restrictions for communication and interaction,
therefore they can be used for future developments, as it has a large support community.



VIII. GENERAL CONCLUSIONS

To conclude, after evaluating traditional image processing techniques and artificial vision techniques that
allow identifying and delimiting the area of PV installations from previously established images, it is
possible to find based on metrics that the best method to solve this task it is with CNN, in particular with
the U-net model.
In summary, after specifying a method of planning coverage routes on the geometric area of the previously
identified PV installations, it is possible to identify two candidates of the valued, as the most suitable for
the inspection task, but for time and resources it would be ideal try all the methods that exist in the state
of the art, to compare and obtain the most optimal CPP according to the different parameters such as cpp
width, energy consumed, geometry and size of the PV plant, etc.
In conclusion, when evaluating the system in a simulation environment, its operation was verified in at
least three PV installations, and it was possible to create a set of recommendations to implement the real
system based on the results obtained in the simulation environment.
This study characterized the different most common coverage path planning methods with UAVs applied
to the operation and maintenance of PV plants at any location. The characteristics evaluated were speed,
height, width between lines of the CPP. This characterization allowed the identification of width patterns
between CPP lines with respect to power consumption, with constant height and speed, but varying the
coverage areas. As expected, there is a relationship between the observed data, the inspections with small
widths in large areas of PV plants require large amounts of energy.
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APPENDIX A
ALGOTRITHM

Algorithm 2: OpenCV functions.
1. input : A image Ir of size w × l
2. output: A Map for robot

3. initialization
4. import cv 2, np, flask, tensorflow, matplotlib
5. do
6. Im← cv2.imread(Mask)
7. th← cv2.Threshold(Im,128,255,THRESH BINARY ,THRESH OTSU)
8. k← cv2.getStructuringElement(MORPH RECT , (1, 1))
9. j← cv2.getStructuringElement(MORPH RECT , (5, 5))
10. Ierosion←cv 2.erode(th2[w, l],k,iteration = 2)
11. Idilation← cv 2.dilate(Ierosion[w, l],j,iteration = 20)
12. ThImage← Idilation.astype(np.uint8)
13. cnt← cv2.findCountours( ThImage[w, l],RETRE XTER,CHAIN APX NONE)
14. for i in cnt:
15. area← cv2.contourArea(cnt)
16. if (area ¿400):
17. apx← cv2.approxPolyDP(cnt,0.0010∗ cv 2.arcLength(cnt, T rue) ,True)
18. cv2.drawContours(image copy, [apx],−1 , (0, 0, 255),7)

19. mask← cv2.zeros([w, l])
20. cc← cv2.drawContours(mask,cnt,−1,(255, 255, 255),−1,FILLED)

while True
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APPENDIX B
TABLES OF TYPHOON

TABLE VII. YUNEEC UAV TYPHOON TECHNICAL SPECIFICATION

UAV Typhoon

Dimensions 520 x 457 x 310 mm (20,5 x 18 x 12,2 inches)
Weight 1980 g (69,8 ounces)
Battery 5400 mAh 4S/14,8 V (79,9 Wh)
Camera 12.4 Megapixels, 14mm/F2.8

Flight Time Up to 25 min
Flight Speed 20o m/s

Payload Capacity 10.400 g
Motor AC YUNH520120

TABLE VIII. THREE CPP METHODS USING TYPHOON UAV OVER UNIOESTE 1 PV PLANT
(EXPERIMENT 1).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
5

BECD

8.23 7591.7 31.29 392 88
8 14.18 4751.4 19.36 68 74

10 7.34 3615.9 14.54 45 56
12 13.36 2987.2 12.22 39 47
15 15.33 2388.5 10.18 28 38
20 13.33 2388.5 10 22 29
5

GBSTC

1.27 7154.6 43 527 100
8 2.27 4444.3 22.47 178 85

10 1.83 3486.2 16.35 100 62
12 2.76 2842.1 14.19 104 54
15 4.38 2288.92 11.17 74 42
20 2.67 16655.1 8.21 54 32
5

GBWC

3.66 7270.8 38.41 392 100
8 8.51 4732.3 24.2 175 88

10 7.95 3707.9 16.38 83 63
12 11.98 3095.2 14.35 78 55
15 12.41 2447.7 12.02 78 45
20 10.67 1779.3 8.1 39 31
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TABLE IX. THREE CPP METHODS USING TYPHOON UAV OVER ARACK PV PLANT (EXPER-
IMENT 2).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
5

BECD

12.84 4612.5 21.08 125 80
8 18.84 3021.2 13.52 74 52

10 25.52 2339.8 7.4 62 41
12 28.89 2029.9 9.36 62 36
15 12.84 1547.95 7.16 35 28
20 36.59 1126.9 5.25 25 21
5

GBSTC

2.83 4308.4 27.28 365 94
8 3.96 2766.8 16.28 119 62

10 5.73 2089.9 12.07 119 45
12 7.41 1809.7 10.03 85 37
15 8.75 1373.7 7.4 66 29
20 9.36 966.6 5.09 33 20
5

GBWC

9.07 4497.5 28.34 390 94
8 4.26 2789.6 15.01 193 63

10 4.69 2078.4 11.2 98 43
12 14.07 1922.4 9.24 58 35
15 6.25 1360.42 7.02 46 26
20 9.76 1002.8 5.04 25 19

TABLE X. THREE CPP METHODS USING TYPHOON UAV OVER CSUSL PV PLANT (EXPERI-
MENT 3).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
1

BECD

8.97 1579.4 9.47 192 35
2 20.05 814.9 5.28 86 20
3 22.09 525.1 3.44 62 14
4 21.11 406.1 3.04 38 11
6 42.86 296.2 2.19 27 9
8 86.67 198.6 1.43 20 7
1

GBSTC

1.25 1289.9 13.1 542 47
2 2.64 680.6 6.23 154 23
3 4.55 448.5 4.15 88 15
4 5.56 370.23 3.23 58 12
6 5.71 233.2 2.08 30 8
8 40 177.3 1.38 19 6
1

GBWC

1.37 1420.7 11.56 462 43
2 4.22 705.9 6.33 168 24
3 11.04 506.1 4.01 69 15
4 8.89 404.4 3.05 44 12
6 13.89 278.7 2.1 24 8
8 13.33 157.5 1.28 14 5
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APPENDIX C
TABLES OF IRIS

TABLE XI. 3DR IRIS UAV TECHNICAL SPECIFICATION

3D Robotics Iris

Dimensions 10 cm in height, 55 cm motor-to-motor
Weight 1282 g

Battery 5100 mAh 3S

Camera N/A

Flight Time 15-20 mins

Flight Speed 11 m/s

Payload Capacity 400 g

Motor AC 2830, 950 kV

TABLE XII. THREE CPP METHODS USING 3DR IRIS UAV OVER UNIOESTE 1 PV PLANT
(EXPERIMENT 4).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
10

BECD

7.34 3619.1 14.48 45 96
12 13.36 2987.1 12.24 39 80
15 15.33 2391.3 10.04 35 64
17 18.52 2234.1 9.13 25 60
18 13.79 1870.3 7.59 26 52
20 13.33 1773.8 7.25 22 48
10

GBSTC

1.83 3485.5 16.39 100 100
12 2.76 2827 14.12 104 92
15 4.38 2280.3 11.23 74 73
17 6.38 2101.5 10.36 68 68
18 4.6 1790.4 8.52 55 58
20 2.67 1651.2 8.21 54 55
10

GBWC

7.95 3716.5 16.29 83 100
12 11.98 3094.3 14.37 86 95
15 12.41 2442 12.05 78 78
17 14.81 2255.8 10.19 46 67
18 11.49 1883.7 8.47 43 57
20 10.67 1783.3 8.18 39 54
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TABLE XIII. THREE CPP METHODS USING 3DR IRIS UAV OVER ARACK PV PLANT (EXPER-
IMENT 5).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
7

BECD

15.42 3292.7 15.31 80 95
8 18.84 3020.2 14.2 74 88

10 25.52 2339.3 12.52 62 70
12 28.89 2030.4 9.57 50 60
15 31.25 1548.5 7.27 35 45
20 36.59 1133.3 5.21 25 26
7

GBSTC

5.73 2090.4 43 527 100
8 3.96 2757.8 17.06 179 98

10 5.73 2090.4 12.36 119 76
12 7.41 1809.3 10.18 85 63
15 8.75 13674.2 8 66 48
20 9.76 971 5.07 33 26
5

GBWC

3.66 7270.8 38.41 392 100
8 4.69 2078.8 11.47 98 2

10 4.69 2078.8 11.47 98 71
12 14.07 1922.7 9.43 58 59
15 6.25 1360.08 7.07 46 43
20 6.25 1360.08 7.07 46 25

TABLE XIV. THREE CPP METHODS USING 3DR IRIS UAV OVER CSUSL PV PLANT (EXPERI-
MENT 6).

width CPP Redundacy Distance Travel time Maneuver Bat Conspt
1

BECD

10.06 1724.8 10.39 211 52
2 15.38 978 6.12 95 30
3 19.3 597.2 4.18 62 21
4 26.67 441.5 3.33 47 17
6 47.22 316.7 2.3 30 12
8 66.67 197.4 1.47 20 9
1

GBSTC

1.77 1416.4 15.31 626 72
2 3.61 697.4 7.2 220 35
3 5.85 508.6 5 108 24
4 5.56 373.4 3.28 65 17
6 19.44 270.1 2.22 32 12
8 40 198.8 1.52 19 9
1

GBWC

3.94 1414.9 15.3 626 72
2 5.53 817.4 7.36 218 38
3 7.6 553 4.36 86 22
4 8.89 404.4 3.05 44 15
6 13.89 274.7 2.13 24 11
8 20 184.9 1.41 16 8
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no. 1, pp. 39–51, 2015.

[6] J. B. Ricardo Ramı́res, Informe de Gestión: 2019. UPME, 2019.
[7] C. S. Antonio, B. D. David, C. F. Eduardo, and C. G. M. Alonso, Generación distribuida,

autoconsumo y redes inteligentes. Editorial UNED, 2015.
[8] A. Langner, “Photovoltaics Report,” en, p. 50, Jul. 2021.
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