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Preface

This work is a direct continuation of my experimental master’s dissertation
research "Growth and characterization of single crystals of RNiSi3 series (R
=rare earth)" [1] which was developed during the years 2013-2015 in the Grupo
de Materiais Quânticos (GMQ) at the Federal University of ABC (Santo André-
São Paulo, Brazil) under supervision by Prof. Dr. Marcos de Abreu Avila.
Here, we studied the optimal growth conditions for these single crystals using
the flux method in relation to the initial proportion of the elements and the
temperature ramp. As a result, we successfully achieved to be the first to grow
them and to perform the first structural and magnetic characterization at low
temperatures.

This was the starting point for new research and collaborations whose primary
goal was to give continuity to the characterization of single crystals already
obtained for heavy rare earths (R=Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), by
means of specific heat and resistivity measurements as a function of temperature
and magnetic field. This allowed us to report the physical properties of the
intermetallic series RNiSi3 in Physical Review Materials in 2018 [2]. Because
of its relevance, we will refer to it frequently during the development of this
thesis.

Our next step was to investigate YNiSi3 and LuNiSi3 at low temperatures
as an attempt to find superconductivity. Also, to expand the research to
pseudo-ternary systems such as Gd1−xYxNiSi3 and Tb1−xYxNiSi3 in order
to systematically study the changes presented in their physical properties.
Likewise, we consider the intermetallic compounds belonging to YbNiSi3−xGex
due to their potential to exhibit quantum critical phenomena. Simultaneously,
we start to use electronic structure calculations using density functional theory
in order to improve our understanding of such systems.

This thesis was submitted to the Postgraduate Program in Physics Institute of
the University of Antioquia (UdeA), as a partial fulfillment of the requirements
for the degree of Philosophiae Doctor (PhD) in Physics. This work was carried
out during the years 2017-2021 thanks to Colciencias scholarship - convocatoria
No. 757 de 2016.
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Abstract

RNiSi3 (R=Gd-Yb) series have exhibited a wide variety of physical phenomena
including antiferromagnetism, magnetic hysteresis accompanied by metamag-
netic transitions, complex magnetic phase diagrams, coexistence of RKKY
interaction and Kondo effect, among others. The combined effect between
some of them constitutes a great challenge to comprehend their fundamental
interactions. This thesis is the result of trying to understand such interactions
in YNiSi3, LuNiSi3, Gd1−xYxNiSi3, Tb1−xYxNiSi3 and YbNiSi3−xGex from
two different approaches: electronic structure calculations where we employ
first-principles DFT, and an experimental focus where we grow single crystals
via Sn-flux method and characterize them from X-ray diffraction, magnetization,
specific heat and resistivity measurements. As a result of this investigation, we
observe that YNiSi3 and LuNiSi3 are non-conventional type-I superconductors
at Tc = 1.36(3) and 1.61(2) K, respectively, categorized as anisotropic three-
dimensional metals with multiband superconducting ground states in the weak-
coupling regime. Moreover, their Cooper pairs are formed by the coupling of
Y(Lu), Ni d with Si p electrons. On the other hand, Y-dilute antiferromagnetic
systems in which a reduction of the RKKY interaction is expected, lead to other
physical manifestations such as the emergence of Ni magnetic moment. This
causes competition between ferromagnetic and antiferromagnetic interactions
that are evidenced as anomalies above TN in Tb0.5Y0.5NiSi3, or they generate
the exchange bias effect in Gd0.50Y0.50NiSi3 and Gd0.35Y0.65NiSi3. Finally, ini-
tial studies on quantum criticality in YbNiSi3−xGex antiferromagnetic-Kondo
lattice indicate that the strong competition between the RKKY and Kondo
interactions allow only a weak change of the ground state of the systems toward
fluctuating valence systems.

Key words: Magnetism, superconductivity, quantum critical point, density
functional theory.
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1
Introduction

Technological advances that have been achieved throughout human history are
due to a deep understanding of the physical properties of materials. This is the
case of rare earths, which have abundant magnetic, luminescent, electrochemical
and thermal properties that have made possible the manufacture of permanent
magnets for electrical generators, glass-polishing powders, energy-saving lamps,
light-emitting diodes, wind turbines and more. They even have high-tech
applications such as hard-disk drives, smart phones, flat-screen televisions and
monitors, rechargeable batteries (household and automotive), electric cars,
medical imaging and tiny earphones.

Rare earth elements have an outer shell atomic configuration of the form
4fn+15s25p6, where the partially filled 4f shell lies close to the core and inside
the 5s and 5p shell, which determine the size of the lanthanoids ions. As a
consequence, the electrons in the f shell exhibit strong correlations where the
motion of each electron causes an inertial reaction on the surrounding electrons.
Moreover, since there is not perfect shielding of the nuclear charge, as the
atomic number increases from lanthanum to lutetium, there is a progressive
decrease in their ionic radius. On the other hand, yttrium has an ionic radius
and chemical behavior similar to Gd and Tb. Therefore, it is considered as
another heavy rare earth element (Gd-Lu) despite having a different atomic
structure 4d15s2.

Intermetallic compounds based on rare earths and 3d transition elements exhibit
a rich variety of physical phenomena including complex magnetic structures
with metamagnetic transition [3, 4], crystalline field effects, magentoresistivity,
Kondo effect [5], valence fluctuation phenomena, non-Fermi liquid behavior [6],
heavy fermion behavior, quantum criticality [7,8] or even unconventional su-
perconductivity.

Several of these phenomena have been observed in compounds belonging to the
RNiSi3 (R=Y, Gd-Yb, Lu) series. These crystallize in the orthorhombic Cmmm
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space group and exhibit, except for YNiSi3 and LuNiSi3, anisotropic antiferro-
magnetic ground states with Néel temperature TN between 2.6 (TmNiSi3) up to
33.2 K (TbNiSi3). Additionally, DyNiSi3 and HoNiSi3 present a second anomaly
below TN indicating a magnetic transition induced by temperature [1,9]. More-
over, they all show external magnetic field-induced metamagnetic transitions,
which for TbNiSi3, DyNiSi3 and HoNiSi3 are accompanied by hysteresis. Also,
YbNiSi3 is a Kondo lattice that shows moderately heavy fermion behavior
which makes it an good candidate to present quantum criticality [10].

The aim of this thesis is to investigate the physical properties of YNiSi3 and
LuNiSi3 at low temperature from an experimental and computational approach.
Also, to study the effect of non-magnetic ions (Y and Ge) on the magnetic
properties of GdNiSi3, TbNiSi3 and YbNiSi3 compounds.
This thesis is organized in three parts: The first part is a background of RNiSi3
family, which include theoretical framework, methodology and bibliographic
searches. In chapter 2 we refer to the key concepts that will allow us to un-
derstand the structural, magnetic, electronic, elastic and transport properties
of these compounds. So, it will involve a brief introduction to the density
functional theory. Next, in chapter 3 we indicate the experimental and compu-
tational methodology used throughout these investigation. Finally, in chapter 4
we detail all the physical properties reported in the literature about these
series and the isovalent YbNiGe3 compound. The second part presents our
research contributions to these compounds. Here we report the superconductor
properties of YNiSi3 and LuNiSi3 in chapter 5 and the physical properties of
doped systems as Gd1−xYxNiSi3 in chapter 6 and Tb1−xYxNiSi3 in chapter 7.
Finally, the third part deals with the work that is in progress. These will be
outlined in chapter 8, where we will give the first hints on the study of quantum
criticality in the pseudo-quaternary system YbNiSi3−xGex.



Part I
Background





2
Theoretical background

In this section we will briefly consider several fundamental solid-state topics
such as density functional theory, band theory, magnetism, elasticity, specific
heat, resistivity, superconductivity and quantum criticality, which will allow us
to understand the physics involved in the RNiSi3 series and their Y/Ge-doped
systems such as Gd1−xYxNiSi3, Tb1−xYxNiSi3 and YbNiSi3−xGex.

2.1 DFT

A solid is a system of many interacting particles: electrons and nuclei. The
Hamiltonian that describes it considers the kinetic energy of the electrons and
the kinetic energy of the nuclei, Coulomb interaction between nuclei, electrons
and nuclei-electrons. However, since the nucleus is more massive than the
electrons it is possible to assume the Born–Oppenheimer approximation where
the nuclei are frozen instantaneously, while the electrons move in the field
produced by the presence of the fixed nuclei, defining the external potential.
Thus, it is only necessary to consider the electronic system whose energy is
determined by: (i) the kinetic energy of the electrons, (ii) the electrostatic
external potential and (iii) the electronic interaction. The latter includes
classical effects described by the the Hartree energy:

EHartree = e2

2

∫
d3rd3r′

n(r)n(r’)
|r− r’| , (2.1)

which is associated with the self-interaction energy of the electronic charge
density n(r). This satisfies the Poisson equation ∇2vH(r) = −4πn(r), for a
Coulomb potential vH at point r generated by a charge−n(r’)d3r′. Additionally,
the electronic interaction includes quantum effects involving exchange and
correlation effects.
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2.1.1 Hohenberg-Kohn (HK) theorems

The total energy associated with this system can be determined through the
charge density of the system according to the following theorems:

Theorem 2.1.1 For any system of interacting particles moving in an external
potential vext and a static magnetic field Bext, the set (Vext, Bext) will uniquely
determine the ground state charge density given by the set (n0(r), nσ0 (r)), and
reverse. Here n(r) is the electronic charge density and nσ(r) is the magnetic
charge density with σ-spin-polarization [11,12].

Theorem 2.1.2 For any external potential Vext and static magnetic field Bext,
it is possible to define the energy functional in terms of the electronic n(r) and
magnetic nσ(r) density as:

EHK [n(r), nσ(r)] = T [n, nσ]+Eint[n, nσ]+
∫
d3r{vext(r)n(r) + Bext(r) · n̂σ(r)},

(2.2)
where T [n, nσ] and Eint[n, nσ] are functionals associated with the kinetic and
potential energy of the interacting system. The density that minimizes the
energy functional is the ground state density and the minimum of that functional
corresponds to the ground state energy [11,12].

Although these theorems give us an idea over how to determine the ground
state energy of a many-body system, they tell us nothing about how we can
compute these functionals.

2.1.2 Kohn-Sham (KS) scheme

Walter Kohn and Lu Jeu Sham (1965) demonstrated that by considering the
(HK) theorems the interacting electronic system can be mapped onto a non-
interacting electronic system (or auxiliary system) with a specific external
potential, such that both have the same ground state density. For the latter,
the Hamiltonian is the sum of σ-spin-polarized individual Hamiltonians called
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the Kohn-Sham (KS) equation, which alludes to a particle moving in an effective
KS potential vs [13]:[

−}2∇2

2m + vσs (r)
]
φi,σ(r) = εi,σφi,σ(r), (2.3)

where
vσs (r) = vHartree[n](r) + vxc[n, nσ](r) + vext(r). (2.4)

φi,σ(r) are the KS orbitals and εi,σ are the KS eigenvalues. This equation
must be solved in a self-consistent way, so in section 3 we will detail how to do
this computationally. On the other hand, in the interacting system the energy
functional of Eq. 2.2 can be rewritten as:

EKS [n, nσ] = Tnonint[n, nσ]+EHartree[n, nσ]+Exc[n, nσ]+Eext[n, nσ], (2.5)

where Tnonint[n, nσ] = − 1
2
∑N
i |∇φi,σ|2 is the kinetic energy of particles in the

non-interacting system and Eext[n, nσ] is the external functional that depends
on the configuration of the nuclei and the external fields.

All quantum exchange and correlation (xc) effects that are present in both the
kinetic energy functional and internal energy functional in the interacting system
are included in Exc[n, nσ] energy functional. It does not have an exact form,
but there are simple approximations that allow one to calculate its ground state
properties. Among the most common are the local spin density approximation
(LSDA) and the generalized gradient approximation (GGA). They differ in
the dependence on the electronic charge density. For example, LDA assumes
that the electronic system behaves like an interacting homogeneous gas, where
the spin density varies slowly over the space. Thus, Exc is a local functional
that depends only the charge density and it can be parametrized according
to Ceperley-Alder (CA) [14] and Perdew and Zunger (PZ) [15]. Systematic
errors encountered when using LDA are (1) overestimating the bonding, (2)
underestimating lattice parameters and (3) giving large bulk moduli [16]. These
can disappear with GGA due to its consideration of the electronic system as
uniform gas with small local perturbations. Hence, Exc is a semilocal functional
that depends on the charge density and its first-order gradient at each point
in space. In this case, the most commonly used parametrizations are the
Perdew-Burke-Ernzerhof (PBE) [17] and Perdew-Burke-Ernzerhof revised for
solids (PBEsol) [18,19]. The latter occupies a midpoint between LDA and PBE
producing better energies and lattice parameters values in periodic systems.
For example, while LSDA underestimates the lattice parameters of solids with
respect to experimental value, PBE overestimates them. In contrast, PBESol
values are lower than PBE by 1-2%, which improves the bulk modulus of the
system.
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KS scheme is a purely mathematical tool that only helps us to find the ground
density of the system, without indicating the formal ground state of the
interacting system, so the KS-orbital and KS-eigenvalues in general have no
physical meaning. However, they are of qualitative use in understanding the
structural, electronic, magnetic and phononic properties of solids.

2.1.3 DFT+U

Consider that each atomic orbital is an atomic site that can be doubly occupied
by electrons with spin-up σ =↑ and spin-down σ =↓ to satisfy the Pauli
exclusion principle. The movement of electrons through the crystal can be
described by “hopping” from one atomic site to its neighbors whether it is empty
or single occupied by an electron with opposite spin. When two antiparallel
spin electrons are at the same site they will experience a Coulomb interaction U .
The Hamiltonian that describes this system is called Hubbard Hamiltonian:

H =
∑
i,j

tij ĉ
†
i ĉj + U

∑
i

n̂i,↑n̂i,↓,

where tij is the hopping amplitude, i and j denotes nearest-neighbor atomic
sites, n̂i,σ is the number operator for σ spin-polarized electrons on i-site, ĉ†i
and ĉj are the creator and annihilation operators, respectively, which indicate
the creation of an electron at i site and annihilation at j site. The competition
between U and t controls the behavior of the solid and the character of its
electronic ground state. If t >> U , the electrons are delocalized and their wave
functions are Bloch states. This behavior is typical of metallic systems which
are well described by DFT. In contrast, when t << U , short-range Coulomb
interactions occur as in strongly correlated electronic states. In this case DFT
does not correctly describe the ground state of the system. However, it can be
improved by adding the U Hubbard parameter (DFT+U).

The goal of DFT+U is to separate the system into two subsystems: those
behaving as delocalized s and p electrons which could be treated by DFT and
others as highly localized d and f electrons for which the Coulomb interaction
is considered. The generalized DFT+U functional can be written as:

EDFT+U [n(r)] = EDFT [n(r)] + EU [n̂i,σ]− Edc[n̂i,σ], (2.6)

where EDFT consider the standard DFT functional in some xc approximation,
EU is the term containing the electron-electron interaction as modeled in the
Hubbard Hamiltonian. Note that in both terms we consider the interaction
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energy, to avoid double-counting (dc) we subtract it in the Edc term.
For double-counting we can consider two possibilities depending on whether
the system is strongly or weakly correlated. In the first case it is common to
use the fully localized limit (FLL) approach [20], while in the other the around
mean field (AMF) approximation [21]. Systems that do not lie in these limits
are treated as a linear interpolation of both

EINTdc = αEFLLdc + (1− α)EAMF
dc , (2.7)

for some α parameter. The dc prescriptions allow us to rewrite Edc functional
in terms of U and J which are the screened Coulomb and exchange parameters,
respectively. Also, in terms of effective Slater integrals F k which are the radial
part of the k on-site Coulomb interaction between two electrons. They are
given by [22]:

F k =
∫
dr1r

2
1R

2
l (r1)gk(r1, r2)R2

l (r2)r2
2dr2.

where
g(r1, r2) = e−

λr12
r12 , (2.8)

is the Yukawa potential and λ is the Yukawa screening length parameter [22].
For d electrons F0, F2 and F4 are required while for f electrons F6 is also
necessary, which determines U = F 0, J = (F 2 + F 4)/14 while A1 = F 4/F 2

and A2 = F 6/F 2 are constant.

2.2 Structural Properties

2.2.1 Symmetries of Crystals

As mentioned above, a solid is a system of many interacting particles: electrons
and nuclei. The way in which the nuclei are arranged determines its crystalline
structure. From a crystallographic point of view, this can be described by:
(i) Bravais lattice, (ii) space group and (iii) atomic basis. In this thesis we
will consider orthorhombic cells (a1 6= a2 6= a3 and α = β = γ =90◦) and
tetragonal cells (a1 = a2 6= a3 and α = β = γ =90◦) with space group Cmmm,
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I4/mmm and I41amd. These groups are denoted by an uppercase letters
describing the lattice type: C (base-centered) and I (body-centered), and the
point group identifier mmm, 4/mmm and 41amd, which can be rewritten
as 2/m 2/m 2/m, 4/m 2/m 2/m and 41/a 2/m 2/d, respectively. We label
them as i j k indicating the i-symmetry along x-axis, j-symmetry along the
y-axis and k-symmetry along z-axis. n/m with n=2, 4 means that the plane
perpendicular to the n-fold rotation (360◦/n) is a mirror plane. a and d are
reflection in a plane followed by a translation parallel with that plane, but the
latter is along the space diagonal of the unit cell. Finally, 41 corresponds with
rotations by 90◦ followed by a translation of 1/4 of the lattice vector.

2.2.2 Equation of State (EOS)

The ground state energy of a system in equilibrium is determined by macroscopic
variables such as temperature (T ), pressure (P ) and volume (V ). The variation
of some of them describes its thermodynamic evolution through an EOS. As
example, at T = 0 the volume dependent energy Birch-Murnaghan equation
(3rd order) is described by [23]:

E(V ) = E0 + 9
2V0B0f

2[1 + (B′0 − 4)f ], (2.9)

and the pressure dependent energy is given by [23]:

P (V ) = 3
2B0f(2f + 1)5/2[2 + 3(B′

0 − 4)f ] with f = 1
2

[(
Vr
V

2/3 − 1
)]
,

(2.10)
or equivalently for diluted systems as [24]

P = B0
V0 − V (x)
V (0) , (2.11)

where E0, V0 and B0 correspond to energy, volume and bulk modulus at zero
pressure, respectively. Vr is a reference volume, B′0 is the pressure derivative of
the bulk modulus at reference pressure and x is the concentration level. This
approach will be used to calculate the ground state properties (E0, V0, B0
and lattice parameters) at P = 0 GPa and T = 0 K of YNiSi3, LuNiSi3 and
GdNiSi3 compounds.
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2.3 Electronic properties

2.3.1 Electronic band structure

The complete set of KS eigenvalues for each k-point in the Brillouin zone forms
the energy band structure E(k) of the crystal, where a pair of antiparallel spin
electrons can be accommodated on each of these bands. This filling takes place
from the lowest energy band to the highest energy band. The energy level
of the highest occupied level at T = 0, which separates the occupied states
from unoccupied states is called the Fermi level EF . The bands below EF are
valence bands, while above it they are conduction bands. As the temperature
increases the valence electrons that are in kBT energy range near the Fermi
level are thermally excited to conduction bands leaving a vacancy or hole in
the valence band.

Both electrons and holes contribute to electrical conductivity in the solid. In
presence of an electrical and magnetic field, the electron acts as a negative
charge and the hole as a positive charges. In a crystal, due to the presence of
electron-electron and electron-phonon interactions, they are endowed with an
effective mass m∗ which may be greater or less than the free electron mass. For
example, moderate heavy fermions have m∗ ∼ 100me while for heavy fermions
m∗ ∼ 1000me [25]. We can determine the effect of the crystal lattice on the
electron motion from the dispersion relation, because the effective electron
mass is inversely proportional to the curvature of the energy band ∂2ε/∂k2.
Thus, a band with upward curvature is associated with positive effective mass,
and it is called electron-like band, while downward curvature is linked to the
negative effective mass and it is known as the hole-like band.

2.3.2 Fermi surface

In metallic compounds, one or more bands cross the Fermi level indicating
that it is partially filled. Each of them determines a sheet of the Fermi surface.
The connection of all of them forms a constant energy surface EF in k-space,
which indicates which wave vectors k in the Brillouin zone correspond to
occupied states and which wave vectors correspond to unoccupied states. The
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(a) 
(b) 

(c) 

Figure 2.1: (a) Brillouin zones for a two dimensional square lattice. Gray circle is
the Fermi surface for free electron gas. (b) First, second and third Brillouin zone
moved to first Brillouin zone through appropriate reciprocal lattice. (c) Mapping the
FS of (a) in the reduced zone scheme. This Figure is taken from Ref [25].

physical properties of a metal are greatly affected by connectivity of the Fermi
surface [26].

According to Dirichlet’s construction, the Brillouin zone is built by bisecting
with perpendicular planes nearest neighbors reciprocal lattice vectors, which
divide this space into fragments. The central cell is called the first Brillouin
zone (FBZ) and it is characterized by being the polyhedron with the smallest
volume in the reciprocal space. The shape of the Fermi surface in the Brillouin
zone depends on the electron-electron interaction strength and the electron
concentration. For example, for a free electron gas (where the electron-electron
interaction is neglected) the Fermi surface is spherical whose center coincides
with the origin of reciprocal space [Fig. 2.1(a)]. In this case, if the electron
concentration is low the entire FS lies within the FBZ, determining a single
sheet. Conversely, as the electron concentration increases the FS extends to
higher orders of the BZ. In this case, since any k-vector can be brought into
the FBZ through the reciprocal vector, we can place all the fragments of the FS
in the FBZ [Fig. 2.1(b) and (c)]. The appropriate attachment of fragments per
zone will determine a sheet of the complete FS. On the other hand, when the
electron-electron interaction is considered, the spherical FS becomes distorted
and its structure in the FBZ can become quite complicated [25].
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2.3.3 Electronic density of states

The electronic density of states (DOS) of a system describes the number of
states allowed at energy level ε to be occupied by electrons. They can be
calculated from KS eigenvalues as

D(ε) = 1
Nk

∑
n,k

δ(εn,k − ε),

where Nk is the total number of k-vectors considered in the Brillouin zone and n
is the n-KS eigenvalue. The number of occupied states at Fermi level is exactly
equal to the total number of conduction electrons in the metal [27]. If these
states are counted as a contribution from a specific atom or orbital µ, it is called
the projected density of states (PDOS) Dµ(ε), such that D(ε) =

∑
µDµ(ε).

2.3.4 Electron localization function

The electron localization function (ELF) is an electronic spatial distribution
function that allows us to determine where the electrons tend to be located.
Its topology reveals the location of core and all the chemical bonding details of
the system [28]. It is defined as [29]

ELF = 1
1+
(
D
Dh

)2 with D = 1
2
∑
i |∇φi|2 −

1
8
|∇n|2
n , Dh = 3

10 (3π2)5/3n5/3,

(2.12)
φi are the KS orbitals and n =

∑
i |φi|2 is the electronic charge density. ELF

is a dimensionless localization index defined between zero and one, whose
calibration is with respect to the uniform density electron gas which has a
value of 1/2. Thus, ELF=0 and 1 correspond to perfect delocalization and
localization, respectively.

In general, solids are formed by ionic, covalent and/or metallic bonds. Ionic
bonds are formed by electrostatic interaction between positive and negative ions,
whose charge distribution has an approximately spherical symmetry. In this
case, the electrons are highly localized close to nuclei, so that the ELF exhibits
high values around the nuclei and low values (almost 0) in the interstitial
region. In contrast, covalent bonding is a shared-electron interaction where
the electrons tend to be partially localized, with opposite spins, on the line
connecting those atoms. Here, the ELF shows a local maximum, between
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0.6 and 1.0, which depends on the bond strength. Finally, metallic bond is
compared to a free electron gas, in which the electrons move freely through
the crystal reaching ELF values close to 1/2.

2.4 Phononic properties

2.4.1 Phononic band structure

At temperatures above T = 0, the atoms are displaced by thermal motion from
their equilibrium positions (R) performing small-amplitude oscillations around
it with instantaneous displacement (u(t)). In the harmonic approximation, the
potential U felt by the ions is

U(r) = 1
2
∑
κ,α

∑
κ′,β

(
∂2U

∂uκ,α∂uκ′,β

)
uκαuκ′β .

The classical equation of motion for the κ-ion is

Fκ = Mκ
∂2uk,α
∂t2

= −∇U =
∑
κ′,β

(
∂2U

∂uκα∂uκ′β

)
uκ′β , (2.13)

where for each κ-ion there are three equations of motion (one for each Cartesian
direction). Being coupled to other atomic displacements, their solution involves
displacements that have a temporal dependency as a plane wave with respect
to cell coordinates: uκα(t) = 1√

Mκ
η(κα)eiq · Re−iωqt. Then, this equation can

be rewritten as
ω2

qη(κα) =
∑
κ′,β

Dκα,κ′β(q)η(κ′β), (2.14)

where

Dκα,κ′β = Cκα,κ′β(q)√
MκMκ′

where Cκα,κ′β =
(

∂2U
∂uκα∂uκ′β

)
eiq · R. (2.15)

Dκα,κ′β is called dynamical matrix and Cκα,κ′β(q) is the force constant. The
system of Eq. 2.14 has nontrivial solutions when det(Dκα,κ′β(q)−ω2δαβδκκ′) =
0 and the complete set of eigenvalues ω for each q-point in the Brillouin zone
forms the phononic band structure ω(q) of the crystal. If a ω < 0 appears
for any wave vector, it indicates that the structure is dynamically unstable.
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A system of N atoms has 3N vibrational frequencies for each vector q: 3
branches correspond to acoustic vibrations, while the other 3N − 3 branches to
optical ones, each associated with three polarization modes: one longitudinal
polarization and two transverse polarizations [25]. Acoustic modes start from
ω = 0 at q=0 up to finite frequency value. In this regime the atoms oscillate
in phase with equal vibrational amplitude, so that the atomic displacement is
in the direction of propagation of the vibration. This behavior is similar to
that of a sound wave in air (hence the name acoustic). In contrast, optical
modes proceed from a finite frequency value. Here, the atoms move in opposite
directions such that the center of mass remains stationary, similar to motion
of atoms during excitation by an electric field of a light wave. For this reason
they are called optical modes.

2.4.2 Phonon density of states

Similar to electronic density of states mentioned above in subsection 2.3.3, the
phonon density of states F (ω) describes the number of phonon modes of a
specific frequency ω in a given frequency interval (ω− 1/2∆ω, ω+ 1/2∆ω). On
the other hand, the partial phonon density of states Fλ(ω) includes information
about the vibrational behavior of each atom and it is such that

F (ω) =
∑
λ

Fλ(ω) =
∑
λ

∫
dq

(2π)3 δ(ω − ωλ(q)).

which is directly related to the lattice specific heat [sec. 2.6.1], the electron-
phonon coupling constant and, therefore, the phase transition temperature of
bulk superconductors [sec. 2.8.3 ].

2.5 Magnetic properties

The spin polarized electrons considered above determine the magnetic charge
density n↑ and n↓ and therefore the magnetization (m = n↑−n↓). This affects
directly the electronic properties of materials, so they must be treated for each
spin orientation. In the following we will establish how the magnetization
characterizes the magnetic properties of solids.
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2.5.1 Spin-orbit coupling

Atomic magnetism is due to electrons in partially filled shells moving around
the nucleus. It can be determined according to Russel-Saunder scheme (called
spin-orbit coupling) where the total magnetic moment J = L+S is obtained by
coupling the total angular moment L =

∑
i li with the spin angular momentum

S =
∑
i si. Here li and si are the orbital angular moment and the intrinsic spin

angular moment for each electron, respectively. Since this coupling increases
with atomic number, it is expected that for rare earths this interaction is
important. Now, all possible J values that minimize the atomic energy are
determined by Hund’s rules: (i) maximize S and (ii) maximize L, to reduce
Coulomb repulsion. (ii) J = |L− S| for shells occupied less than half full and
J = |L+ S| for more half full, to diminish the spin-orbit energy. Thus, after
calculating J , the total magnetic moment µJ and saturation magnetic moment
µJz are given by:

µJ = gJ
√
J(J + 1)µB , with gJ = 3

2 + S(S+1)−L(L+1)
2J(J+1) ,

µJz = gJJµB ,
(2.16)

where gJ is the Landé g-factor and µB is the Bohr magneton. In Table 2.1 we
summarize the above mentioned quantities for rare earths.

Table 2.1: Magnetic ground states for heavy rare eath ions using Hund’s rules: total
orbital angular moment (L), total spin angular moment (S), total angular moment
(J), Landé g-factor (gJ) and de Gennes factor (dG = (gJ − 1)2J(J + 1)). For each
atoms, the expected magnetic moment (µJ) and saturation magnetic moment (µJz )
are given according to Eq. 2.16. This Table is taken from Ref. [30]

ion shell S L J gJ dG µJ (µB) µJz (µB)
Ce3+ 4f1 1/2 3 5/2 6/7 0.18 2.57 2.15
Pr3+ 4f2 1 5 4 4/5 0.80 3.58 3.20
Nd3+ 4f3 3/2 6 9/2 72/99 1.84 3.62 3.28
Pm3+ 4f4 2 6 4 3/5 3.20 2.68 2.4
Sm3+ 4f5 5/2 5 5/2 2/7 4.46 0.85 0.72
Eu3+ 4f6 3 3 0 - - 0.0 -
Gd3+ 4f7 7/2 0 7/2 2 15.75 7.94 7
Tb3+ 4f8 3 3 6 3/2 10.50 9.72 9
Dy3+ 4f9 5/2 5 15/2 4/3 7.08 10.63 10
Ho3+ 4f10 2 6 8 5/4 4.50 10.60 10
Er3+ 4f11 3/2 6 15/2 6/5 2.55 9.59 9
Tm3+ 4f12 1 5 6 7/6 1.17 7.57 7
Yb3+ 4f13 1/2 3 7/2 8/7 0.32 4.53 4
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A general feature of spin-orbit coupling is the shift of atomic energy levels or
energy bands. In atoms, it is due to the electromagnetic interaction between
the electron spin and electric field produced by the nucleus. In a solid, the
conduction electrons move in the potential of the crystalline lattice. When
the spin of these electron and the lattice potential are coupled, there is an
alteration in the motion of electrons and thus a spin-splitting in some energy
bands [subsec. 2.3.1].

2.5.2 RKKY interaction

In a metal, coupling between magnetic ions is mediated by conduction electrons.
A localized magnetic moment produces an oscillatory magnetization on the
electron gas which polarizes their spin. Then, they interact and couple with
a neighboring localized magnetic moment at a distance r. This interaction is
known as the RKKY Interaction (Rudernam, Kittel, Kasuya and Yoshida) and
the coupling takes the form:

JRKKY (r) ∝ cos(2kF r)
r3 .

Notice that the polarization of the conduction electrons decreases as the distance
from the magnetic ion increases in a damped oscillatory fashion. So, the
interaction is long range and its oscillatory dependence determines whether the
interaction between magnetic moments is ferromagnetic or antiferromagnetic.
On the other hand, the strength of RKKY interaction is represented by de
Gennes factor defined as dG = (gJ − 1)2J(J + 1) [31]. For systems in which
the R-R interactions are dominant dG values are summarized in Table 2.1.

2.5.3 Magnetic materials

Paramagnetic, antiferromagnetic and ferromagnetic materials contain atoms
with unpaired electrons and therefore they exhibit a permanent magnetic
moment. In the first one the interaction between neighboring magnetic moment
is very weak, so they are considered independent. In absence of external
magnetic fields these are randomly oriented leading to null magnetization M
(magnetic moment per unit volume). In the presence of a weak field, they
will tend to align in the field direction. In contrast, in the latter two material
types the moments act cooperatively. The structure is divided into magnetic
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domains where in each of them the magnetic moments are aligned parallel
with M6=0 or antiparallel with M=0 for ferromagnetic and antiferromagntic
materials, respectively. In absence of fields each domain is randomly oriented,
and in presence of this they are oriented in the field direction, including some
moment overcoming the antiferromagnetic interaction. We will come back to
this point later. When the field is removed, the domains do not return to their
original orientation and the materials exhibit a spontaneous magnetization.
The magnetic field necessary to reduce the magnetization to zero is called
coercive field Hcoe. This magnetic history can be described in a M vs H plot,
where a hysteresis loop is drawn as shown in Figure 2.3 (a).

These magnetic solids have well-defined magnetic structures. If this is such
that their periodicity is a rational multiple of the crystallographic lattice, both
structures are commensurate, otherwise they are incommensurate. On the
other hand, if the size of ordered magnetic moments are equal along the lattice
they define an equal magnetic (EM) moment structure, while if they change
from one site to another they form an amplitude modulated (AM) structure.
For any case, the Hamiltonian that describes the interaction between magnetic
moments on neighboring atoms is given by:

H =
∑
ij

Jij(gJ − 1)2Ji ·Jj ,

where Jij is the exchange constant between sites i and j. In the mean-field
theory this interaction can be reduced to a magnetic moment that is in presence
of an effective molecular field produced by the neighboring magnetic ions.
This disappears progressively with the thermal fluctuations up to the critical
temperature, where a magnetic phase transition occurs. The system changes
from the magnetically ordered phase to a paramagnetic (disordered) phase. For
antiferromagnetic transitions, this temperature is called the Néel temperature
TN , while for ferromagnetic transitions it is known as Curie temperature TC .
Above it, the molecular field is completely destroyed and the susceptibility has
a Curie-Weiss-type behavior [30,32]:

χ = M
H = χ0 + C

T−θcw with C = µ0NAµ
2
effµ

2
B

3kB , (2.17)

where χ0 is the Pauli paramagnetic susceptibility, C is the Curie constant, NA
is the Avogadro number, µeff is the effective magnetic moment and θcw is the
Curie-Weiss temperature which is a measure of the interaction of an ion with
its surroundings. So, the effective molecular field is directly related to the size
of the exchange interaction between magnetic ions. If this is via the RKKY
mechanism TN and θcw can be written as [33,34]:

TN , θcw ∝ J 2D(EF )(gJ − 1)2J(J + 1). (2.18)
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Notice that as the de Gennes factor is largest for Gd, Table 2.1, it is expected
that in a rare-earth series the Gd-based compound displays the highest ordering
temperature. Also, the sign of the exchange constant determines the type
of magnetic material. Jij , θcw = 0 for non-interacting magnetic systems
as the paramagnet, Jij , θcw > 0 for ferromagnetics and Jij , θcw < 0 for
antiferromagnetics. For the latter it is expected that |θcw|/TN = 1, however
this does not occur in many compounds because the effective molecular field
generated by the nearest neighbor moments is not sufficient to describe the
magnetic behavior of the system and it is necessary to consider the next-nearest
neighbor interactions. These behaviors are shown in Figure 2.2(a) and (b) for
χ vs T and 1/χ vs T, respectively. On the other hand, in diluted systems these
temperatures are proportional to the magnetic moment concentration.
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(c) (d) 

Figure 2.2: Temperature dependent (a) susceptibility and (b) inverse susceptibility
of Curie-Weiss law [Eq. 2.17] for paramagnets θcw = 0, ferromagnetics θcw = Θ > 0
and antiferromagnetics θcw = −Θ<0. Magnetization as a function of magnetic field
for (c) spin-flop and (d) spin-flip transition.

Temperature independent Pauli paramagnetic susceptibility occurs in metals
due to the response of conduction electrons to the external magnetic field.
In absence of this, each state is doubly occupied by spin-up and spin-down
electrons and the density of state curve is the same for both polarizations. In
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presence of an applied field, the energy of electrons with spin antiparallel to
field is raised, while the parallel is reduced. In order to minimize the total
energy of the system (E = −

∑
i µBsi ·H) the electrons with spin antiparallel

that are close to the Fermi level reverses to parallel spin. As a consequence the
density of states shows a field-proportional splitting [30,32].

Experimentally, the effective magnetic moment is obtained from χ vs T (χ is
in emu/mol) to fit Eq. 2.17, subtracting χ0 and fitting (χ− χ0)−1 = aT + b

where a = 1
C and b = − θcwC . Thus,

µeff =
√

8C = 2.827
√
χT . (2.19)

For dilute systems, it is common to determine the magnetic moment from the
ratio of Curie constants respect to the pure compound. For this, it is important
to plot (χ− χ0) ∗ (T − θcw) vs T and check the constant C behavior at high
temperatures.

While rising temperature tends to disorder the magnetic moments, increasing
the field aims to align them. In antiferromagnets these can be forced towards the
ferromagnetic configuration by the presence of a high intensity field. However,
how this occurs depends greatly on the applied field direction with respect to
the initial moment orientations. Antiferromagnetic materials can be considered
as two equivalent interpenetrating sublattices, one with the moments pointing
upwards and another with them pointing downwards. If the applied field is
perpendicular to the sublattice, as the field rises the component of these on
the field increase and therefore so does the magnetization until they become
completely aligned and the system reaches magnetic saturation. On the other
hand, when a weak magnetic field is applied parallel to sublattice [Fig. 2.2
(c) and (d)] they remain in their original positions until a critical field H1

c ,
where the antiparallel moments rotate to the field direction so there are two
equivalent magnetic moment components. As in the previous case, the induced
ferromagnetic state is gradually reached by increasing the field strength to H2

c .
This process is called spin-flop transition. On the other hand, if the anisotropic
effect is very strong to increase the field to H3

c the magnetization of one
sublattice is suddenly reversed, and therefore the systems moves immediately
in a single step to the ferromagnetic state indicating a spin-flip transition.
The critical field can be determined as the position of the peaks in dM/dH.
Finally, the evolution of magnetic transitions with respect to magnetic field
and temperature allows the construction of magnetic phase diagrams H vs T,
which give a schematic representation of phases adopted by a material and the
conditions at which its phase transitions occur.
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2.5.4 Crystalline electric field (CEF)

In a crystal the ions experience an electrostatic interaction called crystal electric
field (CEF), due to neighboring ions and outer valence electrons. As this
depends on the symmetry of the local environment, in some cases overlapping
orbitals can occur, which raises the orbital energy.

3d transition metals have their orbitals far away from the nucleus, so the crystal
electric field interaction is much stronger than the spin-orbit interaction. As a
consequence they present a ground state such that L = 0 called orbital quenching
and therefore a total magnetic moment µeff = 2

√
S(S + 1)µB [Eq. 2.16]. For

example, Ni2+ is a 3d8 shell, with S = 1 and µeff = 2.83 µB. In contrast, in
rare earths such effect is much smaller than the spin-orbit coupling. However,
due to lanthanide contraction the crystalline lattice is weakly contracted which
can generate a virtual indirect overlap between orbitals of different ions [35]
making the CEF important for them.

2.5.5 Anisotropy

In solids, the spatial arrangement of electron orbitals is strongly related to
the crystallographic structure. The spin-orbit coupling interaction forces the
magnetic moment to align along well-defined crystallographic axis, giving rise
to magnetocrystalline anisotropy. As a consequence they show a magnetic
response that depends on the direction in which it is measured allowing to
differentiate between easy magnetic axis where the crystal is rapidly magnetized
in presence of a weak magnetic field and hard axis where they need more energy
to magnetize.

In materials with low symmetry and high magnetocrystalline anisotropy it is
common to perform magnetic susceptibility measurements in several directions
and then consider the physical behavior from the estimated polycrystalline
average curve. Without loss of generality, if measured along a, b and c crystal-
lographic directions the average curve is computed as the arithmetic mean of
these at each temperature:

χavg = χa + χb + χc
3 . (2.20)
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On the other hand, ferromagnetic/antiferromagnetic multilayer systems present
unidirectional anisotropy called exchange anisotropy that has its origin in the
magnetic coupling interaction between their interfaces. This can be understood
by considering that TC for ferromagnetics is higher than TN for antiferromag-
netics. So, upon cooling this system in presence of an external magnetic field
such that TC > T > TN , M vs H curve exhibit a symmetric hysteresis loop as
shown in Figure 2.3(a). However, as the temperature is reduced to TN > T ,
the antiferromagnetic material causes a shift of the loop by a exchange bias
field HEB , Figure 2.3(b). This occurs because it is energetically more favorable
for the ferromagnetic material to be magnetized in the direction in which it
was cooled [30].

This system shows a magnetic history dependent on the field cooling process.
At high temperature thermal fluctuations dominate and the moments are ran-
domly oriented. Upon cooling the material in absence of field called zero-field
cooling (ZFC) processes, the moments are immobilized with this randomness.
So, the application of an external field will evidence the anisotropy present in
the compound. On the contrary, when cooling the material in presence of a
magnetic field called field cooling (FC) processes, the moments freeze in the
orientation defined by the field direction, altering the anisotropy of compound.
The difference between these allow us to define the conditions for exchange
bias as:

• Shift of the hysteresis loop along the magnetic field axis by magnetic field
cooling.

• An enhancement of the coercive field in FC-hysteresis compared to the
ZFC case. Coercive field is calculated as Hcoe = (H+ − H−)/2, while
exchange bias field as HEB = (H+ +H−)/2 where H± are the positive
and negative intercepts of the magnetization curve with the field axis.
Additionally, we will consider the vertical displacement of hysteresis
loop as MEB = (M+ +M−)/2 where M± are the positive and negative
intercepts of the magnetization curve with the magnetization axis.

2.6 Thermal properties: specific heat

The specific heat is a thermal property of solids that gives the quantity of heat
required to raise a unit mass of the system by one degree in temperature. In
this section we will study how this is influenced by electronic, magnetic and
vibrational properties.
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Figure 2.3: Hysteresis loop (a) centered at zero magnetic field and (b) shifted by
exchange bias field HEB due to exchange anisotropy.

2.6.1 Phononic contribution

In a solid, each lattice vibration mode ω is associated with a harmonic oscillator,
called phonon, with energy ε =

(
n+ 1

2
)
~ω where n is a quantum number.

Considering a phonon gas in thermal equilibrium, the number of phonons
which are in the quantum state n is determined by the Planck distribution
〈n(ω)〉 = {exp(~ω/kBT )− 1}−1. The energy of a collection of oscillators is

U =
∫
F (ω) 〈n(ω)〉 dω, (2.21)

where F (ω) is the phononic density of states [subsec. 2.4.2]. In three dimensions
it is given by

F (ω) = dN
′

dω
= d[(L/2π)3(4πk3/3)]

dω
=
(
V K2

2π

)(
dk

dω

)
= 3V ω2

2π2v3 , (2.22)

where N ′ is the number of modes with wavevector less than k. So, substituting
Eq. 2.22 into Eq. 2.21 and deriving with respect to temperature, we find the
heat capacity of lattice at constant volume

Clatt = 9NKB

(
T

ΘD

)3 ∫ xD

0

x4ex

(ex − 1)2 dx, (2.23)
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where x = ~ω
kBT

and therefore xD = ~ωD
kBT

= ΘD
T with

ωD =
(

6π2v3N
V

)1/3
and ΘD = ~v

kB

(
6π2N
V

)1/3
. (2.24)

Here, ωD is known as the Debye frequency and it determines the maximum
frequency allowed for phonons, which occurs at the Debye temperature ΘD. At
T >> ΘD the specific heat approaches the classical value of 3NkB. At low
temperature T << ΘD

Clatt = βT 3 where β = 12π4

5 NKB

(
T

ΘD

)3
J/mol K4. (2.25)

This behavior occurs only when long-wavelength acoustic modes are thermally
excited. For bulk it is reasonable to consider temperatures below T = ΘD

50 .

2.6.2 Electronic contribution

At low temperatures, lattices vibrations are small and the phononic contri-
butions to the specific heat are neglected with respect to electronic contri-
butions. The latter can be determined by considering an ideal electrons gas.
The probability that an orbital at energy ε becoming occupied is defined
by the Fermi-Dirac distribution f(ε) = {exp[(ε − µ)/kBT ] + 1}−1 where µ
is the chemical potential of the system. At absolute zero temperature, µ
is equal to Fermi energy, however for T 6= 0, it is temperature dependent
µ(T ) = EF [1 − (π2/12)(kBT/EF )2 + (π4/80)(kBT/EF )4 + ...]. For tempera-
tures below the Debye temperature and Fermi temperature (TF = EF /kB),
the internal energy increase for system of N electrons when it is heated from 0
to T

∆U = U(T )− U(0) =
∫ ∞

0
εD(ε)f(ε)dε−

∫ EF

0
εD(ε)dε, (2.26)

where electronic density of states is given by

D(ε) = dN ′

dε
= d[2(L/2π)3(4πk3/3)]

dε
= V

2π2

(
2m
~2

)3/2
ε1/2, (2.27)

for a spherical Fermi surface ε = ~2k2/2m in the three dimensional k-space.
Substituting Eq. 2.27 into Eq. 2.26 and differentiating with respect to tempera-
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ture, we find the heat capacity of an electron gas is

Celec = k2
BTD(EF )

∫∞
−EF /kBT x

2 ex

(ex+1)2 = γT where γ = 1
3π

2k2
BD(EF ),

(2.28)
is called the Sommerfeld coefficient. This is an experimental measure of the
effective mass (m∗) of the electrons inside the metal, previously calculated by
the curvature of the band in subsection 2.3.1. So, they are related by

m∗ = ~2k2
F γ

π2nk2
B

, (2.29)

where kF = (3nπ2)1/3 for spherical surface and n the electronic density. Ne-
glecting the electron-electron interaction, the difference between effective mass
and electron mass must occur by electron-phonon interaction. If this is rep-
resented in terms of the coupling constant λe−ph, the enhancement in the
experimentally observed value γexp respect to calculated for free electrons γbare
can be expressed as

γexp
γbare

= (1 + λe−ph). (2.30)

On the other hand, according to Eq. 2.25 and 2.28 the electronic and phononic
contribution to specific heat is given by

Celec−phon = Celec + Clatt = γT + βT 3. (2.31)

So, the linear extrapolation on Cp/T × T 2 curve lead to γ as intercept and β
the slope of this curve.

2.6.3 Magnetic contribution

In antiferromagnetic systems, both temperature-dependent magnetic specific
heat and lattice specific heat are proportional to T 3. Therefore, it is impos-
sible to separate these contributions. However, a reasonable estimate can be
determined by subtracting the specific heat of a non-magnetic isomorphous
compound that has similar electronic and phononic contribution Celec−phon

Cm = Cp − Celec−phon ≈ Cp − Cnm. (2.32)

For RNiSi3 series, the nonmagnetic compounds are YNiSi3 and LuNiSi3. There-
fore, the magnetic contribution can be determined according to the Debye
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expansion [36,37]:

CRnm = CLup (T )− [CLup (T )− CYp (T )]
[
M

3/2
Lu −M

3/2
R

M
3/2
Lu −M

3/2
Y

]
, (2.33)

where CRnm(T ) is the non-magnetic specific heat of RNiSi3, CLup (T ) and CYp (T )
are the specific heats of YNiSi3 and LuNiSi3, respectively, and MX is the molar
mass of each atom. However, for compounds doped with non-magnetic ions such
as Gd1−xYxNiSi3 it is common to consider the electron-phonon contribution
only from YNiSi3 and make a renormalization in the temperature values on C
versus T curve to accounts for the amount of doping and the difference in molar
masses between Gd and Y. This is calculated according to the expression [37]

ρnorm =
[

M
3/2
Y +M

3/2
Ni + 3M3/2

Si

(1− x)M3/2
Gd + xM

3/2
Y +M

3/2
Ni + 3M3/2

Si

]1/3

, (2.34)

where MZ is the atomic mass of Z=Gd, Y, Ni and Si, and relates the Debye
temperature through

ΘD(Gd1−xYxNiSi3) = ρnormΘD(Y NiSi3). (2.35)

Mean-field theory predicts that the magnetic specific heat rises monotonically
up to a maximum value at TN and then it drops to zero suddenly and discon-
tinuously. Furthermore, it is related to the total angular moment by [38]:

∆CMF
m (TN ) = 5R J(J + 1)

[(J + 1)2 + J2] , (2.36)

whose values for rare earth ions are indicated in Table 2.2. However, real systems
do not exhibit this discontinuity and at T > TN display a tail indicating short-
range magnetic order.

On the other hand, the numerical integration of Cm/T curve determines the
molar magnetic entropy Sm of the system, which relates the changes in the
ordered magnetic state and reflects the disorder of the magnetic moments. It
increases with rising temperature and reaches a maximum value at Smaxm . For
systems whose magnetism comes only from the 4f ions, Table 2.2 the maximum
magnetic entropy without taking into account the splitting of energy levels due
to CEF effects is given by:

Smaxm = R ln(2J + 1), (2.37)

at high temperatures when all 2J + 1 levels are populated and R is the gas
constant (R=8.314 Jmol−1).
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Table 2.2: Theoretical variation of specific heat ∆CMF
m and maximum entropy Smaxm

expected from Eq. 2.36 and 2.37, respectively, for rare earth ions.
Gd Tb Dy Ho Er Tm Yb

∆CMF
m 20.15 20.54 20.62 20.64 20.62 20.54 20.15

Smaxm 17.3 21.3 23.1 23.6 23.1 21.3 17.3

2.6.4 Other contributions

An ion with magnetic moment J has (2J + 1)-fold degenerate discrete energy
level to be populated by electrons. In a solid, the crystalline field lifts this
degeneracy from the ground state [subsec. 2.5.4]. When the temperature is
comparable to the splitting between levels ∆, there is a transition probability
between them and as a consequence the specific heat shows an anomaly in the
form of a broad peak, known as the Schottky effect. In contrast, this effect is
not observed at either low and high temperature because the transitions are
negligible. In the first region Csch ∝ e(−∆/T ) so there is not enough energy to
excite the transitions from the ground state, while in the second Csch ∝ T−2

and therefore all states are equally occupied [30,38].

In the lanthanide series, the 4f electrons orbital motion produces a very large
effective field that interacts with the nuclear magnetic moment of the nucleus
I which removes the (2I + 1)-fold degenerate levels. This effect is commonly
called the nuclear Schottky effect and originates from the Zeeman interaction
with the effective magnetic field [38].

2.7 Elastic properties

Elastic solids have the property of returning to their original shape and size
after the forces that cause small deformations on them have been removed.
Thus, they satisfy Hooke’s law where the force applied on solids (called the
stress and denoted by X ) is proportional to deformation of this (known as the
strain and labeled as x) x = SX or X = Cx, where S is the elastic compliance
coefficient and C is the stiffness coefficient such that C = S−1. Work-energy
theorem permits to write the stored mechanical energy density as dW =
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Xidxi = Cijxjdxi for i and j direction of X and x, and Cij = ∂2W/∂xi∂xj .
For orthorhombic structure C matrix can be written as [39,40]

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(2.38)

whose structure is mechanically stable under the following conditions

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,

C11 + C22 + C33 + 2(C12 + C13 + C23) > 0,

C11 + C22 − 2C12 > 0, C11 + C33 − 2C13 > 0, C22 + C33 − 2C23 > 0.

From the calculated elastic constants the bulk modulus (B) and shear modulus
(G) can be deduced according to Voigt [41] (labed as V ) and Reuss and
Angew [42] (label as R):

9BV = (C11 + C22 + C33) + 2(C12 + C23 + C13),

1
BR

= (S11 + S12 + S33) + 2(S12 + S23 + S13),

15GV = (C11 + C22 + C33)− (C12 + C23 + C13) + 3(C44 + C55 + C66),

15
GR

= 4(S11 + S22 + S33)− 4(S12 + S23 + S13) + 3(S44 + S55 + S66).
(2.39)

where Sij are defined by

S11 = (C22C334− C2
23)/∆, S22 = (C11C33 − C2

13)/∆, Sii = 1
Cii

(i = 4, 5, 6),

S33 = (C11C22 − C2
12)/∆, S12 = (C13C23 − C12C23)/∆,

S13 = (C12C23 − C13C22)/∆, S23 = (C12C13 − C11C23)/∆,

with

∆ = C13(C12C23 − C13C22) + C23(C12C13 − C23C11) + C33(C11C22 − C2
12).



2.8. Electrical properties: resistivity 29

Thus, the bulk modulus (B) and shear modulus (G) are determined using the
arithmetic average of Voigt and Reuss approximations:

B = BV +BR
2 and G = GV +GR

2 (2.40)

which determine the longitudinal (vl), transversal (vs) and average (vm) sound
velocity

vl = [(B + 4/3G)/ρ]1/2, vs = (G/ρ)1/2, 3/v3
m = 1/v3

l + 2/v3
s . (2.41)

At low temperature Debye temperature ΘD is proportional to the sound velocity
through

ΘD = ~
kB

3

√
3nNAρ
4πM vm, (2.42)

where ~ is Planck’s constant, kB is Boltzmann’s constant, n is the number of
atoms per formula unit, M is the molecular weight, NA is Avogadro’s number
and ρ is the density of compound. Thus, ΘD can be determined from specific
heat measurements according to Eq. 2.25 or from elastic constant through bulk
and shear modulus with Eq. 2.42.

2.8 Electrical properties: resistivity

2.8.1 Resistivity in metals

Electrical resistance (R) is a measure how strongly the material resists electric
current under the influence of a voltage. This is associated with an intrinsic
property of solids called resistivity

ρ = RA

L
, (2.43)

which depends only on the dimension of the element, A is the area and L is
the length, through which the current flows. Both depend on the electronic
scattering processes that occur in the material due to impurities and lattice
imperfections, lattice vibrations, localized magnetic moment and other electrons.
Near to T=0 the scattering processes are due to impurity atoms and lattice
imperfections, thus generating a residual resistivity (ρ0) that is approximately
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independent of temperature. The residual resistivity ratio (RRR) defined as

RRR = ρ(300K)
ρ(2K) . (2.44)

can be used to characterize the purity and overall quality of the sample. By
increasing the temperature many different behaviors can be observed. In the
low temperature region, the electron-electron scattering is dominant and the
Fermi liquid theory predicts that ρ(T ) ∼ T 2 [43]. Next, together with these
the scattering of electrons by acoustic phonons begins and as consequence
ρ(T ) ∼ T 5. At high temperatures (T > ΘD), the latter is dominant and a
T-linear behavior is observed

ρph(T ) ∼ ρ(300K)
[
T

300

]
. (2.45)

On the other hand, free electron model predicts that the mean free path of
electrons between successive collisions is given by

l = ~kF
ne2ρ0

. (2.46)

However, in presence of an external magnetic field it can change altering the
resistivity of the material. This phenomenon is called magnetoresistance and it
is expressed as

∆ρ
ρ

= R(H)−R(0)
R(0) .

If the magnetoresistance is positive, the field forces the electrons to take a
path that leads to more scattering causing the resistivity to increase with the
field. In contrast, negative magnetoresistance occurs because the application
of a small magnetic field decreases the resistance due to the reduction in the
number of electrons scattering. In these cases the electrons behave as if they
were weakly localized.

2.8.2 Magnetic contribution

In general, magnetic materials exhibit an anomaly in the resistivity curve at TN .
This may be in the form of a sharp peak or only show a change in slope which
generates a peak in the differential resistivity dρ/dT . However, in many cases
this transition is very smooth, so it is much easier to fit a function composed
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of two contiguous segments to the points near the transition:

ρ(T ) =
{

a+ bT , for T ≤ TN
a+ bT + c(T − TN ), for T > TN

(2.47)

where a, b, c and TN are free parameters. In the paramagnetic region the
resistivity has a behavior described by Eq. 2.45, while at T < TN the localized
moments condense into an antiferromagnetic ordered array, so that the elastic
scattering of itinerant spins by located magnetic moments is determined by

ρ(T ) = ρ0 +ATn (2.48)

for n = 2 where A is a temperature-independent coefficient related with
the effective mass of the compound through the universal relation A/γ2 ∼
1.0× 10−5 µΩcm(molK/mJ)2 for heavy-fermion compounds [44].

On the other hand, in some materials the electronic scattering process is in-
elastic, i.e. the electron spin state changes by so-called spin-flip scattering.
Furthermore, if these hybridize with the magnetic moment so that the elec-
trons form a cloud of opposite spin-polarization (exchange constant I<0) that
screening the moment of magnetic ions, the phenomenon known as the Kondo
effect occurs. The temperature at which it begins to be observed is the Kondo
temperature defined as

TK ∝ e(−
1
J ). (2.49)

Above TK , the resistivity exhibits a logarithmic dependence of form

ρ = a− b log(T ) (2.50)

with b = |I|, and goes through a minimum at Tmin that is proportional to x1/5,
where x = ρ(T = 0)− ρmin. Conversely, at T < TK the resistivity is enhanced
reaching a maximum at a certain temperature before rapidly decreasing with
cooling. This characteristic temperature is commonly referred as coherence
temperature Tcoh which determines the strength of the interaction between
localized and conduction electrons, and therefore it is proportional to TK . For
T > Tcoh this is weak due to the electrons interact with a paramagnetic system,
however at T < Tcoh this becomes strong so they begin to be entwined in a
heavy-fermion fluid showing Landau–Fermi liquid behavior (ρ(T ) ∼ T 2 ).
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2.8.3 Superconductivity

The following description is based on the microscopic theory of superconductiv-
ity proposed by Bardeen, Cooper and Schrieffer in 1957, called BCS theory [45].

Superconductivity is a phase-transition phenomenon from a normal electrical
resistivity state to a superconducting state, which occurs at the critical tempera-
ture Tc. Below this, an electron induces a crystalline lattice-mediated attraction.
If it exceeds the Coulomb repulsion between electrons, the lattice allows a net
attraction on another electron with momentum and spin opposite to the initial
one. It is as if an electron emits a phonon which is immediately absorbed by
another electron. As a consequence, a weak effective attractive interaction
is formed between two electrons and they become so-called Cooper pairs or
superelectrons, which move through the conductor in an infinite mean free path
without resistance. However, near Tc the material is in an intermediate state
formed by two interpenetrating electronic fluids: normal electrons and Cooper
pairs. Thus, the density of the latter gradually goes from zero in the normal
region to ns value in the superconducting region, over a distance called BCS
coherence length ξ [46]. For a perfectly pure superconductor, it is determined
by

ξ0 = 018~2kF
kBTcm∗

. (2.51)

In a superconductor with impurities whose mean free path is given by Eq. 2.46,
the coherence length is reduced to (ξ0l)1/2.
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(T
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Figure 2.4: (a) Temperature dependent resistivity showing the superconductor region
below Tc. Magnetic behavior of (b) ideal and (c) non-ideal type I superconductor,
taken from Ref. [46].
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Macroscopically, a superconductor exhibits a combined effect below Tc: (i)
electrical resistivity suddenly drops to zero and (ii) perfect diamagnetism begins
to emerge due to Meissner effect. In the latter case, Cooper pairs flowing in the
material give rise to supercurrents that shield the superconductor. In presence
of an external magnetic field, it induces another magnetic field that is exactly
equal and opposite to the original one, canceling the field inside the conductor.
The presence of supercurrents and induced fields are not generated over the
entire conductor but are superficial. London determined that this field falls
exponentially as the inverse of the electron charge e inside the superconductor
covering a distance called London penetration depth λL which can be estimated
by

λL =
(

m∗

µ0nse2

)1/2
. (2.52)

The ratio of the penetration depth λ and the coherence length ξ determines
the Ginzburg-Landau parameter given by:

κ = λGL
ξGL

= λL(1 + 0.75ξ0/l)1/2/
√

2
0.74ξ0(1 + 0.75ξ0/l)−1/2 , (2.53)

which determines the type of superconductivity. If κ < 1/
√

2 the superconduc-
tor is of type I otherwise it is of type II. We are interested only in "ideal" type
I superconductors, whose M vs H curves are completely reversible exhibiting a
typical diamagnetic behavior. Here, the magnetic susceptibility χ is negative
and the magnetic field induces a magnetic moment opposite to the applied
magnetic field that caused it. Thus, an increasing applied magnetic field causes
a linear decrease in the magnetization. This effect is observed up to the critical
magnetic field Hc, where the superconductivity is destroyed and the magne-
tization suddenly drops to zero. In real type I superconductors, where the
impurities or crystalline defects are present, the magnetic flux can be trapped
inside them causing that when increasing the magnetic field, the magnetization
follows a different path to that of the decreasing magnetic field generating
a magnetic hysteresis. In this case, the superconductor is like a permanent
magnet. Comparatively, in a type II superconductor the magnetization does not
suddenly drop to zero as in the previous case, instead it changes gradually as
the magnetic field increases. It does so up to the second critical field H ′

c where
the compound reaches the normal state. In the region between Hc and H

′

c the
material is in a mixed phase, i.e, the Meissner effect is only partially satisfied
due to some magnetic flux lines penetrating its superconducting state [46].

On the other hand, experimentally it has been observed that the phase diagram
H vs T, Hc associated with a type I superconductor exhibits a parabolic-like
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behavior with temperature:

Hc(T ) = Hc(0)
[

1−
(
T

Tc

)2
]
, (2.54)

where Hc(0) is the critical field at absolute zero, and Hc=0 at Tc. Notice that
the superconductivity in the material depends only on the values of H and T,
so the transition phase is a reversible thermodynamic process in these variables.
The application of a magnetic field on the conductor in the normal state does
not change the free energy, while it rises in the superconductor state due to
magnetization created by the Meissner effect. This magnetic contribution is
associated with the maximum magnetic field strength that can be applied on
the superconductor (Hc) in the following form

∆F (T ) = Fn(T )− Fs(T ) = ∆U − T∆S = µ0V H
2
c

2 , (2.55)

such that

∆U =
∫ Tc
T

[Cs(T ′)− Cn(T ′)]dT ′ and ∆S(T ) =
∫ Tc
T

Cs(T ′)−Cn(T ′)
T ′ dT ′,

(2.56)
where F is the free energy and V is the volume of a formula unit. The n and s
subscripts denote the normal and superconducting state, respectively.

Electronic specific heat is other macroscopic quantity in which the phenomenon
of superconductivity is reflected. As mentioned above, at T=0 we have the
maximum density of Cooper pairs, however as the temperature increases the
Cooper pairs are broken. The energy required to initiate this process is called
energy gap ∆, which is temperature dependent. Since the superconducting gap
structure determines the pairing mechanism, the number of broken pairs at a
temperature T is proportional to exp(−∆0/kBT ) where ∆0 denotes the energy
gap at T=0. In order to correctly describe the electronic specific heat when
the material is in superconductor state, several models are considered:

• For isotropic superconductor with a single gap ∆SG
0 is called s-wave model

CSGel = A1γNTc exp(−∆SG
0 /kBT ). (2.57)

In this model the energy gap ∆SG
0 is isotropic, i.e, it is constant over the

entire Fermi surface [47] and the term ∆0/kBT is an empirical measure
of the coupling strength. In the weak-coupling regime, the BCS theory
predicts a gap ∆SG

0 = 1.764kBTc and a specific heat jump at Tc of
∆C
Celec

= 1.43 where ∆C = CSGel − Celec with Celec in the normal state
given by Eq. 2.28.
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• For superconductor with two isotropic gaps ∆DG1
0 and ∆DG2

0 called double
gap α model

CDGel = A2γNTc(f exp(−∆DG1
0 /kBT ) + (1− f) exp(−∆DG2

0 /kBT )),
(2.58)

where f = (1 + exp(βE))−1 is the superconducting fraction in each gap.
They are a temperature-dependent s-wave superconducting gap. These
can exist in different parts of the Fermi surface and arise due to a strong
anisotropic electron-phonon interaction, such that electron coupling is
stronger in certain sheets of the Fermi surface and weaker in others, as is
the case of MgBr2 [48].

• Single gap with a fraction in the normal state due to impurities or other
inhomogeneities is called α model with a nonsuperconducting contribution
fraction

CSGNFel = A3γNTc exp(−∆SGNF
0 /kBT ) + γ2T. (2.59)

In this case, non-magnetic impurities do not significantly affect the
superconductor. These are treated as a static external perturbation
that does not produce a change in the thermodynamic properties of
the superconductor. However, they generate a weakening effect on the
pairs [47].

• For superconductors that exhibit strong anisotropy in its magnetic and
electric properties, it is expected that the superconductor gap will be
anisotropic. In this case, Cel is given by:

CANIel = A4
N(EF )
πT

∫ 2π
0 dφ

∫ π
0 dθ sin θ

∫ ~ωD
0 − ∂f

∂E

(
E2 + 1

2β
d∆2(T,θ)

dβ

)
dE,

(2.60)
where ∆(T, θ) = ∆0(T )(1 + α′ cos 2θ), α′ is the anisotropy parameter,
∆0(T ) = ∆ANI

0 tanh[(πkBTc/∆ANI
0 )

√
a(Tc/T − 1), a is a constant that

depends on the coupling strength and the geometry of the gap, ~ is the
reduced Planck constant, β = 1/kBT and Ai’s are scale factors.

On the other hand, since superconductivity does not generate changes in the
lattice structure, lattice-dependent properties such as the Debye temperature
and lattice contribution to the specific heat remain as in the normal state
according to Eq. 2.23 and 2.24. Lattice specific heat is directly related to
the electron-phonon coupling interaction. According to Junod in Ref [49,50]
5/4Rπ4ClattT

−3 take the form of convolution of the spectrum function ω−2F (ω)
for ω = 4.928T, which can be used as a crude alternative to the Eliashberg
electron-phonon spectral function α2F (ω) associated with the electron-phonon
coupling constant:

λe−phon = 2
∫ ω

0

α2F (ω)
ω

dω, (2.61)
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which determine the average strength of the electron-phonon coupling interac-
tion. From experimental measurements it takes the form of [51]

λe−ph = 1.04 + µ∗ln(ΘD/1.45Tc)
(1− 0.62µ∗)ln(ΘD/1.45Tc)− 1.04 , (2.62)

where µ∗ is the Coulomb pseudopotential usually taken between 0.1 and 0.15
for superconducting metals.

2.9 Quantum criticality

All properties we have mentioned in this chapter can be altered near absolute
zero temperature, due to the existence of emergent quantum states.
At T=0 the systems are in the lowest energy state and all atomic motions cease.
However, quantum mechanics predicts collective fluctuations of matter called
zero-point motion, which appear due to Heinsenberg’s uncertainty principle:
the more certain is the particle position, the more uncertain is its velocity.
Therefore, atoms and molecules cannot be at rest because their position and
velocity would be fixed simultaneously, but they adopt a state of constant
agitation. Like the thermal motion, the zero-point motion becomes too intense,
leading in some cases to melt order [52]. Strong fluctuations drive the system to
a quantum phase transition passing through a quantum critical point (QCP) and
in whose vicinity emergent phases with physical properties not usually observed
are stabilized. These transitions are controlled by some tuning parameter such
as magnetic field, hydrostatic pressure or chemical composition.

Quantum fluctuations generate drastic changes in the physical properties
of the system as we approach a QCP, among these are (i) the electronic
contribution to the specific heat behaves as Ce(T )/T = γ(T ) ∼ −ln(T ) [54]
or Ce(T )/T = γ(T ) ∼ −

√
T [55] contrary to what is expected by Fermi-liquid

(FL) theory, Cele/T ∼ γ constant. (ii) T-linear electrical resistivity, contrary
to the FL expectation ρ(T ) ∼ T 2. (iii) Magnetic susceptibility χ ∼ T−1+λ

with λ < 1 [56] conversely to χ ∼ T−1. Other behaviors could be obtained
due to the quantum fluctuation characteristics. Therefore, these systems are
commonly denominated as non-Fermi liquid systems (NFL) and they show an
increase of the Sommerfeld coefficient near the QCP as if the electron mass on
the Fermi surface becomes infinite and the electron energy vanishes [52].

QCP are commonly observed in moderate/heavy Fermion materials that exhibit
both Kondo and RKKY interaction. In these cases, there is a strong competition
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Figure 2.5: A schematic illustration of the Doniach phase diagram, taken from
Ref. [53].

between the Kondo effect, which tends to demagnetize the system, and the
RKKY interaction which tends to yield a magnetic ordering at low temperatures.
Such competition can be described through the Doniach diagram [57] which
is shown in Figure 2.5. According to Eq. 2.18 and 2.49 when J is small, TN
is larger than TK . So, the system tends to become magnetically ordered, but
with a reduction of the magnetic moment due to the Kondo effect, in which
limiting case the material will behave as an antiferromagnetic. Conversely,
when J is large, TN is less than TK and the system tends to become non-
magnetically ordered, so the material will behave as paramagnetic. Therefore,
as the interaction increases, TN passes through a maximum and tends to zero
at a critical value Jc which corresponds to QCP. From here, Kondo effect is
destroyed and a coupling of the magnetic moments with both the conduction
electrons and the fluctuation generated by the other local moments begins.





3
Methodology

In this chapter we will discuss the experimental and computational methology
used to characterize the physical properties of RNiSi3. The former includes the
single crystal growth technique -flux method-, and the equipment needed to
measure structural, magnetic, specific heat and resistivity properties such as:
X-ray diffraction, physical property measurement system (PPMS) and magnetic
property measurement system (MPMS) magnetometer. The second involves
how the conduction electrons in the solid should be considered and the basis
utilized to expand the Kohn-Sham orbitals: augmented-plane wave (APW), this
with local orbital (APW+lo) and projector augmented-wave (PAW). Finally,
we indicate how to solve computationally the Kohn-Sham equation.

3.1 Experimental methodology

3.1.1 Flux method

One of the simplest although less used techniques for the growth of well-formed
and high-quality single crystals is based on molten metal fluxes, also called
the flux method. This is a high temperature solution technique that employs
an excess of a stable liquid medium (the flux) to facilitate nucleation and
self-organization of atoms as the solution slowly cools [58, 59]. The idea is
that the mixture goes through many metastable states, where the system at
equilibrium experiences gradual changes in the external parameters such as
temperature and pressure, and relaxes for a long time as the crystal formation
takes place.

Knowing the desired compound for growth, we have to think about: What type
of flux to use? What should be the composition of the mixture, the appropriate
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recipient to keep the mixture at high temperature, the atmosphere to preserve
the mixture, the temperature profile and the cooling rate throughout the growth
process? How can we remove the flux from the mixture? And finally, what
equipment do we need?

To grow large and high quality crystals, the ideal flux must have the following
properties: high solubility with all elements that constitute the compound, not
forming compounds with the solution, low melting point, easy to remove at the
end of the growth process, low toxicity, available in pure form and low cost [60].
To avoid that the flux become included as an impurity in the single crystal,
or form compounds with the solution, it is necessary to use a low cooling rate
(approximately 5 °C/h). This promotes diffusive atomic movement to achieve
a homogeneous solution. On the other hand, it reduces the crystallization
temperatures required for the desired compound, since the crystal can be grown
well below the melting point of the compound.
The most commonly used metal fluxes that satisfy the conditions specified
above for growth of intermetallic compounds are Al, Zn, Ga, Cd, In, Sn, Sb,
Hg, Pb, Bi [60]. However, the choice of any of these will depend on the type of
compound we want to grow, since each crystal system is different and dictates
how it should be grown. As a starting point it is advisable to review the
literature and determine which flux has been used to grow similar compounds
of the same structural group. In our case, to grow the series RNiSi3 (R=Gd-
Tm), we use the fact that YbNiSi3 had already been grown by that method
using Sn flux [10].

3.1.1.1 Phase diagrams

Once the flux has been chosen, we must determine the appropriate initial
mixture composition, temperature profile and cooling rate of the growth. For
this, we must study which phases or phase mixtures are thermodynamically
stable within a range of conditions of temperature, composition, and pressure.
Graphical representations of this transformation can be seen as phase diagrams
which will allow us to plan single crystal growth in a controlled manner and
mark routes to optimize the flux method.

To exemplify the use of phase diagrams, we consider the simple binary system
Gd-Sn [Fig. 3.1] and study how the stability varies as a function of temperature
and composition, at ambient pressure (1 atm) in an inert atmosphere.
The left axis of the diagram represents pure Gd with a melting point of 1313 °C,
while the right axis represents pure Sn with a melting point of 232 °C. The
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Figure 3.1: Temperature-composition phase diagram for Gd-Sn alloys obtained of
ASM Alloy Phase Diagram Database

curves separating liquid region (in blue) from solid region (in white) are called
liquidus lines and specify the maximum temperature at which crystals can
coexist with the melt in thermodynamic equilibrium. Horizontal lines in the
solid region are called solidus lines and define the lowest temperature at which
liquids can exist in equilibrium over a given composition range. Therefore,
at temperatures above the liquid curves, any combination of Gd and Sn is a
homogeneous liquid. As the temperature of a given composition decreases below
the liquidus curve, the mixture enters a metastable state. As the temperature
continues to descend very slowly, small single crystals start to nucleate so that
the liquid phase and solid phase coexist in equilibrium. At low temperatures,
solid Gd and solid Sn coexist to form heterogeneous solid systems. These are
Gd3Sn, Gd5Sn3 and GdSn2 associated to congruent phases, while Gd5Sn4,
Gd8Sn7, Gd11Sn10, Gd3Sn4, Gd3Sn7 and GdSn3 to incongruent phases. Notice
that for congruent phases, when the system is heated, the crystalline phase
melts into a homogeneous liquid phase of the same composition, whereas for
incongruent phases a crystalline phase melts into a solid and a liquid phase
of different compositions. This diagram shows nine points where the solid
curve intersects the liquid curves. Two of them appear near Gd:Sn ratios of
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85:15 and Gd:Sn 70:30, where the liquid locally reaches its lowest temperature,
and are commonly called eutectic points. The other seven points are called
peritectic points where liquid, solid Sn and the desired solid compound coexist
in thermodynamic equilibrium.

To grow congruent polycrystalline phases we can use an initial composition
equivalent to the stoichiometric phase. For example, Gd3Sn can be grown
using Gd:Sn in atomic proportions 75%: 25%, heating up 1200 °C to ensure
that the mixture is in a homogeneous liquid state, and then we reduce the
temperature below 1173 °C. It’s more complicated to grow polycrystals of
incongruent phases such such as Gd3Sn7, because it must be done by solid
state reactions below the peritectic temperature of 945 °C.

Now, in order to grow single crystals of congruent or incongruent phases by
the self-flux method, we must perform a stoichiometric unbalancing (excess
of one of the components) so that when the mixture is heated and cooled it
passes through the liquidus line of the desired phase. For example, GdSn2
has a peritectic point at 945 °C. Thus, we can consider the liquidus line in
the interval 67-80% Sn concentration, where there will be an Sn flux excess.
Crystal yield will depend on molar ratio xL−x

xL−xS where x, xL and xS are the
mixture, liquid and solid state compositions, respectively. When x is near xS ,
the single crystal yield is large. In summary, a possible route to grow GdSn2 by
Sn flux method is to use Gd:Sn composition of 31%:69%, heat up to 1200 °C
to obtain a homogeneous liquid state, then reduce the temperature down to
1000 °C.

Conceptually, a ternary melt can be used for crystal growth in a way similar
to that described for GdSn2. However, in many occasions there is insufficient
information on the respective phase diagram and, therefore, we have to apply
trial-and-error empirical method in order to optimize the mixture composition,
temperature profile and cooling rate to obtain the desired compound. For the
RNiSi3 series (R=Gd-Tm) the optimization of growth conditions has been
studied as part of the master’s dissertation research [1]. There, we determined
that by mixing R:Ni:Si:Sn in the initial proportion 1:1:3:45, heating the mixture
up to 1200 °C and cooling slowly to 500 °C, it is possible to obtain single
crystals on the order of several millimeters.

3.1.1.2 Other optimization parameters

After determining the flux, mixture composition and temperature profile re-
quired to grow single crystals, we must take into account other parameters that
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may affect them such as the recipient, atmosphere and flux removal process. At
high temperatures, intermetallic mixtures can react with oxygen and nitrogen,
so it is usual to vacuum seal the material inside a quartz tube. Quartz can
resist well up to 1200 °C, but above that it begins to soften. Previous studies
have determined that Sn flux does not attack or crack the quartz tube, so
we place all elements directly on it. To remove the flux easily, quartz wool
is commonly placed on top of the reagents in the preparation process. It
will be used as filter to separate single crystals from molten flux in the final
centrifugation process. If the excess flux is not correctly removed, it will solidify
around the crystals. Then, we have to remove the remaining flux by mechanical
processes or by chemical etching [61]. The former is usually a manual and
time-consuming process, whereas the latter is faster. However, we must be
cautious to choose the ideal solvent so that the chemical etching dissolves the
flux without attacking the crystals or, failing that, attacks the flux much faster
than the crystal. For this reason, it is best to test the etchant on a small single
crystal to check its reaction with the compound. Most fluxes used for growing
intermetallic compounds are soluble in HCl (Al, Zn, Sn) or HNO3 (Ga, Cd, In,
Sb, Hg, Pb, Bi) [60].

3.1.2 Single crystal preparation

Typical equipment necessary to grow single crystals by the flux method is
high purity elements; a quartz tube; quartz wool; alumina crucibles (Al2O3);
acetylene-oxygen blow torch; a ventilated glass bench; a pumping station to
evacuate the air from ampoule; a programmable box furnace with temperature
controller that can go as high as 1200 °C and cool rather slowly (1-10 °C/h); a
centrifuge with metal cups that contain a base of quartz wool to place the hot
ampoule [59,62].

To grow single crystals of RNiSi3 (R=Gd-Tm) by Sn flux, we used high purity
primary elements- Alfa Aesar- [Fig. 3.2] - Y, Gd, Tb, Dy, Ho, Er, Tm, Yb
99.9%; Ni 99.95%; Si, Sn 99.999%. The proportion of the elements R:Ni:Si:Sn
in the initial mixture was 1:1:3:45. Since the solute does not react with silica
we placed all elemental reagents directly into a quartz tube, with materials
having the highest melting temperatures at the bottom. As the low-melting
materials melt they flow over the higher-melting materials and begin to
incorporate them into the melt. We place a quartz wool plug on top of the
elements. Then, with an acetylene-oxygen blow torch we made a small neck
on quartz tube of about 1 mm diameter, localized 10 cm from the bottom



44 3. Methodology

Figure 3.2: Primary elements as Yb, Ni, Si, Sn, quartz tube and quartz wool to
grow YbNiSi3 with Sn flux.

Figure 3.3: (a) Chemical fume hood adapted with blowtorch and vacuum system.
(b) Quartz tube with neck keeping the reagents and quartz wool.

ampoule. Subsequently, we use a pumping station to evacuate the air from
the ampoule [Fig. 3.3]. The process includes adding Ar gas, holding it for
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5 minutes and evacuating for 10 minutes, repeating 3 times. Finally, the
blow torch is used to finish vacuum sealing the ampoule. Vertical ampoule

Figure 3.4: (a) External and (b) internal view of the furnaces. (c) Laboratory
centrifuge.

is deposited in an alumina crucible and placed in the box furnace, in the
central region where the temperature is more homogeneous. Next, we perform
the programming for temperature control: the ampoule is heated from room
temperature to 600 °C and maintained for 1 h to allow the flux dissolve the
elements. Then, the temperature is increased to 1200 °C and held for 10 h,
to obtain a homogeneously mixed liquid state of all elements. To allow time
for the nucleation and growth of single crystals, the temperature is reduced
to 500 °C for 150 h (cooling rate around 5 °C/h). This temperature is above
the melting point of the flux and it is high enough to prevent the growth
of undesired phases such as RSn3. At 500 °C the ampoule is taken out of
the furnace, inverted and placed in the centrifuge for fast-spinning at up to
1500 rpm.

After centrifugation, the ampoule is stored in a safe place to cool to room
temperature. After 2 hours, we break the ampoule, being careful with glass
fragments and quartz wool, as well as avoiding loss of the single crystals.
Finally, we use a mechanical process to remove the residual solid flux from the
single crystals. In order to completely clean their surface we etch them in HCl
for 30 min.
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3.1.3 Equipment

After growing single crystals, it is necessary to identify whether their crystalline
structure corresponds to the desired phase. This structural characterization is
done using X-Ray diffractometer. Once the phase is guaranteed, basic physical
properties of the compounds are determined by magnetization, specific heat
and resistivity measurements. The first is performed in a Quantum Design
Magnetic Property Measurement System (MPMS) magnetometer SQUID-VSM,
while the others were carried out in a Quantum Design PPMS system. In
the following Subsections we will briefly mention the main features of each
equipment used.

3.1.3.1 X-Ray diffractometer

Figure 3.5: Stoe STADI-P model powder X-ray diffractometer in the Debye-Scherrer
Geometry. Figure obtained from Ref. [63].
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A Stoe STADI-P model powder X-ray diffractometer was used operating in
transmission mode with Debye-Scherrer geometry in the configuration θ(fixed)-
2θ(variable) [Fig. 3.5]. It consists of an X-ray tube, a curved Ge(111) monochro-
mator, the powder sample and a Mythen detector.

To prepare the powdered sample, we choose a small single crystal and carefully
crush it using an agate mortar and pestle until a homogeneous powder is
obtained. It is deposited between two acetate-cellulose foils in the transmission
sample holder.

The X-ray source consists of a low pressure vacuum tube containing a tungsten
filament as a cathode and a copper metal as the anode, which allows a potential
difference of 40 kV. An electric current of 40 mA passes through the filament
and heats it, producing the emission of electrons. Due to the potential differ-
ence, the electrons are accelerated to collide with the anode in such a way that
they eject an electron from the K-shell of a Cu atom, leading it to an excited
state. Immediately, the atom returns to its ground state, when an electron in
a higher energy level fills this hole, CuKα and CuKβ radiations are emitted.
X-rays are incident on a curved Ge (111) monochromator, oriented such that it
diffracts only the Kα1 radiation. This reduces the background that originates
from Cu Kβ . Perpendicular to the diffracted beam, the polycrystalline sample
is placed in a rotating goniometer to increase the number of crystal orientations.
The sample diffracts the X-ray beam at Bragg angles, which are collected by
a one-dimensional "silicon strip" detector, linear Mythen 1 K model. This
detector is formed by 1280 independent channels for single photon counting. It
collects the data at room temperature with angles between 2 ◦ and 124 ◦ and
angular steps of 3.15 ◦ every 60 s.

The physics involved in this equipment can be explained by considering the
powder sample as small crystallites. We can associate the three-dimensional
crystal lattice of each of these as atomic layers. Each layer behaves as a plane
that partially reflects, with equal angle, the incident X-ray light. Diffracted rays
from successive planes can interfere constructively or destructively. According
to Bragg’s condition, constructive interference occurs when the optical path
difference is equal to an integer number of wavelengths:

nλ = 2dhkl sin θ (3.1)

where λ is the wavelength, n is the order of reflection, dhkl is the lattice plane
spacing and θ is the angle of incidence/reflection to the plane. By varying the
angle of incidence and measuring the diffraction intensity, we can generate the
diffractogram for that sample. Since there is a unique diffractogram for each
compound, by comparing the experimental pattern with similar ones reported
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in the literature, we can determine the crystalline phase, lattice parameters,
atomic positions, atomic occupations, etc. A simple way to compare is to
use the Rietveld Method which uses a least-squares algorithm to minimize the
difference between these patterns and a theoretical modelling of the structure
based on the elements and their positions [64]

3.1.3.2 Physical property measurement system (PPMS)

(a) 

(b) 

Figure 3.6: (a) Computer and PPMS controller. (b) Schematic description of the
structure of the physical property measurements system (PPMS) [65]

This Quantum Design equipment allows us to measure physical properties
such as AC and DC magnetic susceptibility, electrical and thermal transport
properties such as resistivity, specific heat, Hall effect, Seebeck effect and
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thermoelectric figure of merit. However, we only used the specific heat and
resistivity options to characterize RNiSi3 compounds. In addition, a 3He
system was employed for the YNiSi3 and LuNiSi3 superconductors because
measurements below 2 K were required.

The PPMS consists of a computer and PPMS controller, cryostat, vacuum
pump and an EverCool II closed-cycle helium liquifier. The computer and
electronic controllers allow automatic measurements. The cryostat [Fig. 3.6] is
a dewar containing high-purity helium gas (99.995 %), liquid helium reservoir,
probe, pressure relief valves, superconducting magnet completely immersed in
liquid helium, thermometers, a plumbing valves system (including recirculation
valves, helium supply valves and manifold exhaust valve) and pressure sensors.
The EverCool II option allows the PPMS to operate continuously thanks to
the integrated cryocooler–Dewar system. Here, the PPMS plumbing transports
helium gas to cool the sample chamber and again to the Dewar where it is
directly recondensated. The scroll pump provides the vacuum for the cooling
annulus and to control the temperature of the PPMS probe. The EverCool
II controller turns on the scroll pump only when it is necessary to evacuate
the sample chamber [66,67]. This equipment allows to continuously vary the
temperature from 1.9 to 400 K and the magnetic field from -9 to 9 T. On the
other hand, the helium-3 option allows measurement at temperatures as low as
0.4 K. Its system allows helium-3 gas to be condensed in the reservoir allowing
a continuous closed-loop flow and avoiding regeneration times [65]. 12-pin
pucks with a diameter of about 24 mm are inserted by probes into the bottom
of the cryostat to connect to the PPMS and allow data collection. Note that
each measurement is associated with a different puck, as shown in Fig. 3.7.

Figure 3.7: (a) 12-pin connector that is inserted into the bottom of the cryostat.
(b) Heat capacity puck and (c) resistivity puck used in the PPMS [65]

For resistivity measurements, four platinum wires are connected between the
sample and the puck with silver-filled epoxy adhesive (EPO-TEK® H20E), so
that the two outer wires carry the currents through the sample, while the two
inner wires measure the voltage drop. According to Ohm’s law, the resistance
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R is proportional to the voltage V and inverse to the current I, R = V
I . The

device can carry currents in the range of 5 nA to 5 mA, while the voltage drop
can be measured with a sensitivity of 20 nV [65]. Now, the resistance depends
on the sample geometry. To avoid this dependence, it is necessary to cut the
sample into an elongated bar and calculate the resistivity according to Eq. 2.43.

For specific heat measurements at constant pressure, we use a puck with
a microcalorimetric platform that simultaneously controls the heat applied
by the platform heater and measures the temperature read by the platform
thermometer. It is suspended by eight thin wires that provide the electrical and
thermal connection. The sample is adhered to the platform using a thin layer of
Apiezon grease. The sample platform with grease prior to mounting a sample
is called the addenda. Since the Heat Capacity software calculates the heat
capacity of a sample by subtracting the addenda measurement from the total
heat capacity measurement, two measurements are necessary - one with and one
without sample on the sample platform. For the measurement, we must make
high vacuum in the chamber with pressures below 0.01 mTorr to guarantee that
all sample heat is lost to the platform and puck wires, not to the atmosphere.
The measurement consists of monitoring the temperature change of the system,
from the time when heat is added until it fully relaxes to the puck temperature.
This process is called a measurement cycle. After the measurement cycle,
the Heat Capacity option considers the heat capacity to be approximately
constant over the temperature range and fits the entire temperature response
of the sample-platform to a model that explains both the thermal relaxation of
the sample-platform to the bath temperature and the relaxation between the
sample-platform and the sample itself. The most commonly used model for
this fit is the two-tau model [60], which assumes that the sample is not in good
thermal contact with the sample platform and it is necessary to simulate the
effect of heat flowing between the sample and the sample-platform, and the
effect of heat flowing between the sample-platform and puck. For this process,
the equipment has a resolution of 10 nJ kg−1 K−1. [65, 68].

3.1.3.3 Magnetic Property Measurement System (MPMS) magnetometer

This equipment allows us to study the magnetic properties of small samples
with a sensitivity of 10−8 emu over a wide range of temperatures (from 400 K
down to 1.8 K) and magnetic fields (-7 T to 7 T). Its architecture is similar
to the PPMS, however, it has a superconducting quantum interference device
magnetometer (SQUID) and a vibrating sample magnetometer (VSM) option.
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Figure 3.8: General Magnetic Property Measurement System (MPMS) magnetome-
ter SQUID-VSM configuration [69]

Magnetic measurements are performed with superconducting pick-up coils (a
superconducting solenoid wire, also called detection coils) and a Supercon-
ducting Quantum Interference Device (SQUID) magnetometer, which must be
cooled in liquid helium. Direct current (DC) measurements consist of vibrating
the sample sinusoidally through the superconducting pick-up coils. Here, the
magnetic moment of the sample is approximated by a dipole magnetic moment,
whose sign and value remain constant during the measurement. According to
Faraday’s law, the variable magnetic flux generates an electric current through
the coils. As the sample changes position, the coil detects the change in the
magnetic flux as a function of the scanning time and the amplitude of the
measurement. This coil is coupled through an input transformer to DC SQUID
which serves as an extremely sensitive current to voltage converter. Thus,
the software adjusts the voltage as a function of position and the time, and
calculates the magnetic moment for each point, based on the dipole response
function.
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3.2 Computational methodology

We use ELK and VASP first-principles codes to determine the electronic
properties of YNiSi3, LuNiSi3 and GdNiSi3. ELK is based on all electron
full-potential augmented-plane wave method with local orbitals (FP-APW+lo).
On the other hand VASP uses an all electron projector augmented wave method.
In both cases, we consider the exchange correlation functional in the generalized
gradient approximation (GGA) with PBEsol parametrization for YNiSi3 and
LuNiSi3 and Perdew-Burke-Ernzerhof (PBE) parametrization for GdNiSi3.
The results obtained are highly reliable due to the very good agreement found
in each case with the experimental measurements. The following is a brief
description of the methodology used by each code.

3.2.1 Bloch’s Theorem

In a perfectly crystalline solid, the atoms are arranged in periodic structures
while electrons, considered independent and non-interacting, move through
the periodic potential obeying the one-electron Schrödinger (or KS Eq. 2.3)
equation. According to Bloch’s Theorem [27] the electronic wave functions
can be written as the product of a plane-wave eik · r modulated by a periodic
function uk(r) = uk(r + RL) with the periodicity of the crystalline lattice.
Therefore,

φk(r) = eik · ruk(r), (3.2)

or equivalently,
φk(r + RL) = eik · RLφk(r),

where k is the wave vector within the first Brillouin zone, RL is the Bravais
lattice vector. The periodicity of φk reduces the description of all electron
motion in the solid only to the behavior in a single crystalline cell. The effective
potential of Eq. 2.4 has the periodicity of the crystalline lattice. So, KS orbitals
are Bloch functions, i.e plane-wave functions modulated by a periodic function
with the same periodicity of the crystal: φk(r) = exp(ik· r)uk(r). As a
consequence, the electronic state of a solid is well described by the electrons
belonging to the unit cell of the crystal. Then, solving Eq. 2.3 for each particle
and for each k-point in the irreducible Brillouin zone are obtained the KS
orbitals, the ground state density nnonintσ (r) =

∑
i |φi,σ|2 and finally the ground

state of the interacting system according to Eq. 2.5.
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3.2.2 Electron treatment

In a solid, we can distinguish three regimes for each atom according to the
intensity of the electron-nucleus interaction: the core, semicore and valence. The
core electrons experiment a similar potential as that of a free atom. Their wave
function is highly localized and oscillating due to the strong attractive potential
of the nucleus, so the eigenvalues are k-independent. Semicore electrons
are neither sufficiently localized like core electrons nor free like the valence
electrons, so their wave function overlaps both regions. Valence electrons near
the semicore region experience a Coulombian screening potential, while away
from it, electrons can be considered free to move throughout the lattice and
actively participate in chemical bonds. Their wave function is smooth, varies
slowly between atoms and depends strongly on the wave vector k. According
to the electronic method used these regimes are treated in different ways as
will be discussed in the following.

3.2.3 Augmented-plane wave (APW)

The augmented plane wave method treats the semicore electrons as if they
belong to the core-nucleus, i.e., they are strongly bound to the nucleus and do
not respond effectively to the movement of the valence electrons. This allows us
to separate the core states from the valence states by means of spheres centered
on atoms, such that the chemically active states are outside of sphere while
the inert core states are inside. The spheres are called muffin-tin spheres (MF)
with radius RMF , while the space outside is called the interstitial region(IR).
Inside MF, the potential and charge density are spherically symmetric, while
in IR the potential is constant. This way of dividing space allows us to write
the KS orbitals in terms of a basis set: atomic orbitals in MF and plane waves
in IR, which are continuous across the surface of a sphere. In Figure 3.9 we
show a schematic representation of this basis set, where the wave functions are
expanded into plane waves, each of which is augmented by atomic solutions
(radial functions times spherical harmonics).

Mathematically, the ith Kohn-Sham orbitals can be written as: [71]

φi,k(r) =
∑
G

CG+k
i ψAPWG+k (r) (3.3)
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Figure 3.9: Schematic representation of the Augmented-plane wave (APW) method.
Orange and green balls represent muffi-tin (MT) spheres and blue space the interstitial
region (IR). Figure taken from Ref. [70].

with

ψAPWi (r, ε) =


∑
lm,αA

G+k
lm Rl(rα, ε)Ylm(r̂) rα ∈MT

1√
Ωe

i(G+k) · r r ∈ IR,
(3.4)

where rα is the atomic site, k is the Bloch vector, Ω is the cell volume, G
is a reciprocal lattice vector, Ylm(r̂) are spherical harmonics, Rl(r) are radial
functions, AG+k

lm are the matching coefficients that ensure the continuity of
ψG+k(r) at MT sphere boundary.

To completely determine the basis set ψG+k of Eq. 3.4, we simply proceed to
calculate the matching coefficients as follows:

1. Since the potential inside the MF spheres has spherical symmetry, we
replace the KS effective potential vKS(r) by its spherical average v0(r).

2. We solve the radial Schrödinger equation:[
−1

2
d2

dr2 + l(l + 1)
2r2 + v0(r)− εl,αik

]
(rRl,α(r)) = 0, (3.5)

where εl,αik are the KS eigenvalue.

3. We apply the boundary conditions to the MF sphere. To do this, we
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expand the plane wave as

1√
Ω
ei(G+k) · r = 4π√

Ω
ei(G+k) · rα

∑
l,m

iljl(|G+k||r|)Y ∗l,m( ˆG + k)Yl,m(r̂),

the continuity of φi,k(r) is reached when the coefficients AG+k
lm,α are com-

puted as

AG+k
lm,α = 4πilei(G+k) · rα

√
ΩRl,α(Rα, ε)

jl(|G + k|Rα)Y ∗l,m( ˆG + k)

where jl(|G + k|rα) are the spherical Bessel functions.

After choosing the basis set, we write the KS equation in matrix form as
follows:

• We write the KS equation in terms of the chosen basis set:

HkCk = εkSkCk, (3.6)

where the Hamiltonian matrix Hk and overlap matrix Sk have elements
of the form

Hk
GG′ =

〈
ψG+k

∣∣∣∣−1
2∇

2 + vKS(r)
∣∣∣∣ψG′ +k

〉
, (3.7)

and
Sk

GG′ = 〈ψG+k|ψG′ +k〉, (3.8)

respectively, while that eigenvector Ck contains as elements the coeffi-
cients Ck

i,G of Eq. 3.3.

• We define the plane wave cutoff as RMF |G + k|max in order to reduce
the dimensions of the matrices Hk and Sk

GG′ , and therefore make the
problem numerically tractable.

Rl(r) are numerical solutions to the radial Schrödinger equation. This leads
to some dependence between the basis set and the energy. Therefore, the
eigenvalue problem is non-linear in energy and it has to be solved iteratively
starting with a guessed value for ε. This process is computationally very
costly.
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3.2.4 Augmented plane wave and local orbital (APW+lo)

The augmented plane wave and local orbital is an extension of the APW
method whose objective is to make the basis set energy independent, but keep
the same basis size. The APW+lo basis is constructed with the APW basis
ψAPWi augmented with local orbital functions ψloi :

ψi =


ψAPWi i ≤ NAPW

ψloi i > NAPW ,

(3.9)

where NAPW is an integer that depends on the total basis set size and the
number of local orbitals. Here ψAPWi are defined as per Eq. 3.4 for a set of
fixed energies E1, while ψloi are constructed as:

ψloi =


∑
lm[AG+k

lm Rl(r, ε1) +BG+k
lm Ṙl(r, ε1)]Ylm(r̂) r ∈MT

0, r ∈ IR (3.10)

APW+lo method allows considering the semi-core states as a second set of local
orbitals with a second linearization energy. In any case, the linear combination
between Rl and Ṙl must satisfy the condition that the value of the local orbitals
go to zero at the sphere boundary. In this way, APW+lo fixes the freedom of
the basis and gains time in convergence, because only the continuity of the
function, but not its derivatives, is required.

3.2.5 Projector augmented-wave (PAW) method

The PAW method succeeds in correctly describing the nodal behavior near the
core, by considering three basic functions: all electron (AE) function φ(r), the
pseudo (PS) functions φ̃(r) and the projector functions p̃(r).

Since the AE functions are highly oscillating, according to P.E. Blōch [72],
it is difficult to treat them in Hilbert space. However, we can make a linear
transformation to Hilbert’s pseudo space (PS) to map the AE wave function
into fictitious soft nodeless PS function. Thus, the ith KS orbital associated



3.2. Computational methodology 57

with the eigenvalue εi [Eq. 2.3] can be written as

|φi〉 = |φ̃i〉+
∑
aj

(|ϕaj 〉 − |ϕ̃aj 〉)〈p̃aj |φ̃i〉, (3.11)

where the subscript a represents the atomic site and j the atomic quantum
numbers nj , lj and mj . Here, the AE wave function |φi〉 expands in AE
partial waves {|ϕi〉} and the PS wave function |φ̃i〉 expands in PS partial
waves {|ϕ̃j〉} such that in both cases we have the same coefficients Cani. The
projector functions |p̃j〉 are chosen so as to satisfy the condition 〈p̃ai |ϕ̃j〉 = δij
and therefore 〈p̃ai |φ̃j〉 = Cani. Notice that while |ϕj〉, |ϕ̃j〉 and |p̃j〉 are atom-
centered localized functions, |φ̃i〉 belongs to the interstitial region (IR), and
therefore can be expanded into plane waves.

Intuitively, Eq. 3.11 indicates that in the augmentation sphere the AE function
is obtained by superposition of projector functions on the sphere such that
they describe the nodal behavior of the true wave function, while on IR the AE
function coincides with PS function. Graphically [Fig. 3.10], the AE function
|φi〉 is obtained as follows: using the PS functions |φ̃i〉 we describe the form
of the true function away from the augmentation sphere. Next, we remove
the projections on the PS-onsite functions |ϕ̃ai 〉〈p̃i|φ̃i〉 and finally, we add the
projections on AE-onsite functions |ϕai 〉〈p̃i|φ̃i〉.

= - + 

= - + 

 

+ - - 

 

Figure 3.10: Schematic representation of the projector augmented-wave (PAW)
basis and a construction of all electron (AE) function from pseudo (PS) function at
atom site a according to Eq. 3.11. Figure taken from Ref [73]
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To finish this Section we will show how the KS Hamiltonian is written in the
PAW approach and what is the proper way to solve it.

The KS Hamiltonian [Eq. 2.3] in Hilbert space can be expressed as

Ĥ|φi〉 = εŜ|φi〉, (3.12)

or according to Eq. 3.11 as

ĤPAW |φ̃i〉 = εÔ|φ̃i〉, (3.13)

where ĤPAW and Ô operators are defined in the PS Hilbert space [74,75] by

ĤPAW = H̃ +
∑
abc

|p̃ab 〉(〈ϕab |Ha|ϕac 〉 − 〈ϕ̃ab |H̃a|ϕ̃ac 〉)〈p̃ac | (3.14)

and
Ô = 1̂ +

∑
abc

|p̃ac 〉(〈ϕab |ϕac 〉 − 〈ϕ̃ab |ϕ̃ac 〉)〈p̃ac |. (3.15)

To solve Eq. 3.13, we need to construct the AE and PS partial wave functions,
the projectors function and the PS wave functions in the following way:

• AE partial waves |ϕi〉 are obtained by self-consistent procedure to solve
the radial Schōdinger equation(

− ~2

2m∇
2 + veff

)
|ϕi〉 = εi|ϕi〉, (3.16)

where

veff (r) = vion(r) + e2
∫
d3r

′ n(r′)
|r− r′ |

+ µxc[ncore(r) + n(r)]. (3.17)

Here vion is the ionic Coulomb potential

vion(r) = −Ze
2

r
+ e2

∫
d3r

′ ncore(r
′)

|r− ~r′ |
.

• The PS partial waves |φ̃〉 are obtained considering the same AE eigenvalue
spectrum εi to solve the self-consistent radial Schödinger equation for PS
Hamiltonian:(

H̃ +
∑
bc

|p̃b〉Dbc〈p̃c|

)
|ϕ̃i〉 = εi

(
1 +

∑
bc

|p̃b〉Qbc〈p̃c|

)
|ϕ̃i〉, (3.18)
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where
H̃ = − ~2

2m∇
2 + ṽeff ,

ṽeff = ṽloc(r) + e2
∫
d3r

′ ñ(r′) + n(r′)
|r− r′ |

+ µxc[ñ(r)], (3.19)

Qbc = 〈φb|φc〉 − 〈φ̃b|φ̃c〉,

and

Dbc = 〈φb| −
~2

2 ∇
2 + veff |φc〉 − 〈φ̃b| −

~2

2m∇
2 + ṽeff |φ̃c〉.

• Once the PS wave functions have been obtained, we construct the projec-
tor functions according to:

|p̃i〉 =
(
−1

2∇
2 + ṽeff − εi

)
|ϕi〉, (3.20)

such that they are orthogonal to all PS partial waves 〈p̃k|ϕ̃j〉 = δk,j .

Having determined |ϕi〉, |ϕ̃〉 and |p̃i〉, we solve Eq. 3.13 in order to find
|φ̃i〉 and finally, we evaluate those functions in 3.11 to obtain the KS
orbitals.

After choosing the basis set, we write the KS equation in matrix form as
follows:

• We write the KS equation in terms of the set of basis found:

〈φ̃i|ĤPAW |φ̃i〉 = ε〈φ̃i|Ô|φ̃i〉, (3.21)

whose Hamiltonian matrix 〈φ̃i|ĤPAW |φ̃i〉 has elements of the form

〈φ̃i|H̃PAW |φ̃i〉+
∑
abc

〈φ̃i|p̃ab 〉(〈ϕab |Ha|ϕac 〉 − 〈ϕ̃ab |H̃a|ϕ̃ac 〉)〈p̃ac |φ̃i〉,

while the overlap matrix elements 〈φ̃i|Ô|φ̃i〉 are:

〈φ̃i|Ô|φ̃i〉 = 〈φ̃i|φ̃i〉+
∑
abc

〈φ̃i|p̃ac 〉(〈ϕab |ϕac 〉 − 〈ϕ̃ab |ϕ̃ac 〉)〈p̃ac |φ̃i〉.

• For computational reasons, only a finite number of AE and PS partial
waves and projections are considered. Generally, the truncation is per-
formed by defining cutting parameters such as the radius of the sphere
and the maximum angular momentum for the plane wave. The radius
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is usually about half the nearest-neighbor distance to ensure that the
spheres do not overlap, the nucleus density is well contained within the
sphere, and to decrease the number of plane waves in the interstitial
region.

3.2.6 Solving the Kohn-Sham equation

The KS equation in matrix form must be solved in a self-consistent way:

1. We choose a trial density charge n0(r).

2. We calculate the Hartree-potential according to Eq. 2.1

3. We solve Poisson’s equation ∇2vext(r) = 4πn0(r) to determine the exter-
nal potential vext(r).

4. We select the exchange correlation potential vxc[n](r) in some approxi-
mation.

5. We solve the KS equation as follows:

• In the APW method, we introduce the vHartree, vext(r) and vxc(r)
in Eq. 2.4, and we use Eq. 3.7 and 3.8 to determine the matrix
elements HKS

βα and Sβα, respectively. Next, we diagonalize the
matrix equation (HKS−εiS)ci = 0, and obtain the set of eigenvalues
{εi} and eigenvector {ciα}. Finally, the KS orbitals are extracted
from Eq. 3.3.

• In the PAW method, we introduce the vHartree, vext(r) and vxc(r)
in 3.17 and 3.19. Using Eq. 3.16, 3.18 and 3.20 to determine the AE
and PS partial waves and projectors. Replacing these in Eq. 3.13
we obtain the PS wave function. Thu, according to 3.11 we have
all the functions that allow us to determine the AE wave function.
Notice that the spectral eigenvalues of AE wave function are the
same that PS wave function.

6. Using the KS orbital, we obtain the new charge density
n1(r) =

∑
i |φi(r)|2

7. Now, we compare n0(r) and n1(r) under some convergence criterion.
For example, the difference in charge density is of the order of 10−6. If
that criterion is satisfied, we find the ground state charge density and
therefore obtain the minimum of EKS [n] according to Eq. 2.5. On the
other hand, if the criterion is not satisfied, we choose a new charge density
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n2 = (1−γ)n0 +γn1 with γ as a mixing parameter and the process starts
again.





4
Physical Properties of

RNiSi3
In this chapter we detail the physical properties of RNiSi3 (R=Y, Gd-Tm,
Lu) whose magnetic properties were studied during my master’s work. For
completeness we have included YbNiSi3 and its electronic isovalent YbNiGe3
which have been extensively studied in the literature by other researchers .

4.1 Structural characterization

Figure 4.1: DyNiSi3 single crystal on millimeter paper with defined a, b, and
c-crystallographic axis [2].

The flux method described in sec. 3.1 allows the growth of single crystals
of RNiSi3 series in thin plate geometry with well-defined shapes and shiny
surfaces as exemplified in Fig. 4.1 for DyNiSi3. However, compounds such as
ErNiSi3, TmNiSi3, and LuNiSi3 grew with small crystallites of NiSi2 parasitic
phase on the main crystal surface which were removed by polishing before their
respective characterization. Laue diffraction measurements [2] indicated that
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Figure 4.2: Rietveld refinement for GdNiSi3. The black crosses, the red line and
the blue line represent the observed data, the calculated pattern and the difference
between them, respectively. The short vertical bars are associated with the expected
position of the Bragg reflections of each identified phase [2].

the b-axis remains perpendicular to the plate which is plane, while a and c-axis
define the plane as the longest and shortest axis, respectively.

Rietveld refinement of RNiSi3 family (R=Y, Gd-Tm, Lu) was used to analyze
X-ray powder diffraction patterns (example shown in Fig. 4.2 for GdNiSi3)
indicating that these compounds belong to the Cmmm space group (No. 65)
and adopt a SmNiGe3-type orthorhombic structure [Fig. 4.3]. The obtained
lattice parameters are listed in Table 4.1. Note that the a/c ratio [Fig. 4.4(a)]
approaches unity while the a/b ratio [Fig. 4.4(b)] decreases throughout the
entire series toward the heavier rare earths. As a consequence, the series
becomes nearly tetragonal and the unit cell undergoes elongation along the
b-axis for the heavier ions.

The crystalline structure has 20 atoms per conventional unit cell, located at
the following Wyckoff positions: a single 4j site for rare earth, a single 4i
site for nickel and silicon has three non-equivalent sites: Si1 at a 4j site, Si2
and Si3 at two different 4i sites. In Table 4.2 we list these positions for the
LuNiSi3 compound. The atoms form a set of square and rectangular pyramids,
pseudo-hexagons and isosceles triangles. The square pyramids enclose a Ni
atom, and they are formed by the three different Si sites: Si1 and Si2 which
determine the bases and Si3 the apex. Note that Si1 atoms form Si dimers
along (001) and linear chains along [100], Si2 atoms form Si dimers along
(002) and linear chains along [001], and Si3 builds up zigzag chains along [100].
On the other hand, the bases of rectangular pyramids are built by Si3 atoms
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Figure 4.3: LuNiSi3 crystal structure representation. Dark gold, black and blue
spheres denote the Lu, the Ni and the three Si atomic positions, respectively.

Table 4.1: Lattice parameters and unit cell volumes obtained from the Rietveld
refinements for each compound of the RNiSi3 series [1, 2].

Compound a (Å) b (Å) c (Å) V (Å3)
YNiSi3 3.9216(1) 20.9448(6) 3.9506(1) 324.49(2)
GdNiSi3 3.9402(2) 21.0224(6) 3.9730(1) 329.10(2)
TbNiSi3 3.9259(1) 20.9696(5) 3.9547(1) 325.57(1)
DyNiSi3 3.9167(2) 20.929(1) 3.9401(2) 322.98(3)
HoNiSi3 3.9085(1) 20.9057(4) 3.92915(9) 321.05(1)
ErNiSi3 3.9015(1) 20.8817(6) 3.9181(1) 319.21(2)
TmNiSi3 3.8930(8) 20.8417(4) 3.90578(7) 316.90(1)
YbNiSi3 3.8915(1) 20.8570(6) 3.9004(1) 316.58(3)
LuNiSi3 3.8808(3) 20.792(1) 3.8868(3) 313.62(4)

with a Lu atom at the apex. The pseudo-hexagons are built up by Si2, Ni
and Si3 atoms in (001) and the isosceles triangles by Lu atoms in (002). The
interatomic distances of these polyhedra are indicated in Table 4.3.
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Table 4.2: Atomic coordinates for LuNiSi3 [76].
Site Wyckoff position Site symmetry x y z
Lu 4j m2m 0 0.33119(3) 1/2
Ni 4i m2m 0 0.11183(9) 0
Si1 4j m2m 0 0.44459(18) 0
Si2 4i m2m 0 0.05683(18) 1/2
Si3 4i m2m 0 0.21541(18) 0

Table 4.3: Polyhedral information (in Å) for LuNiSi3 [77].
Square pyramid
base length 2.7272
apex atom (Si)–Ni distance 2.2048

Rectangular pyramid
base lengths 3.8558, 3.8579
apex atom Lu–Si distance 2.9078

Isosceles triangle
leg, base 3.8725, 3.8558 (a) (b) 

Figure 4.4: Lattice parameter ratios (a) a/c and (b) a/b along the RNiSi3 series [1,2].
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4.2 RNiSi3 R=(Y, Gd-Tm, Lu)

To study the physical properties of RNiSi3 compounds, we consider measure-
ments on the temperature dependence of the specific heat at H = 0 and
resistivity in the configuration I ⊥ b at H = 0 and 90 kOe. Magnetization
is measured as a function of temperature at H = 1 kOe and as a function of
magnetic field at T = 2 K and other temperature values, both as a function of
crystal orientation (a, b and c crystallographic axis and polycrystalline average
according to Eq. 2.20).

4.2.1 YNiSi3 and LuNiSi3

Above 2 K, YNiSi3 and LuNiSi3 are strongly anisotropic diamagnetic com-
pounds with metallic character. Their physical properties are summarized in
Fig. 4.5. Specific heat of both compounds shows a smooth dependence on T ,
indicating that there is no phase transition in the measured temperature range.
At low temperature, their behavior is correctly described by the Debye model
[Eq. 2.25] where the linear fit on the Cp/T × T 2 curve observed in the inset,
predicts a Sommerfeld coefficient, phononic coefficient and Debye temperature
of γ = 4.1 and 3.5 mJ mol−1K−1, β = 0.160 and 0.0830 mJ mol−1K−4 and
ΘD = 393 K and 489 K for YNiSi3 and LuNiSi3, respectively. On the other
hand, the resistivity in both compounds presents metallic behavior [Eq. 2.45]
with residual resistivity ratios [Eq. 2.44] of 54(5) for YNiSi3 and 38(4) for
LuNiSi3, indicating that these are high quality single crystals. Finally, the
susceptibility exhibits a marked anisotropic behavior for both compounds.
Since the a and c crystallographic axis cannot be differentiated, these directions
were labeled ⊥ b(1) and ⊥ b(2). The estimated average susceptibility for YNiSi3
is 0.08(5)×10−3 emu/mol, while for LuNiSi3 is -0.07(5)×10−3 emu/mol. The
former has an almost constant Pauli susceptibility while the latter, at low tem-
peratures, has a weak Curie-like susceptibility which may be associated with
the presence of a small amount of paramagnetic impurities, since the elemental
Lu reagent used was not as pure as Y. For both samples the susceptibility
along two directions (‖ b and ⊥ b(2)) are positive, while the response for ⊥ b(1)
is negative. Therefore, the presence of a negative or positive susceptibility
depends on the direction of the applied field [2].
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Figure 4.5: Physical properties of YNiSi3 and LuNiSi3. (a) Dependence of specific
heat on temperature. The inset shows the Debye model fit using Cp/T × T 2 curves.
(b) Dependence of resistivity on temperature with no field (solid symbols) and with
an applied field of 90 kOe (open symbols). (c) Susceptibility curves with an applied
field of H = 1 kOe parallel to the three crystallographic axis. The average curve for
both samples are presented as a solid line [2].
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4.2.2 RNiSi3 (R=Gd-Tm)

(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.6: Total (Cp) and magnetic (Cm ) specific heat curves for (a) GdNiSi3, (b)
TbNiSi3, (c) DyNiSi3, (d) HoNiSi3 (e) ErNiSi3 and (d) TmNiSi3 at zero magnetic
field. The inset shows the magnetic entropy for each compound. These figures were
taken from Ref. [2].

The specific heat measurements and magnetic specific heat calculated according
to Eq. 2.32 and 2.33 are presented in Fig. 4.6 at zero field and 2 ≤ T ≤ 50 K.
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Their insets correspond to the temperature dependent magnetic entropy. All
samples exhibit an λ-type anomaly in both Cp and Cmag curves indicating
a magnetic phase transition whose temperatures (TN ) are summarized in
Table 4.5. DyNiSi3 and HoNiSi3 show a second peak at 22.8 K and 6.3 K,
respectively, in response to a new temperature-induced phase transition. While
at high temperature, Cmag continues to increase suggesting that YNiSi3 and
LuNiSi3 cannot account for all the electronic and lattice contributions of these
systems. The other compounds show a Cmag that persists over a wide range
of temperature before reaching zero value. For its part, GdNiSi3 has a broad
shoulder below 10 K that is associated with Zeeman splitting due to the presence
of internal fields. In contrast, TmNiSi3 displays this broad shoulder above 10 K
probably caused by the Schottky anomaly resulting from the splitting of the
ground state by the crystalline field [subsec. 2.6.4].

Table 4.4: Experimental variation of the specific heat ∆Cm and magnetic entropy
Sm cross the antiferromagnetic transition in J K−1 mol−1 units [2].

Gd Tb Dy Ho Er Tm
∆Cm(TN ) 20 21 13 30 12 13
Sm(TN ) 15.7 10.5 9.7 22.8 12.2 6.0

On the other hand, the variation of specific heat ∆Cm and magnetic entropy
in the region where the magnetic transition occurs are given in Table 4.4.
Comparing it with their theoretical values [Table 2.2] we find that GdNiSi3
and TbNiSi3 have values of ∆Cm(TN ) close to those predicted by mean-field
theory, and the former almost reaches its expected value of maximum entropy
Rln(8), while the latter only reaches a value close to Rln(4) above the magnetic
transition, which is associated with the population of four low energy levels.
On the other hand, HoNiSi3 has a much larger ∆Cm(TN ) that the other
compounds, although its Sm is consistent with the maximum expected value
for the Ho3+ free-ion multiplet which is Rln(17). For the other compounds,
∆Cexpm (TN ) does not exceed the theoretical value and Sm remains below even
though it continues to increase above the transition temperature.

Resistivity measurements performed without and with an applied magnetic
field at 90 kOe in the 2 ≤ T ≤ 300 K interval are presented in Fig. 4.7. As
it can be seen all compounds have a positive magnetoresistance and they
exhibit a weak change on slope near to magnetic transition in both fields,
except for TmNiSi3, where it is not visible at 90 kOe. Moreover, the second
phase transitions for DyNiSi3 and HoNiSi3 are not evident in this case. Néel
temperatures are determined by linear regression of Eq. 2.47 whose values are
given in Table 4.5. On the other hand, at high temperature the resistivity
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Figure 4.7: Resistivity measurements for (a) GdNiSi3, (b) TbNiSi3, (c) DyNiSi3, (d)
HoNiSi3 (e) ErNiSi3 and (d) TmNiSi3 under zero field and 90 kOe in the temperature
range where the AFM transition takes place. The inset displays the full zero-field
curve to room temperature. These figures were taken from Ref. [2].

follows a T-linear behavior [Eq. 2.45] pointing to metallic transport while at
low temperature there is a marked decrease in resistivity with a T 2-dependence
[Eq. 2.48].
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(c) (d) 

(e) (f) 

(a) (b) 

Figure 4.8: Inverse magnetic susceptibility χ−1 for (a) GdNiSi3, (b) TbNiSi3, (c)
DyNiSi3, (d) HoNiSi3 (e) ErNiSi3 and (d) TmNiSi3 under H = 1 kOe along the a, b,
and c-axis from 2 to 300 K. The inset indicates the χ(T ) behavior near the magnetic
transition. These figures were taken from Ref. [1, 2].

Figure 4.8 shows χ−1×T and χ×T curves [inset] for a magnetic field of 1 kOe
for three different crystallographic directions [1, 2, 9]. Moreover, since the Laue
diffraction on ErNiSi3 did not allow us to differentiate their planar-axis, we
then label them as ⊥ b1 and ⊥ b2. Making a careful observation, we see that for
all series the anomalies presented in the resistivity and specific heat curves are
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also available in the magnetic measurements and allude to antiferromagnetic
phase transition, whose TN is shown in Table 4.5. DyNiSi3 shows the two-close
transition as a soft plateau in the polycrystalline average curve, while HoNiSi3
has two anomalies. Additionally, we perceive that there is a shift from a to
b-easy axis from R = Gd-Ho to Er-Tm, respectively. Also, R=Ho, Er and Tm
have two AFM axis, a and c-axis for the former, b and b(2) for the second, and
b and weakly a-axis for latter, respectively. For its part, GdNiSi3 presents low
magnetocrystalline anisotropy compared to other elements of the series due its
spherical 4f shells (L = 0) which makes it insensitive to the crystalline field.
Pauli susceptibility, Curie-Weiss temperature and effective magnetic moment
on H ‖ a, b, c-axis and polycrystalline average curve [Eq. 2.20], calculated
according to Eq. 2.17 and 2.19 are shown in Table 4.6 and Table 4.7. Notice
that the effective magnetic moment is close to the expected value for R3+

free ions presented in Table 2.1, indicating that the magnetism of RNiSi3
originates solely from R rare earth ions while the Ni atoms are nonmagnetic.
On the other hand, the difference in the θcw values obtained suggest that
all compounds in the series present a high magnetic anisotropy. Notice that
the polycrystalline Curie-Weiss temperature θpcw is negative for R=Gd-Tb
evidencing AFM interaction, while for R=Dy-Ho it is positive, indicating
that there are possibly some ferromagnetic correlations in these materials.
Finally, for R=Er-Tm, it returns to negative values reflecting again the AFM
ordering [1, 2].

Table 4.5: Néel temperatures TN obtained from specific heat (Cp), resistivity (ρ),
and magnetic susceptibility (χ) measurements and their corresponding average for
each compound of the RNiSi3 series [2].

R Cp (K) ρ (K) χ (K) Average (K)
Gd 22.2 22.4 21.9 22.2(2)
Tb 33.0 33.4 33.3 33.2(2)
Dy 23.6 21.8 23.6 23.6(2)
Ho 10.1 10.7 10.4 10.4(3)
Er 3.7 3.6 3.7 3.7(1)
Tm 2.6 2.7 2.6 2.6(1)

ForM×H measurements at T = 2 K [Fig. 4.9] [1,2,9] we observed that, except
for GdNiSi3, all compounds present strong magnetocrystalline anisotropy in
agreement with the behavior previously presented in χ× T curves. Moreover,
it is the only member of the series in which none of the magnetization axis
saturate at 2 K under an applied field of 70 kOe. On the other hand, for the
entire series, a shift of the magnetization easy axis is discernible when moving
toward the heavier rare earths. Here, the metamagnetic transition can be
seen along the a-axis for R=Gd-Dy, on both a, c-axis for HoNiSi3, H ⊥ b2,
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Table 4.6: Néel temperature TN and Curie-Weiss temperatures θacw, θbcw, and θccw
along a, b and c directions, respectively, and on polycrystalline average θpcw. This
information was extracted from [1,2].

AFM axis
R easy other TN (K) θpcw (K) θacw (K) θbcw (K) θccw (K)
Gd a a 22.2(2) -30(3) -36 -35 -28
Tb a a 33.2(2) -8.0(8) 29 -96 -60
Dy a a 23.6(2) +20(2) 43 -400 -37
Ho a a, c 10.4(3) +1.0(1) 23 +53 8.3
Er b ⊥ b2, b 3.7(1) -1.7(2) -36 14 1.2(1)
Tm b b 2.6(1) -12(1) -24 17 -126

Table 4.7: Main parameters for RNiSi3 series: µeff and µHF are the effective
magnetic moment calculated of χ×T at high temperatures and the moment observed
at 2 K and H = 70 kOe in M ×H, respectively. χ0 is the Pauli susceptibility and
RRR is the residual resistivity ratios [1, 2].

R µeff (µB) µHF (µB) χ0 (10−3 emu/mol) RRR
Y - 0.08(5) 54(5)
Gd 8.1(2) 2.1(1) 0.40(4) 50(5)
Tb 9.6(3) 9.1(2) 3.2(3) 40(4)
Dy 9.4(3) 10.8(2) 11.7(1) 64(6)
Ho 11.0(3) 9.6(2) 2.0(2) 51(5)
Er 9.2(3) 9.5(2) 5.3(5) 23(2)
Tm 7.8(2) 6.7(2) -3.1(3) 40(4)
Lu - - -0.07(5) 38(4)

b-axis for ErNiSi3 and a, b-axis for TmNiSi3. GdNiSi3 exhibits a plateau
followed by a magnetic transition at 27 kOe. RNiSi3 with R=Tb, Dy, Ho are
characterized by several metamagnetic transitions accompanied by hysteresis
on the easy AFM axis. For R=Tb there are four plateaus before the magnetic
response saturates. Here, the hysteresis can reach a width of 4 kOe. R=Dy
displays an initial plateau followed by two irreversible metamagnetic transitions
before saturation at 32 kOe. The plateau inside the hysteresis achieves a
magnetization of half saturation denoting the inversion of the single-spin into
a four-spins AFM lattice. Similarly the latter is true for R=Ho. The main
difference between these compounds is that TbNiSi3 has the appearance of
other magnetic structures at lower field values and the field strength required
to reorient its magnetic moments is higher than for the others. On the other
hand, the magnetic behavior along the a and c-axis for HoNiSi3 suggests
the presence of a component-separated magnetic transition [78] in which the
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.9: Magnetization isotherms at 2 K for (a) GdNiSi3, (b) TbNiSi3, (c)
DyNiSi3, (d) HoNiSi3 (e) ErNiSi3 and (d) TmNiSi3 along the a, b, and c-axis. The
inset shows the shift of the metamagnetic transition to higher fields with increasing
temperature. These figures were taken from Ref. [1, 2].

magnetic moment components can be ordered independently in two distinct
directions and with different critical temperatures. Thus, one for the AFM
axis along a with T aN = 10.4(3) K and another for the AFM axis along c

with T cN = 6.3(2) K. In the case of ErNiSi3, H ‖ b reaches saturation with
paramagnetic-like behavior, H ⊥ b(2) curve (possibly H ‖ c) shows a smooth
metamagnetic transition but does not saturate, while the other shows a small
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magnetization along the field. In contrast, TmNiSi3 has a paramagnetic-like
response in H ‖ c, it exhibits a small step around 28 kOe on the H ‖ a curve
and it saturates along the b-axis. (a) (b) (c) 
Figure 4.10: Magnetic phase diagram for RNiSi3 (R=Gd, Tb and Ho) along the
H ‖ a- magnetization easy axis [1, 2, 9].

Figure 4.11: Magnetic structure of Gd/TbNiSi3. Violet, blue and gray balls represent
Gd/Tb, Si and Ni atoms. The red arrows indicate the direction of Gd/Tb magnetic
moments.

In Fig. 4.10 [1, 2, 9] we present the most significant phase diagrams [sec. 2.5.3]
of the RNiSi3 series, as it is the case for R=Gd, Tb and Ho along the AFM
easy axis. In GdNiSi3 the critical field increases with temperature contrary
to expectations for spin-flop transitions in antiferromagnets [32]. For R=Tb,
since both metamagnetic transitions and hysteresis attenuate with increasing
temperature, the phase diagram suggests at least four distinct ordered magnetic
states. On the other hand, HoNiSi3 exhibits at least six distinct magnetic
transitions along the AFM easy axis. Its complex phase diagram can be related
to the independent ordering of the magnetic moment components along the
two axis, as discussed in the previous paragraphs.

Recently, Tartaglia et al. [79] studied the microscopic magnetic structures of
GdNiSi3 and TbNiSi3, and their magnetoelastic expansion above TN (15-36 K)
by resonant X-ray magnetic diffraction experiments on single crystals at zero
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field. They found that the magnetic structure is commensurate with the crystal
structure and that they are the same for both compounds. Here the rare-earth
magnetic moments are ferromagnetically aligned in the ac planes, pointing
along the a direction, while there are antiferromagnetic alignment between the
nearest-neighbor planes along the b axis with the + - + - pattern as shown in
Fig. 4.11. On the other hand, they observed that with temperature rises there
is a contraction of a and an expansion of b lattice parameters while c remains
approximately constant. Here the magnetic configuration is maintained stable
under the lattice expansion.

4.3 YbNiSi3

Since 2004, several authors have succeeded in performing the full characteriza-
tion of YbNiSi3 in terms of its magnetic and electronic properties. Next, we
will describe some of them.

As the other compounds of the series, YbNiSi3 displays a very sharp λ-like peak
at TN = 5.1 K in specific heat measurements as shows in Fig. 4.12(a). It shifts
at low temperature as the applied magnetic field increases and disappears above
80 kOe. However, above 5 K a broad what to appear on H = 70 kOe curve
and it acquires structure and move at high temperatures as the field arises
[Figs. 4.12(b) and 4.12(c)] being considered as a Schottky-type contributions [80].
At H = 0 kOe, γ value obtained from Eq. 2.31 is 250 mJ mol−1K−2 belonging
to a moderately heavy-electron system. Also, increase the field causes that
γ decreases. This tendency is generally observed in materials close to a
QCP [80]. On the other hand, the magnetic entropy accumulated up to TN is
0.6Rln(2) [Fig. 4.12(d)] indicating that a ground-state doublet is responsible
for the magnetic ordering, and that in this state, the Yb moments are already
significantly screened when magnetic ordering occurs [10].

Electrical resistivity measurements at H = 0 kOe in the I ‖ b and I ⊥ b

orientations for YbNiSi3 show an anisotropic behavior being the first one
much more resistive than the second one [Fig. 4.13(a)]. Also, both show a
metallic behavior at high temperature and a change in the concavity, dρ/dT ,
around of 5 K related to the magnetic transition. In I ⊥ b, as T is reduced
from room temperature, it shows a local minimum centered in 55 K and then
increases to peak at 7 K with a logarithmic behavior which is the signature
of the Kondo effect [subsec. 2.8.2]. Its associated temperature was estimated
through Rajan’s expression γTK = 11.2j as TK = 30 K for j = 1/2 [10].
Below this temperature it decreases very sharply showing a Fermi-liquid
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Figure 4.12: Low-temperature heat capacity Cp, measured at different applied
magnetic fields (a) H = 0, 30, 50 and 70 kOe, and (b) 70 ≤ H ≤ 140 kOe. (c)
Cp/T × T 2 is presented at 70 ≤ H ≤ 140 kOe. Left inset is a zoom of Cp/T × T 2 at
low-temperature for different magnetic fields. Right inset present their corresponding
estimated γ value dependent of magnetic field. (d) Total specific heat, total entropy
Stot and magnetic entropy Smag. Figures (a)-(c) are taken from Ref. [80] and (d)
from Ref. [10].

type behavior [Eq. 2.48] where ρ0 = 1.5 µ Ω cm and A = 0.36 µ Ω cm/K3.
Thus, below 5 K YbNiSi3 exhibits a combined effect of magnetic ordering
with coherent scattering of the hybridized Yb moments [10]. In presence of
magnetic field, ρ diminishes due to the suppression of spin fluctuations [81]
[Fig. 4.13(c)], but in any case the T2 dependence is observed. On the other
hand, field-dependent resistivity isotherms [Fig. 4.13(d)], show two very
pronounced step-like features associated with two critical fields. The first
occurs at low field and it is T -independent, describing a first-order transition
from the antiferromagnetic to spin-flop state. The second step appears at
high field and decreases with the temperature arise, which may be related to
the magnetic transition from spin-flop state to field-polarized paramagnet [6,80].

Due to the similarities between the a and c-crystallographic axis in YbNiSi3
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Figure 4.13: Electric resistivity ρ(T ) as a function of (a) temperature for two
orientations I ‖ b and I ⊥ b, (b) LogT for I ⊥ b at H = 0 and (c) T for I ⊥ b, H ‖ b
at H = 0, 8.3 and 10 T. Figures are taken from (a)-(b) Ref. [10], (c) Ref. [81] and (d)
Ref. [80]

[Table 4.1], it was treated as a tetragonal structure where only the H ‖ b
and H ⊥ b crystallographic orientations are considered in the magnetization
measurements. So, the polycrystalline average of Eq. 2.20 is reduced to χ =
(χb + 2χac)/3.

Susceptibility measurements at 1 kOe [inset of Fig. 4.14(a)] show that YbNiSi3
have an anisotropic antiferromagnetic ground state with b-easy AFM axis and
Néel temperature TN = 5.1 K, as was observed by resistivity and specific heat
curves. This anisotropy is due to crystal electric field (CEF) environment at
the Yb site, which splits the 4f multiplet into nondegenerate doublet levels [10]
[subsec. 2.5.4]. Also, TN shifts to lower temperatures as the magnetic field
increasing to 55 kOe as is evidenced in d(χT )/dT by the displacements of peak
[inset of Fig. 4.14(b)]. Notice that TN value is in general high compared to
other compounds based on Yb magnetism, possibly due to the existence of
a strong magnetic exchange interaction between Yb magnetic moments [82]
[Eq. 2.18]. At high temperatures χ−1 shows typical paramagnetic behavior
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Figure 4.14: (a) Temperature dependence inverse susceptibility at B = 0.1 T in
two crystal orientations B ‖ b (solid symbols) and B ⊥ b (open symbols), and the
polycrystalline average (dotted lines). The inset shows the low temperature dependece
of magnetic susceptibility detailing the antiferromagnetic transition at TN = 5.1 K
for two orientations mentioned before. (b) Magnetic susceptibility, χ = M/H as a
function of temperature and magnetic field for H ‖ b. The inset displays d(χT )/dT
corresponding to the data in the main box. Magnetization isotherms are presented at
(c) T = 2 K for two crystal orientations and (d) 2 ≤ T ≤ 5 K for H ‖ b. The inset
shows left-high temperature and right-low temperature corresponding to dM/dH
curves. Figures (a) and (c) were taken from Ref. [10], while (b) and (d) from [80].

with CEF effects, where both curves are linear and parallel to each other.
The Curie-Weiss law applied on the polycrystalline average yields an effective
moment µeff = 4.45 µB/f.u., very close to Yb3+ ions presented in Table 2.1.
Furthermore, the paramagnetic Curie Weiss temperature is θpcw = −11.6 K,
indicating an antiferromagnetic coupling between magnetic moments of Yb
ions. Finally, for M ×H at 2 K [Fig. 4.14(c)], the magnetic isotherms exhibit
a spin-flop transition at B = 1.7 T on the B ‖ b curve while both orientations
show a change in the slope near 8 T, remaining below 2 µB/f.u. [10]. Also, as
the temperature increases the metamagnetic transitions shift to lower fields [80]
[right and left insets of Fig. 4.14(d)].
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Figure 4.15: Magnetic phase diagram of YbNiSi3 compound. These Figures are
taken from Ref. [6].

From magnetization, resistivity or specific heat measurements it is possible to
build the phase diagram of YbNiSi3 for H ‖ b and H ⊥ b as shown in Fig. 4.15.
As expected, for H ‖ b a spin-flop transition appears at Bsc = 1.7 T where the
magnetic moment changes from antiferromagnetic state (AF) to "canted" state
(SF), and at the critical field Hc = 8.3 T the induced ferromagnetic state (P) is
fully reached. On the other hand, for H ⊥ b the magnetic moments suddenly
changes from antiferromagnetic to induced ferromagnetic state with a critical
field H ′

c ≈ 9.5 T [80].

Kobayashi et al. [82] investigated the magnetic structure of the antiferromag-
netic Kondo lattice YbNiSi3 by neutron diffraction on a single-crystal sample.
They found that it consists of Yb moments aligned ferromagnetically in the bc
plane along the b direction and antiferromagnetically along the a axis [Fig. 4.16].

Figure 4.16: Magnetic structure representation of YbNiSi3. White, gray and black
balls represent Yb, Si and Ni atoms respectively. The black arrows indicate the Yb
magnetic moments direction, which are aligned ferromagnetically in the bc plane and
antiferromagnetic along the a-axis. Figure is taken from Ref. [82].

Comparing this magnetic structure with Gd/TbNiSi3 [Fig. 4.11], Tartaglia et
al. [79] perceived that in either case there is a planar ferromagnetic coupling
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between magnetic moments, ac for R=Gd/Tb and bc for R=Yb, while there is
an antiferromagnetic alignment between those nearest-neighbor planes. This
indicates that the bilayers of R moments are the common magnetic units in this
series. Therefore, the coupling between adjacent bilayers have the following
pattern: + - + - for Gd/ TbNiSi3 and + - - + in YbNiSi3 along b-axis. So there
is a change in the magnetic stacking pattern and this must be a consequence
of the sign reversal of the effective Ruderman-Kittel-Kasuya-Yosida (RKKY)
exchange coupling between the second-neighbor R ac layers when the inter-
layer distance decreases due to R ionic radius reduction from Gd/Tb to Yb
[subsec. 2.5.2]. Thus, the magnetic properties of RNiSi3 compounds between
R=Gd and Yb are the result of competition between two different magnetic
structures GdNiSi3 and YbNiSi3, and therefore there must be a certain critical
value of b lattice parameter such that the + - + - pattern is stabilized against
the competing + - - + ground state of YbNiSi3 [79].

4.4 YbNiGe3 an electronic isovalent

Figure 4.17: Unit cell of YbNiGe3 tetragonal structure in space group I41/amd.
Dark red, gray and blue spheres denote the Yb, Ni and Ge atomos, respectively.

Table 4.8: Atom coordinates for YbNiGe3 compound [83].
Site Wyckoff Site x y z Occ.

position symmetry
Yb 8e 2mm 0 0.25 0.4591(1) 1
Ni1 8e 2mm 0 0.25 0.8197(1) 0.93(1)
Ge1 8e 2mm 0 0.25 0.7669(1) 1
Ge2 8e 2mm 0 0.25 0.1553(1) 1

X(Ni/Ge) 8e 2mm 0 0.25 0.0965(1) 0.11/0.89(5)

In the literature YbNiGe3 is found to crystallize in two different forms: (i)
SmNiGe3-type orthorhombic structure with space group Cmm, lattice parame-
ters of a=4.044 Å, b=21.713 Å and c=4.077 Å and volume 357.99 Å3 [6], and (ii)
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new type of tetragonal structure with space group I41/amd (No.141) with lat-
tice parameters a=4.0503(0) Å and c=43.274(2) Å and volume 709.91 Å3 [83,84],
which it is presented in Fig. 4.17 and their Wyckoff Positions are included in
Table 4.8. Comparison between Figs. 4.11 and 4.17 shows that although these
structures have different space groups, both exhibit layered structures with one
crystallographic site for Yb and one for Ni, and their unit cell differ only in
the way of stacking. So YbNiGe3 has the same fundamental building blocks as
SmNiGe3-type structure [see red squares], but the zig-zag chains of Ge atoms
run along both the a and b directions [83].

Figure 4.18: Physical properties of YbNiGe3. (a) Temperature dependence magnetic
susceptibility forH ⊥ c andH ‖ c. Inset shows its respectively magnetization isotherm
at 2 K. (b) Resistivity as a function of temperature for I ⊥ c dependence resistivity.
(c) Temperature dependence of specific heat which inset shows the Cp/T × T 2 at low
temperature. Figure taken from Ref. [83].

The Physical properties of YbNiGe3 studied by Mun et al. [83] and their results
are shown in Fig. 4.18. The temperature dependence susceptibility χ(T ) is
positive in the amount of 10−3 emu/mol, with an almost isotropic behavior
consistent with divalent ytterbium. At low temperature the susceptibility
increases due to either a small amount of Yb3+ ions or the presence of other
paramagnetic impurities. This is followed by a minimum around of 50 K and a
broad peak structure at high temperature suggests that a some small amount of
Yb ions have a mixed valence. If the broad maximum is around of T ∗ ≈ 300 K,
this compound will have a Kondo temperature in TK ≈ 3T ∗ ≈ 900 K [6, 85].
The inset show a magnetic field dependence magnetization M(H) at T = 2 K,
which it has a linear behavior up to 70 kOe with small magnetization values.
The temperature dependence resistivity ρ(T ), in Fig. 4.18 (b), decreases to
reduce the temperature from 300 to 50 K and at low temperatures shows a
tendency toward saturation [Eq. 2.48]. The specific heat, Fig. 4.18(c), does
not exhibit anomaly or feature that can be associated with a local magnetic
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moment. The Sommerfeld coefficient calculated is γ = 20 mJ mol−1K−2. Thus,
the physical properties of YbNiGe3 indicate that it is non-magnetic metallic
compound with Yb2+ state. This results are consistent with presented for
YbNiGe3 in orthorhombic structure [6].

(a) (b)

Figure 4.19: (a) Temperature dependence electrical resistivity. (b)Double logarith-
mic plot of the ρ− ρ0 × T for YbNiGe3 under various constant pressures. Solid lines
represent the form ρ− ρ0 = ATn. The inset show a pressure dependence of n, A, and
r0. These Figures are taken from Ref. [8].

Umeo et al. [8] measured the electrical resistivity of a single crystal of YbNiGe3
under pressures up to 6.5 GPa and at temperatures down to 0.3 K. Their results
are summarized in Fig. 4.19. At P = 0.2 GPa, the ρ(T ) exhibits a normal
metallic behavior without the Kondo effect. However, as the pressure increases,
the value of ρ(T ) rises over the entire temperature range suggesting that the
Kondo effect shows up with pressure. Additionally, they study the behavior of
ρ(T ) below the 50 K according to the power form of ρ(T ) = ρ0 +ATn [Fig. 4.19].
At low pressure n = 4 near to 5 value which is associated with conventional
electron–phonon scattering and it indicates that the electron–electron scattering
is negligible. For P=3.6 GPa, n→2 expected for electron–electron scattering
from Fermi-liquid theory [Eq. 2.48]. For P=6.5 GPa, n→1.6 presenting non-
Fermi liquid behavior [86]. Spin-fluctuation theory for a three-dimensional
antiferromagnet predicts a QCP when n ≈1.5, which occurs at about 8 GPa.
On the other hand, as n decreases with pressure occurs an enhancement of
both A and ρ0 [inset Fig. 4.19] which may be indicative of the valence change
in the compound [8].

From here Sato et al. [84] began to study the Yb valence in YbNiGe3 by
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resonant X-ray absorption spectroscopy in Lα1 partial fluorescence yield mode
(PFY-XAS) and resonant X-ray emission spectroscopy (RXES) around the Yb
L3 absorption edge under pressures from 0 to 15.6 GPa at 300 K and to 7.7 GPa
at 17 K. The results are summarized in Fig. 4.20. PFY-XAS show that at
ambient pressure and room temperature there are two peaks whose intensities
are comparable: one associated with the Yb2+ peak at hνin = 8938 eV and
the other with the Yb3+ peak at hνin = 8945 eV. Thus, the Yb valence is
approximately v = 2.52 indicating that Yb2+ and Yb3+ ions are almost equally
distributed in the compound. However, when the pressure is applied the
spectral weight of Yb2+ is continuously transferred to the Yb3+ peaks. The
valence reaches v = 2.87 and thus the Yb ions approach the trivalent state.
Also, the difference in valence at 300 K and 17 K is small at low pressures,
where for the latter are v = 2.45 and v = 2.72 for 0 and 7.7 GPa, respectively
[Fig. 4.20(c)]. Additionally, pressure derivatives of the Yb valence (dv/dP )
exhibits a drops between 5 and 10 GPa, a range where a QCP is expected.
On the other hand, they also measured temperature-dependent PFY-XAS and
RXES spectra of YbNiGe3 and YbNiSi3 at ambient pressure by varying the
temperature from 8 to 299 K [Fig. 4.21]. For YbNiGe3 they found that the Yb
valence weakly reduced with decreasing temperature [84]. In contrast, PFY-
XAS spectrum for YbNiSi3 exhibits a large peak associated to Yb3+ followed
by a weak peak assigned with to a small fraction of Yb2+ ions, and a small
peak at hνin = 8945 eV attributed to the quadrupole transition. Therefore, Yb
valence is close to 3 with almost no temperature dependence [Fig. 4.20 (e) and
(f)].

 (b) (a) (c) 

 

(c) 

Figure 4.20: (a) Pressure dependencies of the PFY-XAS spectral and (b) RXES
spectral around the Yb L3-edge for YbNiGe3 at 300 K. (c) Yb valences at 300 and
17 K as a function of pressure derived from the RXES spectral. These Figures are
takes from Ref. [84].

Next, they investigate the difference in the electronic structure of YbNiX3
(X=Si, Ge) by hard X-ray photoemission spectroscopy (HAXPES) on Ni 2p
and Yb 3d core level, and Yb valence-band [85]. Their results are included in
Fig. 4.22. Ni 2p core level spectrum have two peaks 2p3/2 and 2p1/2 [Fig. 4.22(a)]
with a binding energy difference between the two compounds of ∆EB = 0.6 eV
lower for X=Ge. Therefore, they have similar electronic conduction states. In
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Figure 4.21: (a) Temperature dependence of the PFY-XAS spectral and (b) RXES
spectral around the Yb L3-edge for YbNiGe3 at ambient pressure. (c) Temperature
dependence of the PFY-XAS spectral and (d) RXES spectral around the Yb L3-edge
for YbNiSi3 at ambient pressure. (e)Temperature dependencies of the Yb valences in
YbNiGe3 and YbNiSi3 derived from PFY-XAS spectra. (f) Temperature dependence
of the Yb valence in YbNiSi3 derived from RXES spectra. These figures are taken
from Ref. [84].

(a) (b) (c)

Figure 4.22: HAXPES spectral of YbNiX3 (X=Si, Ge) measured at 20 K for (a)
Ni 2p, (b) Yb 3d and (c) Valence band. The inset in (a) show the Ni 2p3/2 region
expanded. These figures are taken from Ref. [85].

contrast, Yb 3d core spectrum is split into 3d5/2 (1515-1560 eV) and 3d3/2

(1560-1605 eV) regions, where both Yb2+ and Yb3+ valence states are resolved
[Fig. 4.22(b)]. X=Ge has comparable Yb2+ and Yb3+ peaks so Yb valence is
strongly fluctuating in this compound, whereas X=Si shows weak Yb2+ peaks
and its Yb valence is v ∼ 3 as indicated above. The previous was corroborated
in the valence-band HAXPES spectra for YbNiGe3 which exhibits Yb3+ and
Yb2+ 4f -structures where the latter is formed by 4f7/2 and 4f5/2 peaks just
below EF , while YbNiSi3 has only Yb3+ structures [Fig. 4.22(c)].
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4.5 Some remarks

RNiSi3 series (R = Gd-Tm) display rich magnetic properties such as anisotropic
magnetization, multiple metamagnetic steps, hysteresis, double transitions and
other magnetic phenomena. (a) (b) (c) 
Figure 4.23: Néel temperature dependent Gennes factor dG = (gJ − 1)2J(J + 1)
obtained from the experimental specific heat, resistivity, and magnetic susceptibility.
(b) Dependence of the paramagnetic Curie-Weiss temperature θpcw on dG [1, 2]. De
Gennes values for rare earth atoms are indicated in Table 2.1.

In systems where the magnetism originates solely from the rare earth ions,

Figure 4.24: Experimental effective magnetic moment and highest observed moment
at 2 K. The lines indicate the theoretical value of the free rare earth ions and their
saturation moment [1, 2].
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that maintain the same valence throughout the series and show a JRKKY
constant, TN and θcw are expected to vary linearly with the de Gennes factor
[Eq. 2.18], making even Gd-based compounds show the highest temperature
[Table 2.1]. However, Fig. 4.23 shows that RNiSi3 series do not follow this
scaling and R=Tb exhibit the maximum TN . This behavior was verified by
magnetization, resistivity and specific heat measurements. This may be due
to the influence of other factors such as crystalline field effects and exchange
anisotropy which change the Hamiltonian system and thus lead to deviations
from the expected proportionality of the case where only RKKY is taken into
account. On the other hand, θpcw × dG show positive values for DyNiSi3 and
HoNiSi3, whose specific heat measurements reveal two magnetic transitions.
These can be associated with the competition between these phases and the
possible existence of ferromagnetic interaction that can cause a reduction of
steps in metamagnetic transitions, the appearance of magnetic component
along c-axis leading two antiferromagnetic axis and the reduction of hysteresis
when going from TbNiSi3 to HoNiSi3. Therefore, these serve as a bridge to
change in the easy axis of a to b. In view of this, it is worth noting that
the magnetic properties, magnetic entropy change and magnetocaloric effect
have recently been studied in the DyNiSi3 compound, which appears to have
potential for use in magnetic refrigerators [87].

The series under investigation have similar properties with respect to the
RNiGe3 family [83]. Both have an antiferromagnetic character, their effective
magnetic moments are close to the theoretical values of free trivalent rare-earth
ions and the Néel temperature does not scale with the de Gennes factor despite
the fact that they are higher than in our case. Moreover, both Gd-compounds
show similar magnetic behaviors indicating that they have the same magnetic
structure. On the other hand, metamagnetism is observed only for some
compounds. NdNiGe3 is the only member showing two magnetic transitions.
Also, TbNiGe3 and DyNiGe3 exhibit phase diagrams that are relatively simple.
Therefore, the substitution of Ge for Si changes the crystalline field which
plays a key role in understanding the complex magnetic behavior, due to the
presence of multiple magnetic transitions and hysteresis observed in RNiSi3
but not in RNiGe3 series.

Despite the fact that YbNiGe3 has a different space group and Bravais lattice
with respect to YbNiSi3, they are considered as electronic isostructural because
both Ge and Si elements donate similar valence electrons (4s24p2 and 3s23p2,
respectively) to the conduction band of YbNiX3 (X=Si, Ge), as verified in the
HAXPES measurements mentioned above.

On the other hand, the effect of pressure on YbNiSi3 suppresses its ordered
state by moving to the non-magnetic state, while the application of magnetic
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field causes that γ following the trend generally observed in materials close
to a QCP [80] [Fig. 4.12(c)]. In contrast, for YbNiGe3 the Kondo effect is
induced by pressure leading its ground state to approach a QCP [Fig. 4.19].
Thus, as mentioned in sec. 2.9, it is possible to pass through a QCP by
tuning parameters such as temperature, magnetic field, hydrostatic pressure
or chemical composition. Our goal then is to be the pioneers in studying the
quantum-critical behavior through YbNiSi3−xGex alloys, a research topic that
we will discuss it in sec. 8.
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5
Superconductivity in

YNiSi3 and LuNiSi3
In the previous chapter we mentioned that both YNiSi3 and LuNiSi3 are
strongly anisotropic diamagnetic compounds with metallic character in the
temperature range from 2 to 300 K [sec. 4.2]. Here, we will focus on the study of
their physical properties below 2 K where they have exhibited the phenomenon
of superconductivity. In addition, we will discuss their electronic and phononic
properties from results obtained by first-principles calculations.

5.1 Experimental results

In order to ensure that the superconductivity exhibited by YNiSi3 and LuNiSi3
crystals is not an extrinsic effect arising from Sn flux inclusions, which oc-
curs at Tc = 3.7 K for pure Sn, elemental analysis was carried out on these
samples. The results revealed a composition of Y0.96(11)Ni1.00(19)Si3.09(18) and
Lu1.00(1)Ni0.68(2)Si3.13(2) with significant Ni vacancies. Moreover, no significant
amount of Sn was evident in both cases.

The temperature dependence of resistivity for several magnetic fields, with
H ‖ b and H ⊥ b orientations, is presented in Fig. 5.1. For H = 0 kOe there is
an abrupt drop to zero resistivity at 1.42(2) K for YNiSi3 and 1.63(2) K for
LuNiSi3, indicating the transition from a normal electrical resistivity state to a
superconducting state [subsec. 2.8.3]. In the presence of magnetic fields, the
critical temperature decreases and a small broadening appears in the transition.
We observed that the superconducting behavior occur even at 10 mT and 40 mT
with H ‖ b and H ⊥ b configurations, respectively for YNiSi3, in contrast to
20 mT with H ‖ b and 80 mT with H ⊥ b for LuNiSi3 [77]. Also, strong
anisotropy is also evident on these curves which is in agreement with what was
mentioned in sec. 4.2.
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Figure 5.1: Temperature dependence for the electrical resistivity, under magnetic
fields 0 < H < 150 mT, for YNiSi3 and LuNiSi3 in the configurations (a) H ‖ b and
(b) H ⊥ b.

Susceptibility measurements as a function of temperature χ(T ) at zero field
cooled (ZFC) mode, with a magnetic field of µ0H = 2 mT for YNiSi3 and
1 mT for LuNiSi3, are shown in Fig. 5.2(a). The susceptibility curves reach
-1 at 0.5 K, indicating that at this temperature the bulk of both samples
completely expels the external magnetic field and a perfect diamagnetism
begins to emerge due to the Meissner effect. As the temperature rises the
susceptibility also increases, until it reaches the value of 0 at Tc = 1.31(2) K for
YNiSi3 and 1.58(2) K for LuNiSi3, where the bulks have attained the normal-
state diamagnetic response [77]. On the other hand, magnetic field dependent
magnetization [Fig. 5.2(b)] for several temperatures below the superconducting
transition displays M = −H behavior at low magnetic field, followed by an
abrupt jump to M = 0 at the critical magnetic field Hc, typical signature
of a type I superconductor. However, they present an irreversible behavior,
which as mentioned in subsec. 2.8.3 they are associated with some impurities or
crystalline faults such as Ni vacancies inside the samples that trap the magnetic
flux and generate magnetic hysteresis. Moreover, these superconductors have
a simple magnetic phase diagram Hc × T [Fig. 5.2(c)] where the data points
follow the empirical parabolic law of Eq. 2.54. Here we estimated that at
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Figure 5.2: Magnetization measurements for YNiSi3 and LuNiSi3. (a) Temperature
dependence of susceptibility at µ0H = 2 mT using a zero-field-cooled warming
(ZFCW) protocol. For LuNiSi3 the field cooled warming (FCW) curve was also
measured. (b) M × H curves for 0.5 < T < 1.6 K. (c) µ0Hc × T phase diagram
constructed from temperatures and critical magnetic field values obtained from (b)
and the empirical parabolic law curve given by Eq. 2.54.
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T = 0 K the critical magnetic field corresponds to µ0Hc(0) = 9.6(2) mT for
YNiSi3 and 10.4(2) mT for LuNiSi3 [77].

(a) 

(b) 

(c) 

Figure 5.3: (a) Temperature dependence of specific heat and (b) Cp/T × T curve in
the presence of magnetic fields 0 < H < 1 T for YNiSi3 and LuNiSi3. The inset in
(b) shows the Debye model fit to the Cp/T × T 2 data. (c) Electronic contribution to
specific heat at H = 0 together with the fits of different superconducting gap models,
[Eq. 2.57-2.60] for both compounds.

The temperature-dependent specific heat Cp(T ) for different magnetic fields is
presented in Fig. 5.3. We observe that at H = 0 there is a jump at 1.35(5) K
for YNiSi3 and 1.63(2) K for LuNiSi3. Furthermore, for both compounds
the transition temperature shifts to lower temperatures when the magnetic
field increases. Note that the jumps at 5 mT are larger than at zero field,
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suggesting a first-order transition for H 6= 0. Also, no anomaly at 15 mT is
observed. In the normal state we fit the Debye model according to Eq. 2.31
including an additional phonon contribution of the form BT 4 [inset Fig. 5.3(b)].
We obtain γ = 4.04(9) mJ mol−1K−2, β = 0.0961(5) mJ mol−1K−4 and
B = 0.0090(5) mJ mol−1K−6 for YNiSi3 and γ = 3.97(9) mJ mol−1K−2,
β = 0.0910(5) mJ mol−1K−4 and B = 0.00044(9) mJ mol−1K−6 for LuNiSi3.
These values allow us determine the Debye temperatures ΘD = 466(9) and
474(8) K [Eq. 2.25], the densitiy of states at the Fermi level D(EF ) = 1.71
and 1.69 states/eV f.u. [Eq. 2.28], and therefore the electron-phonon coupling
constant λe−ph = 0.43(2) and 0.44(2) [Eq. 2.62], for YNiSi3 and LuNiSi3,
respectively, indicating that both compounds are in the weak-coupling regime
[77]. These results are summarized in Table 5.1. Since the critical temperatures
measured by the three independent techniques are different, we consider the
average on these, corresponding to Tc = 1.36(3) K and Tc = 1.61(2) K for
YNiSi3 and LuNiSi3, respectively.

Table 5.1: The main parameters obtained from experimental measurements for
YNiSi3 and LuNiSi3: critical temperature, Sommerfeld coefficient, density of states,
Debye temperature, electron-phonon coupling, specific heat jump at the critical
temperature, critical magnetic field at T = 0 K, London penetration depth, BCS
coherence length and Ginzburg-Landau (GL) parameter.

YNiSi3 LuNiSi3
Tc (K) 1.36(3) 1.61(2)
γ (mJ mol−1K−2) 4.04(9) 3.97 (9)
D(EF ) (states/eV f.u.) 1.71 1.69
ΘD (K) 466(9) 474(8)
λe−ph 0.43 (2) 0.44(2)
∆Cel/γNTc 1.14(9) 0.71(5)
µ0Hc(0) (mT) 9.6(2) 10.4(2)
λL (nm) 34 (3) 33(3)
ξ0 (nm) 780(80) 690(70)
κ 0.113(11) 0.42(4)

For a superconductor in the weak-coupling regime, the
Bardeen–Cooper–Schrieffer (BCS) theory predicts that the specific heat jump
at Tc is 1.43 [subsec. 2.8.3] for a s-wave gap. However the estimated values
for YNiSi3 and LuNiSi3 correspond to 1.14(9) and 0.71(5), respectively, lower
than expected. In order to determine the type of superconducting gap in these
compounds, we consider different models: a single-gap (SG) α model for BCS
[Eq. 2.57], a double gap (DG) α model [Eq. 2.58], a single-gap α model with
a non-superconducting contribution fraction (SGNF) [Eq. 2.59] and finally,
an anisotropic gap (ANI) model [Eq. 2.60]. The parameters obtained by the
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fittings are listed in Table 5.2. The SG model gave a poor fit, while the quality
of the others fits is much better. Although they represent different physical
hypotheses [sec. 5], the latter result in quite similar fits. As a consequence, we
cannot exactly determine the superconducting gap structure in YNiSi3 and
LuNiSi3, however we can claim that it is not simple and it must be similar in
both compounds.

Table 5.2: Fit parameters of Cel in the superconducting region for YNiSi3 and
LuNiSi3. Ai and α′ are dimensionless, ∆0 is measured in 10−23 J and γ2 in
mJ mol−1K−2.

Cel model Ai ∆0 f γ2 α′

YNiSi3
SG 7.4 2.4 - - -
DG 16.2 1.3; 4.5 0.11 - -
SGNF 10.1 3.5 - 2.42 -
ANI - 0.9 - - -9.0

LuNiSi3
SG 5.5 2.6 - - -
DG 9.4 1.1; 4.3 0.099 - -
SGNF 6.3 3.7 - 2.21 -
ANI - 0.9 - - -9.0

As mentioned in subsec. 2.8.3 the superconducting state has a higher degree
of order than the normal state, so the entropy of the superconducting state
is lower than the normal state and therefore its free energy. Figure 5.4(a)
shows the behavior of these curves obtained from Eq. 2.55 and 2.56 for
YNiSi3 and LuNiSi3. We see that the shape of these is very similar for
both compounds, and that for the latter they are more shifted toward higher
temperature values. Now, as the application of magnetic field raises the free
energy in the superconducting state [Eq. 2.55] and this is seriously affected
by temperature, we can use this dependency to construct the phase diagram
for both compound as shown in Figure 5.4, where comparatively we include
the phase diagrams obtained from resistivity, specific heat and magnetization
measurements. Table 5.3 summarizes the critical temperatures and critical
magnetic fields obtained for each case. Notice that the critical field of 7.0
and 8.3 mT achieved from thermodynamic quantities is lower than 9.6(2) and
10.4(2) mT found by magnetization measurements for YNiSi3 and LuNiSi3,
respectively. In addition, Hc values obtained from resistivity measurements
with H ⊥ b configuration, at low temperatures, is higher compared to other
experimental techniques. In the literature this behavior was reported in the
type-II superconductor LaPdSi3 [88], and it was interpreted as arising from
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Figure 5.4: (a)Temperature dependence of the internal energy difference ∆U , latent
heat T∆S and free energy ∆F for YNiSi3 and LuNiSi3. (b) Temperature dependence
of the critical field Hc(T ) obtained from free energy, specific-heat, magnetization and
resistivity.

surface superconductivity.

Table 5.3: Critical temperature and critical magnetic field obtained from resistivity,
specific heat and magnetization. As a reference we include the values obtained by
free energy according to Eq. 2.55.

YNiSi3 LuNiSi3
Tc (K) µ0Hc(0) (mT) Tc (K) µ0Hc(0) (mT)

Specific heat -∆F - 7.0 - 8.3
Specific heat -data 1.35(5) >6 1.63(2) >9
Magnetization 1.31(2) 9.6(2) 1.58(2 10.4(2)
Resistivity H ‖ b 1.42(2) >10 1.63(2) >20
Resistivity H ⊥ b 1.42(2) >40 1.63(2) >80

The basic superconducting parameters for YNiSi3 can be calculated considering
an electron-density of n = 12/Vcell = 3.70 × 1028 m−3 (12 is the number of
electrons in YNiSi3 -three electrons for each Y3+ atom for four formula units of
the compound (Z=4)- and Vcell=324.49Å3) in which electrons have an effective
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mass of m∗ = 1.54 m0 [Eq. 2.29], and they move along the mean free path
l = 347 nm [Eq. 2.46]. So the BCS coherence length, London penetration
depth and the Ginzburg-Landau (GL) parameters can be estimated from
Eqs. 2.51-2.53 as ξ0 = 780(80) nm, λL = 34(3) nm and κ = 0.113(11) < 1/

√
2,

respectively. For LuNiSi3 we found n = 3.83 × 1028 m−3, m∗ = 1.51m0,
l = 63 nm, ξ0 = 690(70) nm, λL = 33(3) nm and κ = 0.42(4) < 1/

√
2. Here, it

is considered that all Y and Lu atoms have 3+ valence, each compound has
four formula units per unit cell and their Fermi surface is spherical.

5.2 Theoretical results

The ground state crystal structure of YNiSi3 and LuNiSi3 was determined in
the follow steps:

• We determine the converged calculations parameters [sec. 3]. In Elk code
(FP-APW method) the muffin-tin radius are RYMT=2.7777, RLuMT=2.7495,
RNiMT=2.0563 and RSiMT=2.0563 for Y, Lu, Ni, Si, respectively, while the
plane wave cuttof RMF |G + k|max was converged to 9.5. For VASP
code the cutoff energy for the plane-wave basis Ecut = ~2

2mG
2
cut where

|G + k| < Gcut is 550 eV. Also, in both codes, k grid was chosen to
be a uniformly spaced: grid of 8 × 8 × 8 for structural relaxation and
16× 16× 16 for the calculation of the electronic properties (En(k), DOS
and Fermi surface).

• The next step was to check if Ni and Y(Lu) present some magnetic order
in these compounds, knowing that the first is commonly a magnetic
ion while that the last ones are not. For this purpose we consider two
configurations for each atomic sublattice: parallel and antiparallel spin.
As a result we obtained that both configurations converge to a non-
magnetic ground state with zero local magnetic moment characteristic of
diamagnetic compounds.

• The equation of state associated with each compound was then studied.
Here, we simulate expansion and compression effects on YNiSi3 and
LuNiSi3 by making volume changes of approximately 1%, while the
ionic and cell shape are relaxed [Fig. 5.5]. These values were fitted by
Birch-Murnaghan equation of state (3rd order) [Eq. 2.9 ]. The lattice
parameters, volume and bulk modulus obtained are given in Table 5.4.
Here we include the values found from XRD measurements previously
shown in Table 4.1. Comparing experimental and theoretical values, we
notice that the absolute error for the lattice constant is less than 1% for
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both compounds, while the volume absolute errors are 1.71% and 1.56%
for YNiSi3 and LuNiSi3, respectively.
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Figure 5.5: Total energy of YNiSi3 and LuNiSi3 as a function of the volume.

Table 5.4: Calculated lattice parameters a, b and c, volume Ω and bulk modulus B
for YNiSi3 and LuNiSi3 compounds using PBESol exchange functional with VASP
code.

Compound a (Å) b (Å) c (Å) Ω (Å3) B (GPa)
YNiSi3

Experimental 3.9216(1) 20.9448(6) 3.9506(1) 324.49(2) -
Theoretical 3.8952 20.8969 3.9183 318.949 128
LuNiSi3

Experimental 3.8808(3) 20.792(1) 3.8868(3) 313.62(4) -
Theoretical 3.8558 20.7553 3.8579 308.741 135

Having determined the ground state crystal structure for YNiSi3 and LuNiSi3,
we proceed to calculate their bonding, electronic, elastic and phononic proper-
ties.
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Figure 5.6: Calculated electron localization function (ELF) for YNiSi3; upper,
middle and bottom panels show the (001), (002) and (101) planes, respectively.

5.2.1 Bonding properties

The bonding properties of superconductors depend on how the electrons are
spatially distributed in the compound. As described in subsec. 2.3.4, this can
be known from the electron localization function (ELF), which we show in
Figure 5.6 for YNiSi3. In order to perform a comprehensive analysis of this
function we will consider three different planes in the crystallographic structure:
(001), (002) and (101) planes that are associated with NiSi2, YSi and YNiSi
layers according to Figure 4.3. We observe that between Si1 atoms (dimers in
the (001) plane and linear chains along [010] direction) and between Si3 atoms
(zigzag chain along [100] direction) the ELF presents a maximum value of 0.95
and 0.82, respectively. According to ELF definition [Eq. 2.12] these values
indicate covalent bonds in both cases, while Ni-Si atoms reveal the metallic
character of these bonds (maximum value of 0.48). On the other hand, on
the (002) plane while Si2 atoms (dimers) exhibit covalent bonds, Y-Si2 has a
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metallic bond (maximum value 0.51) and Y-Y has an ionic nature (maximum
value 0.21). Finally, the calculated ELF on (101) shows a weakly metallic
behavior of the Y–Ni bond (maximum value 0.32). In summary, YNiSi3 displays
all kind of chemical bonds: ionic (between Y atoms), metallic (between Ni–Si,
Y–Si, and Ni–Y) and covalent (within the Si dimers and zigzag chains). The
same properties were observed in LuNiSi3 compound which is not presented
here due to similarity with calculated ELF for YNiSi3.

5.2.2 Electronic properties

  

(a)

(b)

(c)

Figure 5.7: First Brillouin zone (FBZ) of the space group Cmmm with high sym-
metry points (Γ, Y , T , Z, R and S) and high symmetry directions (∆, H, B, Λ, D
and Σ).

The electronic properties of these superconductors can be accessed from a
detail study of the band structure, total and partial density of states and the
Fermi surface [subsec. 2.3.1-2.3.3]. In Figure 5.8 we show the calculated band
structure along the high symmetry directions of the first Brillouin zone (FBZ)
[Fig. 5.7] without and with SOC interaction for both superconductors. For
the last one, was plotted the total and projected DOS for one spin direction.
Comparing the band structure we observe that both compounds present a
similar band topology in the conduction region and in the vicinity of Fermi
level, regions that are not affected by SOC interaction. The conduction bands
are the result of the hybridization of d states coming from the metallic atoms
with Si p-states, and for energies larger than 1 eV with Si s-states. On the other
hand, there are three partially occupied bands crossing the Fermi level. They
are denoted by magenta, violet and green color and labeled as first, second
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(a) (b) 

(c) (d) 

Figure 5.8: Dispersion relation for YNiSi3 and LuNiSi3 neglecting the spin orbit
coupling (SOC) interaction (a) and (c), respectively. Electronic structure: band
structure, total and projected DOS including SOC effects for (b) YNiSi3 and (d)
LuNiSi3. Highlighted in color are the three conduction bands crossing the Fermi level;
band 1 (magenta), band 2 (violet) and band 3 (green). The eigenvalues are shifted
to the Fermi level defined at EF = 0 eV. The inset at panel (d) is a zoom in the
projected DOS contribution at the Fermi level.

and third bands, respectively. The first band crosses the Fermi level in the
vicinity of the high symmetry point T with a hole-like character. It is formed
by Ni d and Si p-states. The second band intersects the Fermi level in all high
symmetry directions except in ∆ direction (ky), showing a hole-like character
in ∆, H, T − Γ and Γ − S. It is constructed with Y (Lu) d, Ni d and Si
p-states. In addition, the hole-like character also occurs in D direction, but in
this case there is only contribution of Ni d and Si p-states. Finally, the third
band traverses only the D direction with an electron-like character due to Ni
d and Si p-states, too. Valence bands of YNiSi3 are composed by Ni d, Si p
and Y d-states while LuNiSi3 exhibits Ni d, Si p, Lu d and Lu f -state. The
large difference between the two compounds is due to presence of dispersionless
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bands associated with Lu f -states around 4.6 eV [Fig. 5.8 (a) and (c)] which
are split by 1.5 eV due to SOC interaction showing two well-defined peaks
around 4.1 and 5.6 eV in the total and projected DOS.

At the Fermi level, YNiSi3 has a total density of states of D(EF ) =
0.6875 states/f.u., spin and eV with contributions of Y d (0.2131), Ni d (0.2544),
Si p (0.1719); while LuNiSi3 presents a D(EF ) = 0.7433 with contributions
of Lu d ( 0.223), Ni d (0.2676) and Si p (0.1858). Comparing theoretical and
experimental D(EF ) [Table 5.1] we find a relative errors of 19.6% for YNiSi3
and 12% for LuNiSi3. Now, we can calculate the bare specific heat coeffi-
cient and the electron phonon coupling from Eqs. 2.28 and 2.30 which values
obtained are γbare = 3.24 mJ mol−1K−2 and λe−ph=0.247 for YNiSi3 and
γbare = 3.50 mJ mol−1K−2 and λe−ph=0.134 for LuNiSi3 which confirm that
these compounds are in the weak-coupling regime. These values are included
in Table 5.6 at the end of the next subsection.

Figure 5.9: On the left the extended Fermi surface of YNiSi3 oriented along the ∆
direction (ky). On the right the extended Fermi surface of LuNiSi3. In both cases,
the first Brillouin zone (FBZ) is shown by black lines.

Figure 5.9 shows the calculated Fermi surface for YNiSi3 and LuNiSi3. We can
see that these surfaces consist of three branches, each one associated with a
partially occupied band. The first hole branch is formed by four pipes (blue/
yellow surfaces) centered around Γ and parallel to the ∆ direction. The second
branch has two main features, a hole-like rectangular cylinder (green/violet
colors) also centered around Γ and with its axis oriented along the ∆ direction,
and a set of large hole-like cylinders running along the FBZ boundary, parallel
to the ∆ direction and intricately connected around the FBZ boundaries.
The third branch is built by four large electron-like disconnected cylinders
(cyan/red colors) centered around the edge of the FBZ and also running
parallel to the ∆ direction. The first hole and the electron branches result
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from the hybridization of Ni d with Si p-states, whereas the second hole
branch also has the contribution of Y (Lu) d-orbitals. We expected the two
large cylindrical branches which connect the FBZ boundaries are most likely
responsible for the observed superconductivity in these systems.

5.2.3 Elastic properties

Table 5.5: Calculated elastic constants (in GPa) for YNiSi3 and LuNiSi3.

Compound YNiSi3 LuNiSi3
C11 324.85 330.36
C12 82.04 90.94
C13 68.54 70.40
C22 260.49 263.15
C23 55.75 60.43
C33 224.44 227.01
C44 98.33 95.59
C55 84.45 81.95
C66 87.06 78.54

Table 5.6: The main parameters obtained from DFT calculations for YNiSi3 and
LuNiSi3: D(EF ) density of states (states/eV.f.u and spin) , γbare Sommerfeld coef-
ficient (mJ mol−1K−2) , λe−ph electron-phonon coupling, B Bulk modulus (GPa),
G shear modulus (GPa), Vm average sound velocity (Km/s) and ΘD (K) Debye
temperature (K)

YNiSi3 LuNiSi3
D(EF ) 0.69 0.74
γbare 3.24 3.50
λe−ph 0.25 0.13
B 165.90 171.4
G 94.20 90.90
Vm 4.91 4.13
ΘD 497 464

The elastic properties were obtained by relaxing the structure of each compound
with respect to degrees-of-freedom such as cell shape and cell volume, which will
allow the determination of the Hessian matrix (matrix of the second derivatives
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of the energy with respect to the atomic positions [Eq. 2.38]). The values
obtained are shown in Table 5.5. From these we estimated the Bulk modulus (B)
and shear modulus (G), average sound velocity(vm) and Debye temperature
(ΘD) according to Eqs. 2.40, 2.41 and 2.42, respectively, obtaining that
B = 165.90 GPa, G = 94.20 GPa, Vm=4.91 Km/s and ΘD = 497 K for YNiSi3
and B = 171.4 GPa, G = 90.90 GPa, Vm4.13 Km/s and ΘD = 464 K for
LuNiSi3.

The main parameters of YNiSi3 and LuNiSi3 obtained from electronic and
elastic properties are summarized in Table 5.6. Comparing the experimental
and theoretical Debye temperature [Tables 5.1 and 5.6] we find an absolute
relative error of 6.7% for YNiSi3 and 2.1% for LuNiSi3. Moreover, the calculated
bulk modulus from the elastic constant differs from that obtained by Birch
Murnaghan fit by about 38 GPa, compare Table 5.4 and 5.6. The latter may
occur due to the sensitivity of B to energy differences in the equation of state.

5.2.4 Phononic properties
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Figure 5.10: Calculated phonon dispersion relation, F (ω)/ω2 spectral function and
partial F (ω) for (a) YNiSi3 and (b) LuNiSi3.
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Finally, the phononic properties of YNiSi3 and LuNiSi3 compounds can be
determined from a detailed study of the phonon dispersion relation and the
total and partial density of state [sec. 2.4].

In order to determine the vibrational spectrum of these compounds we use
the Phonopy package [89] to create supercells large enough to avoid the self-
interaction of the displaced atom with itself. Next, for each supercell we
calculate the ground state energy and the total-force on each atom whose set of
forces and displacements allow us determine the force constant and the dynamic
matrix [Eq. 2.15] associated with the superconductors. Finally, using a q-point
grid in the first Brillouin zone, we can calculate the phonon frequencies and
eigenvectors by interpolation.
The phononic band structure ω(q) for YNiSi3 and LuNiSi3 are presented in
Fig. 5.10. Here we have not included the SOC because as mentioned above the
crystal structure and the FS are not affected by this interaction. We observe
that their corresponding branches are very similar, even the maximal phonon
frequency existing in the crystal for both compounds is around of 15 THz.
Moreover, none of them have imaginary frequency which ensures that these
structures are dynamically stable. Now, since RNiSi3 contains 10 atoms in the
primitive unit cell, they have 3 acoustic and 27 optical modes [subsec. 2.6.1].
For YNiSi3 the acoustic branches are determined approximately below 4 THz
while for LuNiSi3 below 3.2 THz.

Since the distribution of modes is almost continuous over the entire frequency
range, to analyze the phonon spectrum we will consider three frequency regions:
0-4.0 and 0-3.2 THz (acoustic), 4.0–12.2 and 2.6–12.8 THz (intermediate),
12.2–14.5 THz and 12.8–14.6 THz (high) for YNiSi3 and LuNiSi3, respectively.
In YNiSi3 all atoms contribute almost uniformly to acoustic branches, in
contrast to LuNiSi3 where there is an appreciable contribution due to Lu atoms
(heavy mass). The intermediate-frequency range has 23 branches, where 12
form the low lying optical branches (up to approximately 6.7 THz) which
contributions states coming from Y(Lu), Si and Ni vibrational modes, and the
11 remaining are mainly made up by Si and Ni states. The high-frequency region
has 4 branches and they are formed almost exclusively by Si contributions.

From partial density of states F (ω) we calculate the spectrum function ω−2F (ω),
[righ panel in Fig. 5.10] which is a crude alternative to the Eliasberg function
α2F (ω) as was mentioned in subsec. 2.8.3. Here, we can observed that both
compounds exhibit the highest spectral weight between the acoustical and
low lying optical branches with their most prominent peaks located in the
latter. This indicates that there must be coupling among Y(Lu) and Ni d-
electrons with Si-p to form Cooper pairs, and thus they are responsible for the
superconductivity observed in these compounds.
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5.3 Discussion

Experimental measurements allow us to categorize the superconductivity of
these compounds as type-I with weak electron-phonon coupling and a Ginzburg-
Landau (GL) parameter κ < 1/

√
2, as presented in Table 5.1. However, these

superconductors are unconventional because the jump of the specific heat at the
transition is lower than the value expected by BCS theory (∆Cel/γTc = 1.43).
These features are also observed in other non-f-electron orthorhombic Ni-Ge
systems such as YNiGe3 [90, 91] and La3Ni4Ge4 [92] where the low specific
heat jump can be connected with an anisotropy of the SC gap. YNiGe3 is an
isoelectronic-isostructural of YNiSi3 whose similarity is observed in both the
density of estates at the Fermi Level and the Fermi surface. The first one is
about D(EF ) = 0.69 states/eV f.u and spin with contributions coming from Ni
3d, Y 4d and Ge 4p electrons. The second originates from three bands, two
of them are hole-like and electron-like sheets. This has led to the suggestion
that such system is a multiband-superconductor with two gaps, one for each
sheets mentioned. The above seem to be also valid for the compounds we have
studied through this chapter, where the models used to determine the type
of superconducting gap in YNiSi3 and LuNiSi3 have correctly described the
jump in the specific heat evidencing the existence of a large anisotropy in the
superconducting gap.

5.4 Conclusions

In this chapter we presented the physical properties of YNiSi3 and LuNiSi3
superconductors. These have been characterized by magnetization, heat ca-
pacity and resistivity experiments, and we have given theoretical support
from DFT electronic-structure calculations. We find that these compounds
are anisotropic nonmagnetic type-I superconductors below Tc=1.36(3) K for
YNiSi3 and Tc=1.61(2) K for LuNiSi3, with a complex superconducting gap.
The Cooper pairs appear to be formed by weak-coupling between the d electrons
from Y(Lu) and Ni to Si p electrons, which come from 3d, 3p, and 4d orbitals
for YNiSi3 and 3d, 3p, and 5d orbitals for LuNiSi3 and determine the two large
cylindrical branches that are connected around the FBZ boundaries in the
Fermi surface and show continuity throughout the entire reciprocal space.

On the other hand, it is important to note that low-temperature supercon-



110 5. Superconductivity in YNiSi3 and LuNiSi3

ductors have a wide range of applications. They are utilized as electrical
components in cables, sensors, motors, generators, among others, to create
nuclear magnetic resonance images (commonly employed in medicine), electrical
energy storage and transmission, in the construction of particle accelerators
(high energy physics), etc. It is here where YNiSi3 and LuNiSi3 compounds
may show their usefulness.



6
Gd1−xYxNiSi3

In gadolinium based compounds the crystal electric field (CEF) effect is neg-
ligible so their magnetic properties must originate mainly from exchange
interaction. GdNiSi3 is quite interesting because of its phase diagram where
the metamagnetic transition evolves towards high fields when the temperature
increases [subsec. 4.2.2]. In order to understand the role of exchange interaction
in such system, in this chapter we will investigate the effect of non-magnetic Y
ion doping on the magnetic properties of Gd1−xYxNiSi3 compounds. We will
analyze the interactions between magnetic moments, the resultant magnetic
ordering and the changes presented by the exchange interaction in these alloys.
To do this, we grow single crystals of Gd1−xYxNiSi3 (x=0.25, 0.50, 0.65, 0.80)
and characterized them using susceptibility, magnetization and heat capacity
measurements. Also, we will include the non-magnetic YNiSi3 compound in
our study to evaluate the contribution of phonons and conduction electrons
of Y-doped compounds. Finally, we will use first-principles calculations to
determine the electronic properties of GdNiSi3.

6.1 Experimental results

As a starting point, we performed a structural characterization on the obtained
single crystals and we found that they grew in the desired phase. Next, we
performed the magnetic characterization. Temperature dependent susceptibility
curves at 1 kOe along the a crystallographic axis for Gd1−xYxNiSi3 compounds
are shown in Fig. 6.1. At low temperature [Fig. 6.1(a)] these curves exhibit
a peak associated with antiferromagnetic transition for all samples. Their
respective Néel temperatures are calculated as the peak in d(χT )/dT ×T curve
[Fig. 6.1(b)] and they are indicated in Table 6.1. Notice that as Y-doping
increases, the Néel temperature moves to lower temperatures while the peak
associated to the transition and the magnetic susceptibility χ(2K) increases
to higher values. This behavior can be associated with some paramagnetic
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Figure 6.1: Magnetic susceptibility measurements at H = 1 kOe with H ‖ a
orientation for Gd1−xYxNiSi3 crystals (x = 0.25, 0.50, 0.65 and 0.80). (a) Low
temperature magnetic susceptibility. (b) Temperature derivative of the product
between magnetic susceptibility and temperature. (c) Inverse susceptibility as a
function of temperature, subtracting the Pauli paramagnetic contribution χ0. (d)
Temperature dependence of the Curie-Weiss law (χa − χ0) ∗ (T − θacw).

contribution originated by unpaired Gd3+ ions, spin reorientation with some
ferromagnetic component [93,94] and/or by clustering effect that could introduce
some parasitic ferromagnetism [95]. At high temperatures, χ decreases as T
increases following Curie-Weiss behavior [Eq. 2.17]. To test this, we plot the
inverse susceptibility by subtracting the Pauli paramagnetic contribution χ0 and
fitting the Curie-Weiss law for each Y concentration. The fitting parameters
are given in Table 6.1. The slope of (χa − χ0)−1 rises gradually with Y-
doping level, implying that the effective magnetic moment [Eq. 2.19] is reduced.
However, except for pristine GdNiSi3, the effective moment is higher than the
expected values (1− x)µGd3+ . In addition, all compounds considered exhibit
negative Curie-Weiss temperature, indicating that the interaction between
Gd3+ ions is antiferromagnetic. Finally, we check the ranges where the found
parameters correctly quantify the Curie-Weiss constant at high temperatures
[Fig. 6.1(d)].

We are interested in understanding the changes in the magnetic response of
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Table 6.1: Temperature dependent susceptibility parameters of Gd1−xYxNiSi3 crys-
tals for the H ‖ a orientation: Pauli paramagnetic susceptibility χ0 (10−3 emu/mol),
Néel temperature TN (K), Curie-Weiss temperature θacw (K) , frustration parameter f
and effective magnetic moments µeff (µB) . Additionally, we indicate magnetic field
dependence magnetization parameters as highest field magnetic moment observed at
2 K µHF (µB). For comparison we include the expected magnetic moment for Gd3+

as a concentration function (1− x)µGd (µB) .

x χa0 T aN θacw f µeff (1− x)µGd µHF
0 -2.25(2) 21.7(1) -24.2(2) 1.11 8.02(4) 7.94 -

0.25 2.10(4) 16.6(7) -20.3(2) 1.22 7.28(4) 5.96 2.08(2)
0.50 -1.28(4) 9.7(5) -15.0(2) 1.55 6.38(2) 3.97 2.31(2)
0.65 -1.16 (5) 5.3(5) -12.4(1) 2.34 5.57(1) 2.78 2.13(3)
0.80 0.09 (6) 2.7(3) -5.3(2) 1.96 4.37(2) 1.59 1.84(1)
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Figure 6.2: Temperature dependent susceptibility along (a) c-axis for Gd1−xYxNiSi3
(x = 0, 0.25, 0.50, 0.65 and 0.80) and (b) b-axis for x = 0 and 0.5. (c) Magnetic
susceptibility and (d) magnetization measurements for Gd0.5Y0.5NiSi3 along a, b and
c crystallographic axis.
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Gd1−xYxNiSi3 when including non-magnetic Y ions only along the antifer-
romagnetic a-axis. However, for the sake of completeness, in Fig. 6.2 we
include the susceptibility for these compounds along the b and c-axis, and
for Gd0.5Y0.5NiSi3 we present the susceptibility and magnetization response
along the three crystallographic axis. Notice that Y-doping causes the a and c
components of magnetic moments to increase and therefore the susceptibility
rises at low temperature, while that of the b-component decreases. In any case,
the a-axis still holds as the antiferromagnetic easy axis.
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Figure 6.3: Magnetic field dependent magnetization for Gd1−xYxNiSi3 (x =
0.25, 0.50, 0.65 and 0.80) at T = 2 K with H ‖ a orientation.

On the other hand, magnetization measurements as a function of magnetic field
along the a-axis at T = 2 K in the range −7 T≤ H ≤ 7 T has been plotted
in Fig. 6.3 for diluted magnetic Gd1−xYxNiSi3. It is remarkable that even at
7 T none of the investigated compounds reaches the saturation value. GdNiSi3
exhibits a spin flip-type metamagnetic transition at a critical field of 27 kOe, as
was mentioned in subsec. 4.2.2. As Y-doping increases, this transition moves to
lower magnetic fields, changing its form to spin-flop-type for Gd0.75Y0.25NiSi3
and S-type for Gd0.20Y0.80NiSi3. We calculated these transitions by inflection
points in M ×H curves and found values of 2.3(1), 1.5(2) and 1.4(3) T for
x = 0.25, 0.50 and 0.65, respectively.

Figure 6.3 shows a zoom of the interval −0.25 T≤ H ≤ 0.25 T [Fig. 6.4 (a)]
evidencing that all samples exhibit a small hysteresis. However, Gd0.5Y0.5NiSi3
and Gd0.35Y0.65NiSi3 present a shift of the magnetic hysteresis loop from its
centered position at H = 0. In order to determine whether this behavior
is associated with intrinsic exchange bias (EB) effect in the single crystals,
we verified the conditions mentioned in subsec. 2.5.5 using zero field cooling
(ZFC) and field cooling (FC) protocols at H = 0.5 T and 5 T [Figs. 6.4
(b) and (c)]. The results are summarized in Table 6.2. Even in ZFC, both
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Figure 6.4: Magnetic field dependence of magnetization at T = 2 K with H ‖ a
orientation within the range −0.25 T≤ H ≤ 0.25 T for (a) Gd1−xYxNiSi3 (x=0.25,
0.50, 0.65 and 0.8), (b) Gd0.5Y0.5NiSi3 and (c) Gd0.35Y0.65NiSi3 compounds. The
latter were considered in zero field cooling (ZFC), 0.5 T and 5 T field cooling (FC)
protocols. (c) Magnetization as a function of magnetic field and temperature at
T = 2 K, 5 K and 10 K for Gd0.5Y0.5NiSi3 in 5 T field cooling (FC) protocol.

compounds show a shifted hysteresis to the right of field axis and downward in
the magnetization axis by HEB = +363 Oe,MEB = −2.2×10−3µB for x = 0.5,
and HEB = +333 Oe, MEB = −3.5 × 10−3µB for x = 0.65, respectively.
Under field cooling (FC) of 0.5 T, the hysteresis loop shifts to left of the
field axis and upward in the magnetization axis by HEB = −464,−445 Oe
and MEB = +2.9,+4.3 × 10−3µB for 50% and 65% Y-doped compounds,
respectively. Finally, under FC of 5 T, the shifts for Gd0.5Y0.5NiSi3 reach
-362 Oe and +2.3 × 10−3µB, whereas for Gd0.35Y0.65NiSi3 the hysteresis is
unaffected. In addition, both systems show an increase in the coercive field
with higher field cooling. Finally, we verified that these effects vanish with
increasing temperatures [Fig. 6.4].

Specific heat measurements of Gd1−xYxNiSi3 crystals from T = 2− 40 K at
H = 0 are presented in Fig. 6.5(a). Due to the presence of Gd 4f electrons,
the specific heat of Y-doped samples is much higher than that of YNiSi3. In
addition, they exhibit anomalies at 22.2(5), 17.2(3), 10.8(5), 6.6(7) and 3.5(9)
for x = 0, 0.25, 0.5, 0.65 and 0.80, respectively, signaling the onset of long-range
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Table 6.2: Magnetic field dependence magnetization parameters for Gd0.5Y0.5NiSi3
at T = 2 K in zero field cooling (ZFC) and field cooling (FC) protocols: coercive
fields, exchange bias magnetic fields and magnetization shifts.

x protocol Hcoe(Oe) HEB(Oe) MEB(10−3µB)
0.5

ZFC 1053 +363 -2.2
FC 0.5 T 1072 -464 +2.9
FC 5T 1376 -362 +2.3

0.65
ZFC 838 +333 -3.5

FC 0.5T 852 -445 +4.3
FC 5T 853 -445 +4.3

magnetic order in agreement with those determined by magnetic susceptibility.
Thus, TN moves toward lower temperatures as the Y-concentration increases.
The forms of these anomalies are of well-defined λ-type for x = 0 and 0.25, as
expected within the mean-field model, and no sharp peak for the other cases. At
TN , the samples with x = 0.25, 0.50, 0.65 and 0.80 reach Cp = 15.28, 7.92, 3.79
and 2.13 J mol−1K−1, respectively, corresponding to 77%, 49%, 30% and
18% less than 27.38 J mol−1K−1 for GdNiSi3. These values are summarized
in Table 6.3. Below TN , all doped samples feature a similar broad hump. It
cannot be associated to spin reorientation, since susceptibility measurements do
not evidence additional magnetic transitions below the ordering temperature.
This type of hump has been observed in other Gd-based compounds such
as GdCu2Si2, GdNi2Si2, GdGa2, GdCu5 [37, 96] and has been assigned to a
Schottky-like anomaly, involving the lifting of the (2J + 1)-fold degenerate
multiplet of Gd magnetic ions due to internal magnetic field, as mentioned
in subsec. 2.6.4, which is possibly generated by long-range AFM correlation
between Gd atoms. On the other hand, above TN the specific heat curve is
strongly affected by increasing the doping level of the non-magnetic ion. For
x = 0.25 an anomaly in the local minimum region appears at around 20 K. The
anomaly moves to low temperatures for x = 0.5 and x = 0.65 in a hump form,
and finally broadens over the antiferromagnetic transition peak at x =0.8.

With the presence of such Schottky anomalies and magnetic peaks in the
specific heat at low temperatures for Y-doped compounds, it is unreliable to
use Cp/T × T 2 curves to determine the electronic and phononic contribution
to specific heat, because in general the Debye model applies most successfully
for temperatures below ΘD/50 [sec. 2.6.1]. However, to get an idea of these
contributions we plot the curves [Fig. 6.5 (b)] and consider the linear region
between 26-30 K above the magnetic region. From Eq. 2.31, the extrapolation



6.1. Experimental results 117

0 10 20 30 40
T(K)

0

5

10

15

20

25

30

C
p
 (

JK
-1

 m
o

l-1
)

0 500 1000

T
2
 (K

2
)

0

1

2

C
p
/T

 (
JK

-2
m

o
l-1

)

GdNiSi
3

Gd
0.75

 Y
0.25

 NiSi
3

Gd
0.50

 Y
0.50

 NiSi
3

Gd
0.35

 Y
0.65

 NiSi
3

Gd
0.20

 Y
0.80

 NiSi
3

(a) (b)

Y NiSi
3

1.5

0.5
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Gd1−xYxNiSi3 (x = 0.25, 0.50, 0.65 and 0.80) compounds.

to T = 0 K determines the Sommerfeld coefficient γ and its slope the phononic
coefficient β. Also, the latter allows us to calculate the Debye temperature
from Eq. 2.25. These results are listed in Table 6.3. Notice that by this
procedure GdNiSi3 exhibits γ ≈ 184.25(2) mJ mol−1K−2, comparable to
YbNiSi3 [sec. 4.3] which is classified as a moderately heavy-electron system.
This is already an indication that the procedure is not applicable here, since
there are no known cases of Gd-based compounds showing 4f hybridization
with conduction electrons and heavy-electron behavior. Moreover, due to
difference between atomic mass of Gd (157.25 g/mol) and Y (88.91 g/mol) we
expect that GdNiSi3 and YNiSi3 present the maximum and minimum Debye
temperature, respectively. Furthermore, we hope that with increasing Y-doping
this temperature will gradually decrease. However, it is underestimated for
Gd0.20Y0.80NiSi3 with respect to the non-magnetic compound, while GdNiSi3,
Gd0.75Y0.25NiSi3 and Gd0.5Y0.5NiSi3 overestimate it with respect to LuNiSi3
[ΘD = 474(8) K, sec. 5]. Lu has an atomic mass of 174.967 g/mol, greater than
Gd and Y.

Another method commonly used to calculate the electronic and phononic
contribution to specific heat for the Gd1−xYxNiSi3 series is to consider the
isomorphic non-magnetic compound YNiSi3 with a renormalization factor in
temperature in C × T curves due to the difference in molar masses between
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Table 6.3: Temperature dependent specific heat parameters for Gd1−xYxNiSi3
crystals at H = 0 T: Néel temperature T spN (K), specific heat at Néel temperature
Cp(TN ) (J mol−1K−1), Sommerfeld coefficient γ (mJ mol−1K−2), phononic coefficient
β (mJ mol−1K−4) and Debye temperature ΘD (K). The values indicated for YNiSi3
were taken from Ref. [77]

x T spN Cp(TN ) γ β ΘD

0 22.2(5) 27.38 184.25(2) 0.056(1) 555(3)
0.25 17.2(3) 15.28 147.09(3) 0.087(5) 481(8)
0.50 10.8(5) 7.92 55.74(2) 0.090(4) 476(6)
0.65 6.6(7) 3.79 40.07(4) 0.093(7) 470(4)
0.80 3.5(9) 2.13 2.51(1) 0.107(2) 449(2)
1 - - 4.04(9) 0.096(5) 466(9)

Table 6.4: Temperature dependent specific heat parameters for Gd1−xYxNiSi3
crystals atH = 0 T, after renormalization in temperature in C×T for the nonmagnetic
compound: renormalization parameter [Eq. 2.34], Debye temperature, magnetic
entropy and ratio of magnetic entropy with doping level (where R is the gas constant).

x ρnorm ΘD Smag Sm/(1-x)R
(K) (J mol−1K−1)

0 0.846 550.82 16.2 1.94
0.25 0.875 532.57 12.9 2.07
0.50 0.910 512.08 8.9 2.14
0.65 0.934 498.93 4.4 1.51
0.80 0.960 485.42 2.5 1.50

Gd and Y, according to Eq. 2.34. In Table 6.4 we indicate the renormalization
parameter for each compound and the Debye temperature obtained by this
method [Eq. 2.35].

Having determined the electronic and phononic contributions, we calculate the
magnetic contribution to specific heat for these compounds using Eq. 2.32. In
Fig. 6.6(a) we plot Cm/T × T for all samples. Here, the magnetic anomalies at
TN and the broad humps at low and high TN are again evident, as discussed
in total specific heat. Below TN , we observe that the Schottky anomaly
is very broad for GdNiSi3, whereas it is reduced and shifted towards lower
temperatures for Gd1−xYxNiSi3. In addition, the presence of a hump for
x = 0.50 and x = 0.65 above TN indicates that these are a magnetic origin
and they may be associated with short-range magnetic correlation. On the
other hand, all compounds show that the magnetic contribution persists over a
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Figure 6.6: Temperature dependence of (a) magnetic specific heat divided by
temperature (Cm/T ) and (b) magnetic entropy Smag for Gd1−xYxNiSi3 crystals.
The dotted lines indicate (1− x)Rln(8) limits.

wide temperature range above the ordering temperature. Even for 50, 65 and
80% Y-doping, Cm/T vanishes at 21.22, 19.20, 15.16 K, respectively, which is
beyond 2TN and mimics the behavior of many magnetically ordering heavy
fermions [97,98].

The temperature dependent magnetic entropy Smag(T ) calculated by numerical
integration of Cmag/T is displayed in Fig. 6.6 (b). Note that magnetic entropy
first increases with rise in temperature and then saturates. At T = 30 K,
Sm reaches the values of 16.2, 12.9, 8.9, 4.4 and 2.5 J mol−1K−1 for x =
0, 0.25, 0.50, 0.65 and 0.80 concentrations, respectively. In order to determine
some tendency of magnetic entropy we calculate the ratio Sm/(1− x)R where
R is the molar gas constant (8.315 J mol−1K−1). These values are summarized
in Table 6.4. For all compounds these ratios are around 2, an indicative that
Sm is proportional to the number of Gd3+ atoms, Smag = (1−x)RLn(8). Here
Gd0.35Y0.65NiSi3 and Gd0.20Y0.80NiSi3 show a low entropy saturation value
compared to the expected value, due to overestimation of electron and phonon
contribution to specific heat.
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6.2 Theoretical results

As a first step to understand the experimentally observed behaviors in
Gd1−xYxNiSi3, we study in detail the structural and electronic properties
of GdNiSi3. Here we consider an exchange correlation functional in the gen-
eralized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE)
parametrization [17]. In Elk code (FP-APW method) the muffin-tin radius
are RGdMT=2.8, RNiMT=RSiMT=2.1327 for Gd, Ni, Si, respectively, while the plane
wave cutoff RMF |G + k|max converged to 9.0. The Brillouin zone is sampled
with 6×2×6 uniform grid for structural relaxation and a 10×2×10 k-point grid
to calculate the electronic properties.

6.2.1 Magnetic structure

We check the magnetic structure of GdNiSi3 from three different collinear
configurations (a), (b) and (c) [Fig. 6.7] considering an uniformly spaced
k-grid 20×6×20. The results are given in Table 6.5. Taking into account
energy differences of meV-order, we find that the configuration (b) exhibits the
lowest energy which is in agreement with resonant X-ray magnetic diffraction
experiments [79].

Table 6.5: Ground state volume (Å3) and energy (eV) for GdNiSi3 in the configura-
tions presented in Fig. 6.7 for uniformly spaced k-grid 20×6×20.

Configuration (a) Configuration (b) Configuration (c)
Volume 332.16 332.10 332.10
Energy -158.255 -158.274 -158.271

6.2.2 Electronic properties

For the ground state configuration we have calculated the electronic structure
with GGA [Fig. 6.8(a)]. We note that Gd f -states define large peaks located
at -5.5 eV and 1.4 eV. The former is a deep state in the valence band while the
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Figure 6.7: Collinear magnetic structure for GdNiSi3 along a-axis in the configura-
tions (a) ferromagnetic, (b) antiferromagnetic and (c) mixture of antiferromagnetism
and ferromagnetism along b-axis. The latter configuration is formed by blocks whose
magnetic interaction between neighboring magnetic moments is antiferromagnetic
while between blocks is ferromagnetic.

latter belongs to conduction bands. Since, in general, Gd-based compounds
are strongly correlated systems it is necessary to determine whether or not
these states contribute to Fermi level and therefore play a fundamental role in
the conductivity of GdNiSi3. For this purpose, we introduce an intra-atomic
electron interaction by means of the DFT+U approach [subsec. 2.1.3] for
different forms of the double-counting term [Eq. 2.6]. Initially, we include an
interpolation between fully localized limit (FLL) and around mean field (AFM)
with Yukawa screening length parameter λ=1.5 [Eq. 2.8]. We even varied this
parameter for λ = 1.6, 1.7, 1.8 and 1.9, to see if there is any modification
to DOS. However, in all cases we observed that DOS profile remains intact
[Fig. 6.8(b)], the magnetic moment of Gd (7.26 µB) and the density of states at
the Fermi level (1.91 states/f.u., spin and eV). Next, we consider only FLL [20]
with the Hubbard parameter U = 6.7 eV and exchange-correlation interaction
energy J=0.7 eV [99]. Here we note that the peaks shift about 3 eV away from
the Fermi level [Fig. 6.8(c)] decreasing D(EF ) at 1.15 states/f.u., spin and
eV. In addition, the peak in the valence band becomes sharper and increases
slightly, while the peak in the conduction band is weakly reduced. Finally, we
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Figure 6.8: Calculated total DOS for GdNiSi3 with (a) GGA. Additionally we
incorporate an intra-atomic electron interaction [Eq. 2.6] which double-counting term
are (b) an interpolation between fully localized limit (FLL) and around mean field
(AFM) with Yukawa screening length parameter λ =1.5 and (c) only FLL with U =
6.7 eV and J=0.7 eV. (d) The last one includes spin-orbit coupling (SOC) interaction.

include the SOC interaction and we find that it only affects the Gd f-states
partially breaking the degeneracy of this orbitals levels.

Knowing the type of intra-atomic interaction occurring in Gd atoms, we
obtain the dispersion relations along the high symmetry directions in the first
Brillouin zone (FBZ) [Fig. 5.7] and the projected DOS for GdNiSi3 compound.
These results are shown in Fig. 6.9. The projected DOS exhibits Gd f -
states as two large peaks quite far from Fermi level but distributed in both
valence and conduction bands indicating the localized character of 4f orbitals.
Valence bands are mainly formed by Ni d-states, Si p and s-states with a
weak hybridization between Gd d-states and Ni p-states. Moreover, conduction
bands are determined primarily by Gd d-states, Si p, Ni d and to lesser extent
by Ni p and Si s-states. Also, we have the presence of dispersionless bands
associated with Gd f -states at -8.5 and 4.5 eV. At the Fermi level we have
contributions from Ni d, Si p and Gd d-state. The hybridization of these states
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DOS for GdNiSi3 in GGA+FLL approximation. Highlighted in color denote the six
conduction bands crossing the Fermi level (dashed line).

determines six partially occupied bands crossing the Fermi level with spin up
polarization, and they are equivalent when considering spin down. These have
the characteristic parabola-shaped bands at T high symmetry point indicating
a similarity to the free electron bands and therefore suggesting an electron
like-character as was mentioned in subsec. 2.3.1.

A visual representation of calculated Fermi surface (FS) can be observed in
Fig. 6.10. It exhibits six branches. Four of them are similar to the ones
shown by YNiSi3 [Fig. 5.9], two branches are built by four large electron-like
disconnected cylinders (cyan/red and green/violet colors), while the other two
branches are thin cylinders (yellow/blue and cyan/red colors) centered around
Γ and included within a set of large hole-like cylinders running along the FBZ
boundary. The fifth branch includes four pipes (green/violet surfaces) centered
around Γ with two cigars and small pieces on H and B high symmetry directions
distributed in the surrounding BZ one in front of the other. Finally, the sixth
branch is formed by pairs of small pieces situated on the sides of FBZ along ∆
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(a) (b)

Figure 6.10: Extended Fermi surface of GdNiSi3. The FBZ is shown by black lines.

direction.

6.3 Analysis and discussion

Due to similarity in the ionic radius of Y3+ and Gd3+ the bond distances
and lattice parameters of Gd1−xYxNiSi3 compounds are essentially the same.
However, their magnetic properties change as the doping level increases as
a result of the different local environments between Gd atoms. Fig. 6.11
shows the concentration dependent effective magnetic moment determined from
susceptibility measurements, as well as the highest magnetic moment observed
at 2 K in magnetization curves. Additionally, we include the theoretical
magnetic moment by Gd concentrations. The value obtained for GdNiSi3
is in agreement with that published in Ref. [2], where Ni seems to be non-
magnetic. However, for doped compounds µeff are above of concentration
dependence theoretical values for gadolinium µ=7.94 (1− x) µB/Gd3+, and
follow a decreasing behavior with rising x [Table 6.1]. As this excess of magnetic
moment reaches 2.8 µB at x=0.80, we assume that the origin of this may be
associated with a partially filled Ni-3d, whose magnetic moment gradually rises
with increasing doping level, as was observed in heavy rare-earth containing
RNi [100], Gd1−xYxNi [98] compounds and other Gd-Y alloys [101]. Thus,
Gd1−xYxNiSi3 should exhibit a coexistence of localized magnetic moment of
Gd and induced itinerant ferromagnetism of Ni. Further experiments will be
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required to test this hypothesis.
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Figure 6.11: Concentration dependence experimental effective magnetic moment
(black dashed) and highest observed moment at 2 K (blue dashed) for Gd1−xYxNiSi3
alloys. For comparison we include the theoretical value of the free rare earth ions
(red dashed).

In the GdNiSi3 unit cell, the magnetic moments associated with Gd atoms
are aligned antiferromagnetically along the a axis without canting [Fig. 4.11].
At TN , Cm reaches 27.38 J mol−1K−1 value commonly obtained for mag-
netically ordered systems with equal magnetic (EM) moment [96, 102]. For
Gd1−xYxNiSi3, due to addition of nonmagnetic Y atoms and the rise of Ni
magnetic moment, Gd moments are canted resulting in a weak ferromagnetic
moment along the c axis but keeping the a crystallographic direction as anti-
ferromagnetic easy axis, as shown in Fig. 6.2. In these cases, it is possible that
the magnetic structure becomes amplitude modulated (AM) [subsec. 2.5.3]
because at TN the values of Cm are reduced while the hump is broadened to
compensate the loss of entropy, as was exhibited at x=0.50, 0.65 and 0.80
doping levels, and the magnetic fluctuations persist even beyond 2TN . For
comparison, these behaviors were observed in GdCu2Si2 as a commensurate
simple antiferromagnetic structure with EM moment, GdNi2Si2 is an incom-
mensurate AM antiferromagnetic structure [103] and DyNi2Ge2 which shows
two distinct magnetic transitions with decreasing temperature: one is from the
paramagnetic phase to an AM antiferromagnetic and the other from this phase
to an EM antiferromagnetic structure [104].
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In a pictorial scheme the substitution of Y by Gd causes that within the unit
cell appears spatially inhomogeneous magnetic state and therefore microscopic
interfaces. These define antiferromagnetically coupled subdomains whose in-
teraction is long-range, and ferromagnetically correlated subdomains whose
interaction is short-range. Competition between these interactions could explain
the anomalous magnetic properties of Gd0.50Y0.50NiSi3 and Gd0.35Y0.65NiSi3,
such as the presence of broadening in Cm above TN and exchange bias effect.
Note that hysteresis loops are an intrinsic property of these alloys, however
at x=0.5 and 0.65 concentrations the exchange coupling between the coex-
isting magnetic phase are very strong to generate unidirectional anisotropy
and therefore a shift in the magnetization hysteresis loop. This behavior was
also observed in Al-Fe [105] R1−xGdxAl2 [106], SmFeO3 [107] alloys, while the
broadening associated with short-range magnetic correlation was also exhibited
in Gd1−xYxNi2Si2 compounds [97].
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Figure 6.12: Concentration dependence negative Curie-Weiss (black dashed) and
Néel temperature obtained from magnetic susceptibility (red dashed) and specific
heat (blue dashed) measurements for Gd1−xYxNiSi3 compounds.

Figure 6.12 shows the dependence of negative Curie-Weiss temperature (−θacw)
and Néel temperature (TN ) on yttrium concentration. The latter was obtained
from susceptibility and specific heat measurements with excellent agreement
between both techniques. Substitution of Y by Gd in Gd1−xYxNiSi3 solid
solutions leads to scaling of magnetic ordering temperature with concentration
which is consistent with indirect exchange interaction. Additionally, Curie
Weiss temperatures exhibit a monotonic decrease with negative values as sign
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of strong antiferromagnetic ordering. The frustration parameters f = θacw/TN
for these compound are approximately constant [Table 6.1] as an indicative
that the antiferromagnetic coupling between Gd ions was relieved by Ni atoms
due to Y doping.

On the other hand, the metallic and antiferromagnetic behavior shown by
GdNiSi3 allows us to assume a RKKY type exchange interaction between Gd
magnetic moments. As observed from magnetic measurements, the doping
effect causes the antiferromagnetic interplane coupling to be higher than intra-
plane (see bc plane in Fig. 4.3 and compare Figs. 6.1 and 6.2) leading to a
change of exchange interaction and to a weakening of it, which is also evidenced
by the reduction of critical magnetic field in magnetization measurements.

The electronic structure of GdNiSi3 and YNiSi3 compounds are similar due
to isomorphisms in crystal structure and localization of Gd 4f states. At the
Fermi level the total DOS of GdNiSi3 is D(EF ) = 1.15 states/f.u., spin and
eV, and its more important contributions are 0.44, 0.32 and 0.27 states/f.u.,
spin and eV of Ni d, Si p and Gd d-states, respectively, while for YNiSi3
D(EF ) = 0.6875 states/f.u., spin and eV due to 0.2131, 0.2544 and 0.1719 for
Y d, Ni d and Si p-states [77], respectively. We expected that in Gd1−xYxNiSi3
alloys Y atoms compensate Gd d-states and Ni-d states are gradually reduced
while the ferromagnetic exchange interaction between Ni atoms is large at
x=0.5 and 0.65. However this situation will be analyzed in more detail.

6.4 Conclusions

We observe that Gd1−xYxNiSi3 (x=0, 0.25, 0.50, 0.75, 0.80) compounds have an
AFM ground state. Substitution of Y by Gd causes an increase in the magnetic
moment above the Gd expected value, a reduction of critical magnetic field and
anomalies in the specific heat in both below and above the Néel temperature.
We propose that these effects can be explained by the gradual rise of Ni magnetic
moment with Y-doping level. As a consequence in the alloys would coexist
a localized magnetism (due to Gd) and an induced itinerant ferromagnetism
(presumably from Ni 3d band) whose Gd-Gd and Gd-Ni interactions are
antiferromagnetic while Ni-Ni is ferromagnetic, the latter two being short range.
This would allow us to explain the exchange bias effect as an intrinsic property
of Gd0.50Y0.50NiSi3 and Gd0.35Y0.65NiSi3, with potential applicability in the
field of spintronics for magnetic recording and in the design of spin valves.





7
Tb1−xYxNiSi3 systems

Following the same research strategy used for Gd1−xYxNiSi3, in this Chapter
we will make a detailed study from an experimental approach of nonmagnetic Y-
dilution effects on localized Tb-4f moment in Tb1−xYxNiSi3, in order to clarify
the intrinsic character of the metamagnetic transitions, magnetic hysteresis
and complex magnetic phase exhibited by TbNiSi3 [subsec. 4.2.2].

7.1 Experimental results

7.1.1 Structural characterization

Similar to TbNiSi3, the flux method allows us to grow single crystals of
Tb1−xYxNiSi3 in thin platelike morphology with well defined edges and shiny
surfaces. Structural characterization through X-ray diffraction confirms that
the crystal structure corresponds to an SmNiGe3-type orthorhombic lattice
with Cmmm space group, as expected for such compound. However, the
patterns obtained for x = 0.25, 0.50 and 0.65 show the presence of peaks that
have not been indexed, suggesting the presence of other phases that could
not be identified. The XRD patterns of Tb1−xYxNiSi3 together with their
calculated Rietveld refinement are summarized in Fig. 7.2, while the lattice
parameters and volume are included in Table 7.1. Notice that the difference in
volume between different samples is less than 1 Å3 and the lattice parameters
remain almost constant [Fig. 7.2]. This is expected due to Y atoms having
similar ionic radius to those of Gd and Tb.
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Figure 7.1: Rietveld plot for Tb1−xYxNiSi3 (x=0.25, 0.50, 0.65 and 0.80). The black
crosses represent the observed data, the red line indicates the calculated pattern, and
the blue line depicts the difference between the observed and calculated patterns.

Figure 7.2: Concentration dependent lattice parameters of Tb1−xYxNiSi3.
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Table 7.1: Lattice parameters of Tb1−xYxNiSi3. The values shown for x = 0 and
x = 1 are taken from Ref. [2].

x a (Å) b (Å) c (Å) V (Å3)
0 3.9259(1) 20.9696(5) 3.9547(1) 325.57(1)

0.25 3.9260(5) 20.9692(5) 3.9541(2) 325.52(1)
0.5 3.9252(4) 20.9590(3) 3.9540(1) 325.29(2)
0.65 3.9239(1) 20.9514(5) 3.9527(7) 325.00(2)
0.8 3.9237(8) 20.9514(2) 3.9513(1) 324.82(2)
1 3.9216(1) 20.9448(6) 3.9506(1) 324.49(2)

7.1.2 Magnetic susceptibility

The temperature dependence of magnetic susceptibility and inverse susceptibil-
ity of Tb1−xYxNiSi3 compounds at 1 kOe along the a, b and c-axis and the
polycrystalline average are shown in Fig. 7.3 (a) and (b), respectively. All sam-
ples exhibit a large peak along the a-axis associated with the antiferromagnetic
transition, indicating that the AFM ordered moments remain aligned along
the a axis in these crystals. In contrast, χb and χc show weak temperature
dependence, as was observed in TbNiSi3 [Fig. 4.8]. All curves have a broad peak
around 50 K along the c-axis [Fig. 7.4], that is preserved upon reducing the Tb
concentration. This was also found in TbCu2Ge2 and it was associated with the
existence of some magnetic correlation [3]. In addition, the magnetic response
is strongly anisotropic at both high and low temperature, consistent with other
Tb-based compounds such as TbNiGe3 [83]. These features were confirmed in
magnetization measurements as a function of magnetic field [Fig. 7.3(c)]. Here,
depending on the orientation of the single crystal, external magnetic fields can
cause a drastic effect on its magnetic properties. The magnetization along the
hard direction (b, c-axis) increases almost linearly with the magnetic field. Con-
versely, the response along the a-axis for all samples except Tb0.2Y0.8NiSi3 is
more complex due to the occurrence of metamagnetic transitions accompanied
by hysteresis.

In order to make comparisons and understand the effect of non-magnetic Y
inclusions on the magnetic properties of TbNiSi3, we plot in Fig. 7.5(a) and (c)
the temperature dependence of the average magnetic susceptibility and inverse
average susceptibility by subtracting the temperature-independent contribu-
tion χ0, respectively. At low temperature, these samples show an anomaly
marking their Néel temperatures, which were estimated by the maximum in
the d(χT )/dT × T curves [Fig. 7.5(b)] and are given in Table 7.2.
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Figure 7.5: Temperature dependence of the average magnetic susceptibility at
H = 1 kOe for Tb1−xYxNiSi3 (x = 0.25, 0.50, 0.65 and 0.80). (a) Low temperature
magnetic susceptibility. (b) Temperature derivative of the product between magnetic
susceptibility and temperature. (c) Inverse susceptibility as a function of temperature,
subtracting the Pauli paramagnetic contribution χ0. (d) Temperature dependence of
the Curie-Weiss law (χavg − χ0) ∗ (T − θcw).

As expected, TN is reduced with increasing Y-doping level. For Tb0.5Y0.5NiSi3
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Table 7.2: Temperature dependent susceptibility parameters for Tb1−xYxNiSi3:
Pauli paramagnetic susceptibility χ0, Néel temperature TN , Curie-Weiss temperature
along a, b and c-axis θacw θbcw and θccw, respectively, polycrystalline average θpcw,
frustration parameter f and effective magnetic moments µeff . For comparison
we include the expected magnetic moment for Tb3+ as a concentration function
((1− x)µTb) and the excess magnetic moment (µ1

exc = µeff − (1− x)µTb).
Parameters Y-doping level

0 0.25 0.50 0.65 0.80
χ0 (10−3 emu/mol) -0.14(2) 6.59(7) 3.88(6) 0.46(4) -1.10(2)
TχN (K) 31.8(4) 27.5(2) 18.0(5) 12.0(5) -
θacw(K) 24.69 30.07 31.86 20.53 24.65
θbcw(K) -103.76 -216.7 -96.99 -64.02 50.94
θccw(K) -86.4 -64.1 -58.7 -127.8 -43.83
θpcw(K) -25.8(5) -9 01(2) -1.3(7) 4.6(2) 7.7(2)
f = θpcw/TN 0.81 0.33 0.07 -0.38
µeff (µB) 10.3(8) 9.6(3) 8.2(2) 7.02(2) 4.39(3)
(1− x)µTb(µB) 9.72 7.29 4.86 3.40 1.94
µ1
exc(µB) - 2.31 3.34 3.62 2.45

there is an additional anomaly in the jump shape, above but very close to TN ,
which may be related to competition between different magnetic interactions.
We will return to this point in the analysis and discussion section. At high
temperature (above 150 K), the reciprocal susceptibilities obey the linear Curie-
Weiss law (χ(T ) − χ0)−1 = (T − θcw)/C [Eq. 2.17]. The fitting parameters
are also included in Table 7.2. Note that TbNiSi3 has an effective moment
µeff = 10.3(8) µB , which is not far from 9.72 µB expected by Hund’s rule for
the ground state of the free Tb3+ ion [Table 2.1], while diluted systems effective
moments are higher than the expected (1 − x)µTb3+ values. On the other
hand, the paramagnetic Curie temperatures θacw, θbcw and θccw display a large
difference as a consequence of the strong magnetic anisotropy in this system.
As in the case of TbNi2Si2 [108,109], it may be mainly due to crystalline field
effects. Here an analysis of the paramagnetic susceptibilities using the CEF
Hamiltonian would be very difficult due to the orthorhombic symmetry of the
crystal. Moreover, the average paramagnetic Curie temperature θpcw increases
with raising doping level, evidencing a sign change at x = 0.65 maybe due to
the presence of ferromagnetic correlations in the material. Finally, we check
that these parameters correctly quantify the Curie-Weiss constant at high
temperatures [Fig. 7.5(d)].
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7.1.3 Magnetization
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Figure 7.6: Magnetic field dependence of magnetization for Tb1−xYxNiSi3 (x =
0.25, 0.50, 0.65 and 0.80) at T = 2 K with H ‖ a orientation. The inset is a zoom in
the range −2 ≤ H ≤ 2 T.

The magnetic isotherms of Tb1−xYxNiSi3 at 2 K along the AFM easy axis a
are displayed in Fig. 7.6. Its inset shows the behavior at low magnetic field.
As reported in Ref. [2], TbNiSi3 exhibits four well-defined steps, in which
the metamagnetic transitions occur by flipping of different sublattices that
are stable for a specific range of the applied magnetic field. It displays a
relatively small magnetization response for applied fields up to 3 T, followed
by multiple-step like features. The magnetization suddenly jumps through four
well-defined plateaus before saturating at 9.05(3) µB where the moments come
into a field-induced ferromagnetic state. The hysteresis is asymmetric, with a
maximum width of 0.4 T. The magnetization of Tb0.75Y0.25NiSi3 demonstrates
a change in slope at around 3 T followed by a gradual increase up to 4.8 T,
and again change in slope until saturation is reached at 9.17(5) µB. Here
the multiple steps observed in TbNiSi3 have vanished and the metamagnetic
transition is not as sharp, possibly due to thermal effects and a reduction
in magnetic interaction caused by Y atoms. The hysteresis is symmetrically
centered around H = 0 with a coercive field of 0.68 T [inset Fig. 7.6]. Increasing
the Y-doping to x = 0.50 causes the coercive field to reach 0.80 T, while the
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critical magnetic field and saturation moments decrease. Tb0.2Y0.8NiSi3 shows
S-type metamagnetic behavior with no hysteresis nor remanence. However,
all samples attain the saturation state, contrary to the Gd system in the
previous chapter. These results are summarized in Table 7.3. Here, we include
the critical magnetic field estimated by using local maxima in dM/dH, and
the magnetic saturation (µHFa) obtained by extrapolating of the measured
magnetization to infinite field.

Table 7.3: Magnetic field dependence of magnetization parameters along the a-
direction for Tb1−xYxNiSi3: highest field magnetic moment, saturation magnetic
moment (µsat = (1−x)gJJµB), excess magnetic moment (µ2

exc = µaHF−µsat), critical
field and coercive field.

Parameters Y-doping level
0 0.25 0.50 0.65 0.80

µaHF (µB) 9.05(3) 9.17(5) 7.06 (2) 5.17(2) 2.1(1)
µsat (µB) 9 6.75 4.5 3.15 1.8
µ2
exc (µB) - 2.42 2.56 2.02 0.3
Hc (T) 5.8(6) 4.2(5) 3.8(7) 3.3(9) -
Hcoe (T) 0.40(5) 0.68(2) 0.80(5) 0.46(3) 0.05(3)
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Figure 7.7: Magnetic field dependence of magnetization for Tb0.50Y0.50NiSi3 and
Tb0.35Y0.65NiSi3 at T = 2, 5, 7.5, 12.5 and 17.5 K with H ‖ a orientation.

Finally, we study the influence of thermal fluctuation on the magnetization
measurements presented in Fig. 7.7 for Tb0.50Y0.50NiSi3 and Tb0.35Y0.65NiSi3.
We find that all compounds present a reduction in the hysteresis, critical
magnetic field, coercive field and saturation moment as the temperature arises,
except in the 50% Y-doping where at T = 5 K the curve exhibits the maximum
coercive field Hcoe = 1.17 T and then gradually decreases due to reduction of
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the molecular field.

7.1.4 Normalized Resistance
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Figure 7.8: (a) Normalized resistance measurements for Tb1−xYxNiSi3 under zero
field in the configuration I ⊥ b. The inset shows a zoom in the range 2 ≤ T ≤ 50 K,
where the AFM transition takes place. (b) Concentration dependence of normalized
residual resistivity obtained from the extrapolation of ρ(T )/ρ(300 K) = ρ0

n +AnT
2.

(c) Residual resistivity ratio RRR as a function of concentration x.

Table 7.4: Normalized resistance measurement parameters for Tb1−xYxNiSi3: Néel
temperature T ρN (K), normalized residual resistivity ρ0

n (µΩcm) and normalized Fermi-
liquid constant A (µΩcmK2) obtained from the extrapolation of ρ(T )/ρ(300 K) =
ρ0
n +AnT

2, and the residual resistivity ratio RRR calculated with Eq. 2.44.

Parameters Y-doping level
0 0.25 0.50 0.65 0.80 1

T ρN 32.3(7) 25.7(9) 17.6(2) 11.9(1) - -
ρ0
n 0.022(4) 0.061(7) 0.066(2) 0.062(7) 0.044(1) 0.012(2)
An(10−5) 5.1(3) 6.4(3) 2(2) 1.1(2) 2(2) 6(3)
RRR 38.93 19.09 17.46 15.40 25.06 53.5

Figure 7.8 shows the resistance, normalized to the value at 300 K, as a function
of temperature for Tb1−xYxNiSi3 at H = 0 and I ⊥ b. At high temperature ρ
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increases monotonically with rising temperature, exhibiting a T -linear behavior
characteristic of metals. Moreover, the value of ρ for the pure compound is
slightly higher than for the alloys, where there is a systematic reduction in the
slope of linear resistivity with decreasing Tb concentration compared to the
non-magnetic reference compound YNiSi3, which can be attributed to crystal
electric field effects. At low temperature [inset Fig. 7.8], except for x = 0.8 all
samples exhibit a sharp cusp that marks the cooperative magnetic transition
and defines the ordering temperature of the Tb sublattice which shifts to lower
temperatures with ascending Y-doping level. To extract sufficiently accurate
values of TN , we use the segmented linear regression model of Eq. 2.47. We
find that at x = 0, 0.25, 0.50 and 0.65 concentrations, the Néel temperatures
are 32.3(7), 25.7(9), 17.6(2) and 11.9(1) K, respectively, which are in very
good agreement with those obtained from magnetic measurements (compare
with Table 7.2) Below the Néel temperature, the slope of resistivity curves
becomes more convex with decreasing temperature and therefore follow Fermi
liquid behavior [Eq. 2.48] due to loss of magnetic scattering. We determine the
normalized residual resistivity ρ0

n as a parabolic extrapolation at T = 0 K of the
ρ(T )/ρ(300 K) curves, and the residual resistivity ratio RRR as ρ(300 K)/ρ(2 K)
whose values are illustrated in Fig. 7.8(b) and (c), respectively, and they are
listed in Table 7.4. These indicate few impurities in the compounds and thus
a high quality of single crystals. ρ0

n exhibits a negative concavity curve-type
and RRR a positive concavity curve-type with Y-doping, displaying a slope
change in the region 0.50 < x < 0.65 where the long-range order changes,
which confirms the fact that Tb concentration level is strongly correlated with
RRR and therefore the substitution of Tb by Y strongly affects the electrical
resistivity of these compounds.

7.2 Analysis and discussion

Figure 7.9 displays the magnetic moment as a function of concentration. We
note that for Tb1−xYxNiSi3 the observed effective moment is larger than that
of the free ion moment. Moreover, the values of the highest field magnetic
moment µaHF are above the expected saturation moment µsat for an assembly
of Tb3+ ions. Therefore, the additional contribution appears to be an induced
moment and may be associated with Ni 3d-electrons, as for Gd1−xYxNiSi3
compounds mentioned in the previous Chapter 6.

Curie-Weiss temperature along a, b, c -axis evidenced the large magnetic
anisotropy in these compounds due to the strong dependence of θcw with the
direction of applied magnetic field, Table 7.2. Since they give an indication of
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Néel temperature (red dashed) obtained from magnetic susceptibility (red dashed)
and specific heat (blue dashed) measurements for Tb1−xYxNiSi3 compounds.

the strength of magnetic interactions, the positive value of θacw corresponds to a
dominant ferromagnetic interaction between cb-planes while the negative value
of θbcw and θccw alludes to an antiferromagnetic interaction between ca-planes.
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Similar behaviors are observed in Tb(Ni1−xCox)2Ge2 [110] and TbCu2 [111].
Conversely, as seen in Fig. 7.10, θpcw is negative for the pure compound but as
the concentration of Y increases, it becomes positive in the region x > 0.50
where ferromagnetic interactions predominate differently from those found for
Gd1−xYxNiSi3 where θpcw is always negative [Fig. 6.12]. Notice that this effect
is observed despite the fact that all samples exhibit antiferromagnetic order in
the susceptibility curve [Fig. 7.5]. On the other hand, Néel temperature shifts
toward lower temperatures in a nearly linear form as Y atoms are diluted in
TbNiSi3. This behavior is observed in other Y-Tb solid solutions [112], where the
RKKY interaction is mainly responsible for the magnetic ordering, indicating
a gradual weakening of the antiferromagnetic interaction. The ratio between
Curie-Weiss and Néel temperature, that determining the frustation parameter
f = θpcw/TN , is very small due to the system not being frustrated, however it
moves away from 1 with increasing Y concentration due to possible existence
of a significant short-range magnetic order beyond the magnetic transition as
exhibited by the hump-shape in the susceptibility curve [Fig. 7.5].
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Figure 7.11: Concentration dependent magnetic coercive field (blue square) and
critical field (magenta circle) obtained of M × H measurements at T=2 K for
Tb1−xYxNiSi3 compounds.

The critical field and coercivity as a function of Y-concentration are shown
in Fig. 7.11. We observe that with increasing Y doping, the coercive field
increases up to 0.80(5) T at 50%-Y and above it decreases monotonically, while
the critical fields decrease for all concentrations considered. Moreover, both
decrease exponentially with increasing temperature. Therefore, the metamag-
netic transition and the hysteresis around the critical field are very sensitive to
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the compound composition and thermal fluctuations [Fig. 7.7].

The magnetic properties of Tb1−xYxNiSi3 discussed above are consequence of
competition between several magnetic interactions. TbNiSi3 is a commensurate
structure with collinear Tb-moments along a-axis [Fig. 4.11], whose Tb-Tb
interaction is determined by long-range antiferromagnetic indirect exchange
and CEF effects. Its complex magnetic behavior is similar to TbNi2Si2 [113]
and TbNi2Ge2 [114], which are considered as Ising systems with competing
interaction [115, 116]. When Y is replaced by Tb the magnetically ordered
structure is destabilized, the molecular field is locally reduced altering the
bilinear exchange interactions but the magnetocrystalline anisotropy apparently
is not decreased and it is present still in YNiSi3 [subsec. 4.2.1]. Notice that
each compound correspond to different magnetic structures where the magnetic
moments follow the same a-axis collinearity as the pure compound at low
magnetic fields, and formed a non-collinear configuration above a critical field
[Figs. 7.3-7.6 and subsec. 2.5.3]. Also, the susceptibility measurement indicates
the existence of magnetic order with weak ferromagnetism from x > 0.5 which
was attributed to arising of Ni magnetic moments, however it is not seen in
the electrical resistivity. In spite of this, we expected that the considerable
magnetic contribution to resistivity causes a scattering of conduction electrons
by localized 4f -electrons of Tb and weakly by 3d-electrons of Ni.

7.3 Conclusions

All Tb1−xYxNiSi3 compounds exhibit an AFM ground state with strong mag-
netic anisotropic and crystalline field effects. The presence of Y atoms do not
strongly alter the lattice parameters, the metallic behavior nor the a-easy axis
observed in TbNiSi3. However, it causes a reduction of Néel temperature and
therefore a drop in the strength of antiferromagnetic long-range interaction
between Tb-Tb atoms. In addition, it modifies the sign of Curie-Weiss tem-
perature from negative to positive at 65% Y-doping indicating the presence of
ferromagnetic short-range interaction, which is also visible as a jump shape in
the susceptibility measurements for Tb0.5Y0.5NiSi3. Finally, we observe that
the dilutes compounds have both effective and saturation magnetic moments
above the expected value, suggesting the gradual emergence of Ni magnetic mo-
ment, whose Ni-Ni interaction is ferromagnetic. Thus, the physical properties of
Tb-alloys will be determined by the competition between these interactions.
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YbNiSi3−xGex

The competition between Kondo effect and RKKY interaction can lead to
new stable states of matter near a quantum critical point (QCP). These
are controlled by some parameter tuning such as magnetic field, hydrostatic
pressure or chemical composition. As mentioned in subsec. 4.3-4.4 magnetic
field suppresses the magnetic order of the antiferromagnetic-Kondo lattice
YbNiSi3, while the pressure induces the Kondo effect in the non-magnetic
structure YbNiGe3. In this chapter we are interested in studying from an
experimental approach how the RKKY indirect exchange coupling changes and
how the hybridization between magnetic moments and conduction electrons
increases through chemical substitution of Si by Ge in YbNiSi3−xGex and
the application of the magnetic field on each of these compounds. This will
allow to change the magnetic ground state continuously and moving towards a
non-magnetic state by passing through a QCP. For this purpose we perform
several attempts to grow single crystals, which will be characterized by means
of magnetization and resistivity measurements.

8.1 Single crystal growth

A bibliographic review on YbNiSi3 indicates that these grow from Sn flux
using a starting proportion of Yb:Ni:Si:Sn 1:1:3:20 and a temperature ramp
such that the sample is heated to 1150 °C and slowly cooled to 500 °C [10].
Thus, to grow YbNiSi3−xGex single crystals, we consider an initial proportion
Yb:Ni:Si:Ge:Sn 1:1:3-x:x:20 for x=0, 0.003, 0.03, 0.05, 0.1, 0.2, 2.7, 2.85 and 3
with the same temperature ramp mentioned in subsec. 3.1.2. Now, in order to
determine whether these growths are sensitive to small changes in composition,
we performed some test with the initial proportion Yb:Ni:Si:Ge:Sn 1:1:3-x:x:45
for x=0.15 and 2.85 used to successfully grow RNiSi3 (R=Y, Gd-Tm, Lu)
[sec. 4.1]. In Fig. 8.1 we include some images of the obtained single crystals,
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where we observed that they have the platelike morphology expected with
well-defined shapes and shiny surfaces.

Figure 8.1: Single crystals obtained of initial proportion Yb:Ni:Si:Ge:Sn 1:1:3-x:x:20.

For each compound we chose clusters of single crystals and on them we per-
formed X-ray powder diffraction measurements, whose patterns are shown in
Fig. 8.2. Rietveld refinements allow us to distinguish at least three different
phases: (i) YbNiSi3 [Fig. 4.3] is a SmNiGe3-type orthorhombic structure with
space group Cmmm (No. 65), (ii) YbNi2Si3 [Fig. 8.3] is a ScNi2Si3-type
tetragonal structure with space group I4/mmm (No.139) and (iii) YbNiGe3
[Fig. 4.17] is a tetragonal crystal class with space group I41/amd (No.141).
Figure 8.2 (a) presents the indexing of (i) and (ii) phases, (b) and (d) the
indexing of (ii) and (iii) phases, respectively, while the pattern in (c) corre-
sponds to an unknown phase. In Table 8.1 we include the initial proportion
of growth, parameters and volume resulting from Rietveld refinement. The
weak reduction in the volume of the crystalline structure evidences a weak
shift of the central peak of the #1, #2, #3 and #4 patterns towards high
angles, although this is imperceptible on the scale used. Therefore, by Bragg
law [Eq. 3.1] they demonstrate a weak reduction in their volume. However, #5
and #6 exhibit a gradual expansion in the unit cell volume due to possible
valence change of Yb as it goes from YbNiSi3 with Yb3+ to YbNiGe3 with
a fluctuating valence state between +2 and +3. These behaviors were also
observed in YbCu5−xAlx and Ce(Cu1−xCox)2Ge2 systems [24, 117]. Due to
some difficulties generated by COVID-19 pandemic, it was not possible to
use other experimental techniques to determine the exact composition of the
samples. We then decided to organize the samples according to the increment
in the coherence temperature observed in resistivity measurements, this will be
detailed in the next section, and to label them by sample number corresponding
to the sequence considered.

YbNi2Si3 has a layered crystal structure similar to that of YbNiSi3 and
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Figure 8.2: The XRD Rietveld refinement for (a) SmNiGe3-type orthorhombic
structure with space group Cmmm, (b) ScNi2Si3-type tetragonal structure with
space group I4/mmm, (c) unknown phases and (d) tetragonal crystal class with
space group I41/amd.

YbNiGe3, whose layer sequences is Si-Ni-Yb-Si-M-Si-Yb-Ni-Si, Si-Ni-Yb-Si-Si-
Yb-Ni-Si and Ge-Yb-Ni-X-[X-Ni-Yb-Ge-Ge-Yb-Ni-X]-X-Ni-Yb-Ge while accom-
modating 20, 24 and 40 atoms in the unit cell, respectively, with simultaneous
occupation of M(Ni/Si) and X(Ni/Ge). In all cases, Yb has a single crystallo-
graphic site, however its 2mm local inversion symmetry is broken at 4mm for
123-system [Tables 4.2, 4.8 and 8.2], where Ni atoms have two Wyckoff posi-
tions 4e and 4d. Additionally, the magnetic properties of YbNi2Si3 are similar
to those of YbNiSi3. This is treated as an antiferromagnetic Kondo lattice
with c-AFM easy axis, Néel temperature TN=0.35 K and Kondo temperature
TK=2 K, whose magnetism comes from Yb3+ ions. [118].

On the other hand, the YbNiSi3 structure has three different sites for Si
[Table 4.2]. The incorporation of Ge atom can randomly go to one of these or
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Table 8.1: Compounds that crystallize in SmNiGe3-type orthorhombic structure
(space group Cmmm), in ScNi2Si3-type tetragonal structure (space group I4/mmm)
and a tetragonal crystal class (space group I41/amd). Initial proportion considered in
the growth, and the lattice parameters and volume obtained from Rietveld refinement
also are included.

Sample Intial prop. Lattice parameters Volume
Number Si : Ge: Sn a (Å) b (Å) c (Å) V (Å3)

SmNiGe3-type (Cmmm)
#1 2.95 0.05 20 3.8933 20.8714 3.9034 317.187
#2 3 0 20 3.8930 20.8682 3.9033 317.106
#3 2.8 0.2 20 3.8923 20.8662 3.9026 316.956
#4 2.97 0.03 20 3.8919 20.8592 3.9022 316.790
#5 2.997 0.003 20 3.8917 20.8624 3.9022 316.824
#6 2.9 0.1 20 3.8930 20.8647 3.9026 316.994

ScNi2Si3-type ( I4/mmm)
#7 2.95 0.05 20 3.8590 3.8590 24.0249 357.776
#8 3 0 20 3.8580 3.8580 24.0346 357.733
#9 3 0 20 3.8580 3.8580 24.0272 357.620
#10 2.9 0.1 20 3.8574 3.8574 20.0309 357.573
#11 2.8 0.2 20 3.8572 3.8572 24.0273 357.483
#12 2.997 0.003 20 3.8568 3.8568 24.0236 357.354
#13 2.97 0.03 20 3.8565 3.8565 24.0178 357.203
#14 2.85 0.15 45 3.8551 3.8551 24.0171 356.928

YbNiGe3-Tetragonal class (I41/amd)
#15 0 3 20 4.0618 4.0618 43.3833 715.738
#16 0.15 2.85 20 4.0578 4.0578 43.3524 713.822
#17 0.3 2.7 20 4.0579 4.0579 43.3416 713.846

Unknown phase
#18 0.15 2.85 45 - - - -

Figure 8.3: Unit cell of YbNi2Si3 tetragonal structure in space group I4/mmm.
Dark red, gray and blue spheres denote the Yb, Ni and Si atoms, respectively.
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Table 8.2: Atom coordinates for YbNi2Si3 compound [118].
Site Wyckoff Site x y z Occ.

position symmetry
Yb 4e 4mm 0 0 0.351936(16) 1
Ni 4e 4mm 0 0 0.09782(5) 1
Si1 8g 2mm 0 0.5 0.04880(7) 1
Si2 4e 4mm 0 0 0.19220(12) 1

M(Ni/Si) 4d 4̄m2 0 0.5 0.25 0.74/0.21

even occupy all sites. We check the latter possibility in the Rietveld refinements
and we include these results in Table 8.3. Here we observed that Si2 and Si3
sites are more probable to be occupied by the Ge atom, since the maximum
occupancy corresponds to 0.2 according to ratio multiplicity atoms/ multiplicity
group=4/20. However, the results obtained do not allow to determine the
Si/Ge concentration, nor the vacancies in the Yb and Ni sites. For this, it will
be necessary to perform an energy dispersive X-Ray (EDX) analysis, which we
will leave for future work.

Table 8.3: Yb, Ni, Si and Ge occupancies obtained from Rietveld refinement when
considering that the three silicon crystallographic sites can be occupied by Ge atoms.
Here we include the χ2 parameter to indicate the refinement quality.

# Sample Yb Ni Si1 Ge1 Si2 Ge2 Si3 Ge3 χ2

#1 0.197 0.200 0.198 0.008 0.161 0.029 0.186 0.003 10.3
#2 0.199 0.199 0.200 0.000 0.204 0.000 0.199 0.000 4.59
#3 0.206 0.203 0.106 0.047 0.190 0.016 0.049 0.071 5.75
#4 0.203 0.201 0.195 0.002 0.203 0.002 0.199 0.002 8.14
#5 0.205 0.204 0.203 0.000 0.198 0.000 0.204 0.002 7.82
#6 0.199 0.200 0.193 0.000 0.106 0.041 0.114 0.037 4.72

8.2 Resistivity

Temperature-dependent resistivity ρ(T ) curves normalized with respect to
room-temperature resistivity ρ(300 K) for YbNiSi3−xGex at H=0 T are shown
in Fig. 8.4. As expected, all compounds exhibit a large drop at low temperatures
which is attributed to the combined effect of the reduction of spin-disorder
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scattering and the occurrence of coherent scattering of electrons by Yb ions
sublattice. In order to quantify the changes generated by the presence of
Ge-atoms, we fit Eqs. 2.48 and 2.50 in the low (2-4.5 K) and high (55-100 K)
temperature regions, respectively. In Table 8.4 we indicate the results given
for residual resistivity ρ0, prefactor A, exponent n, a and b parameters, as well
as the Néel temperature obtained by dρ/dT , the coherence temperature and
the minimal temperature [subsec. 2.8.2]. All these are plotted in Fig. 8.5. The
values of n allude to the electron scattering by acoustic phonons [subsec. 2.8.1].
Therefore, the 2-4.5 K region is very high to observe Fermi-liquid behavior.
As reference, the results reported for YbNiSi3 indicate that this occurs below
1 K [10]. Despite this, the sequence of compounds considered along this chapter
is quite special. Samples with high Si-concentration show a Kondo-like upturn
that decreases and broadens becoming flattened at #5 and #6 while Tcoh and
Tmin shift to high temperatures similar to the effect observed in YbNiGe3 when
reducing the hydrostatic pressure from 6.5 GPa to 0 GPa [Fig. 4.19], with the
strong Kondo hybridization intensity happening for #3 and #4 due to the
maximum values attained for b parameter [Eq. 2.50].
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Table 8.4: Main resistivity parameters for YbNiSi3−xGe3 as a function of magnetic field applied H for the sequence of compounds considered
in Table 8.1 These are the residual resistivity ρ0 (µΩcm), resistivity coefficient A (µΩcm/Kn) and resistivity exponent n of Eq. 2.48, a and
b-parameter of Eq. 2.50, residual resistivity ratios RRR, Néel temperature T ρN (K), coherence temperature Tcoh (K) and minimal temperature
Tmin (K).

H ρ0 A n a b T ρN Tcoe Tmin RRR
#1

0 0.6(2) 0.031(7) 3.9(1) 6.9(2) 28.0(3) 5.0(1) 6.8(2) 169(2) 9.52
1 0.5(1) 0.048(7) 3.7(1) 7.7(2) 29.2(2) 4.8(2) 7.0(1) 169(2) 9.83

#2
0 0.3(2) 0.036(9) 3.8(2) 9.7(4) 33.0(6) 5.0(1) 7.0(2) 177(3) 14.15
1 0.3(2) 0.040(9) 3.8(1) 9.5(2) 32.9(4) 4.8(1) 8.0(1) 177(3) 12.45
3 0.4(2) 0.060(9) 3.57(9) 8.9(3) 31.8(4) 4.6(1) 10.2(1) 177(3) 10.11

#3
0 1.0(2) 0.081(6) 3.79(4) 19.0(2) 66.3(3) 4.8(1) 7.2(1) 186(3) 11.10
1 0.7(2) 0.093(8) 3.75(5) 18.5(2) 65.5(3) 4.82(9) 7.6(2) 186(3) 11.29
3 0.9(1) 0.21(1) 3.23(4) 17.3(2) 63.2(3) 4.6(1) 9.4(2) 186(3) 7.62
5 2.1(4) 0.12(3) 3.6(2) 14.9(3) 58.7(5) 4.02 12.8(2) 186(3) 6.22
7 -9.5(2) 7(1) 0.86(8) 13.1(4) 54.9(7) 2.4(1) 19.8(2) 186(3) 6.28

#4
0 0.85(9) 0.107(5) 3.63(3) 16.1(2) 63.9(4) 4.8(1) 6.8(1) 198(2) 11.04
1 0.9(1) 0.102(5) 3.68(3) 15.1(4) 62.0(7) 4.8(1) 8.2(1) 198(2) 10.07
3 0.6(1) 0.26(1) 3.11(3) 16.2(2) 63.9(4) 4.6(1) 9.8(1) 198(2) 8.15
5 1.1(2) 0.24(2) 3.15(5) 14.2(2) 60.1(3) 4.0(1) 13.2(1) 198(2) 7.65
7 -12(2) 9(1) 0.78(6) 12.5(3) 56.7(6) 2.8(1) 25.2(2) 198(2) 6.74

#5
0 0.4(1) 0.081(8) 3.59(6) 13.7(3) 52.5(5) 5.0(1) 8.0(2) 203(3) 12.13
1 0.55(7) 0.091(4) 3.54(3) 13.4(2) 51.9(3) 4.8(1) 8.6(3) 203(3) 11.13
3 0.1(2) 0.21(2) 3.02(4) 12.5(2) 50.1(3) 4.6(1) 15.8(2) 203(3) 9.32
5 0.3(2) 0.22(2) 3.00(7) 12.4(3) 49.9(6) 4.0 24.8(2) 203(3) 8.65
7 -7(1) 5(1) 0.87(9) 10.9(2) 46.7(4) 2.8 31.8(2) 203(3) 6.94

#6
0 0.4(2) 0.08(2) 3.33(9) 10.2(3) 39.8(5) 5.0(1) 20.2(3) 211(4) 10.09
1 0.5(2) 0.09(2) 3.4(1) 10.8(4) 41.3(8) 4.8(1) 24.4(2) 211(4) 9.08
3 -0.6(3) 0.38(5) 2.44(8) 10.3(2) 40.1(5) 4.6(1) 26.6(2) 211(4) 8.17
5 -1.1(7) 0.5(2) 2.1(2) 9.6(2) 38.7(4) 3.8(1) 29.6(3) 211(4) 7.94
7 -5(1) 4(1) 0.8(1) 8.7(2) 36.9(4) 2.8(1) 35.8(2) 211(4) 6.99
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Figure 8.6: Temperature dependent normalized resistance measurements for
YbNiSi3−xGex under an applied magnetic field of H=0, 1, 3, 5 and 7 T in the
configuration I ⊥ b. The notation used for the compounds correspond to those given
in Table 8.1.

In addition, we see that A [Eq. 2.48] increases, while n decreases suggesting a
valence change in the compound while following the expected behavior when
approaching a QCP [8]. On the other hand, the variation of ρ0 in the range
0.3-1.2 µΩcm and the residual resistivity ratio RRR ≤ 15 [Eq. 2.44] is an
indication that Ge-doping introduces only a small amount of disorder in this
sample showing the high crystallographic quality of the sample. Finally, Néel
temperature is weakly reduced to 4.8 K for #3 and #4 compounds. For
compounds with higher Ge-concentrations have the behavior typical for a
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valence fluctuating YbNiGe3 system [Figs. 4.18 and 4.19]. However, #16
shows a weak anomaly around 3 K possibly due to the inclusion of Si atoms,
which can alter the neighborhood of some Yb ions and possibly their valence
causing them to act as magnetic impurities in the system.

Another way to approach a QCP was through the magnetotransport properties
in YbNiSi3−xGe3. For this purpose, in Fig. 8.6 we plot temperature-dependent
normalized resistivity ρ(T ) curves at different magnetic fields H=0, 1, 3, 5 and
7 T. Here we perceive that the magnetoresistance in all compounds is positive
in the magnetically ordered state consistent with the antiferromagnetic nature
of the magnetic ordering, and it is negative in the paramagnetic state due to the
freezing out of spin-flip scattering in a Kondo compound by the magnetic field.
Moreover, Néel temperature decreases with the arising of the field while the
coherence temperature increases showing that as soon as the antiferromagnetic
ordering is disappearing the Kondo effect increases gradually overcoming it
even though the intensity of the hybridization between the magnetic moment of
Yb and conduction electrons is weakening in accordance with the reduction of
the b-parameter [Eq. 2.50]. For its part, A and ρ0 parameters show a tendency
towards divergence with increasing field, while the latter shifts to negative
values between 5 and 7 T for all compounds except for #6 where it occurs
around of 3 T. This is an expected signature of a QCP [119], where the inclusion
of Ge allows us to investigate the neighborhood of the QCP at low magnetic
field.

8.3 Magnetic properties

We study the magnetic properties of YbNiSi3−xGex from χ×T at H=1 kOe and
M×H at T=2 K measurements along a, b and c-direction. The obtained curves
are plotted in Fig. 8.7 for each compound. We observed that the sample labeled
as #1 (Yb:Ni:Si:Ge 1:1:2.95:0.05) follows the expected magnetic response for
YbNiSi3 as reported in the literature [10] [sec. 4.3]. This is an anisotropic
antiferromagnetic compound, whose Yb moments are aligned along b-AFM easy
axis. In the inverse susceptibility, we observed that at high temperatures the
three orientations have a linear behavior and they are parallel to each other as
observed for paramagnetic local moments with CEF effects [Fig. 4.14(a)]. Also,
isothermal magnetization measurement along b the lower-field metamagnetic
transition is observed around 1.52 T, however due to the range of the applied
magnetic field (0 to 7 T), it is not possible to observe the second metamagnetic
transition expected to 8 T [10].
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The other orientations are linear and reversible up to 7 T, which is consistent
with the antiferromagnetic nature of the magnetic ordering. The above leads
us to believe that in #1 there is not inclusion of Ge atoms and their respective
atomic positions are vacant. For other compounds, except for #2, where we
expected Ge-doping these behaviors were approximately maintained implying
weak changes in the planar measurements due to a possible competition between
CEF and magnetocrystalline anisotropy.

Since the exact Yb, Ni, Si and Ge concentration is unknown for us, in order
to make comparisons and understand the effect of Ge atoms on magnetic
properties of YbNiSi3, we analyze the susceptibility measurements as follows:
we initially plot χ× T (in emu/g) and fit the equation χ = 1

Mat

(
χ0 + C

T−θcw

)
with the atomic massMat as a parameter. With this, we calculate the magnetic
susceptibility in emu/mol and trace it to fit the Curie-Weiss law to determine
the Pauli paramagnetic contribution χ0. Then, temperature dependence of
inverse average susceptibility by subtracting χ0 is drawn χ−χ0×T and a linear
fit is generated to calculate the magnetic moment of compounds [Eq. 2.19].
The results obtained are included in Table 8.5.

Table 8.5: Main magnetic parameters for YbNiSi3−xGex: effective magnetic moment
µeff calculated of χT at high temperatures, high field moment µHF observed at
2 K and H = 70 kOe in M × T , atomic mass Mat (g/mol), Pauli paramagnetic
susceptibility χ0 (10−3 emu/mol), Curie-Weiss temperature θacw , θbcw and θccw (K)
along a, b and c directions, correspondly, and on polycrystalline average θpcw (K).
Néel temperature TχN (K), Kondo temperature TK (K) and critical field Hc (T) are
calculated from d(Tχavg)

dT
, |θ

p
cw|
2 and dM

dH
, respectively. The notation used for the

compounds correspond to those given in Table 8.1

# Sample Mat θacw θbcw θccw θpcw
#1 271.12 -85.5(6) 15.1(5) -25.7(2) -18.15(8)
#2 266.55 -77.3(2) -5.1(2) -16.3(2) -19.90(7)
#3 284.85 -66.3(4) 2.72(1) -26.1(7) -23.89(1)
#4 196.35 -105.0(9) 9.9(4) 0.5(5) -20.48(1)
#5 255.52 -72.7(4) 5.8(2) -24.05(9) -23.91(6)

# Sample TχN TK χ0 µeff Hc µbHF
#1 5.0(2) 4.54 0.42(8) 4.42(3) 1.48(3) 1.39
#2 5.0(2) 4.98 0.14(4) 4.57(2) 1.52(2) 1.33
#3 5.2(1) 5.97 0.17(3) 4.52(1) 1.52(1) 1.46
#4 5.0(2) 5.12 1.28(3) 4.36(1) 1.52(2) 1.20
#5 5.0(2) 5.98 -0.21(1) 4.33(2) 1.52(3) 1.24
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The average magnetic susceptibility and inverse susceptibility subtracting
the Pauli paramagnetic contribution χ0 as a function of temperature are
shown in Fig. 8.8 for the sequence of compounds considered in Table 8.1 At
low temperatures, we note that all compounds exhibit the antiferromagnetic
anomaly at T=5 K, except #3 which shifts to 5.2(1) K, according to the
maximum peak exhibiting d(Tχ)/dT [inset Fig. 8.8 (a)]. At high temperature,
the susceptibility curves retains a T -Curie-Weiss dependence that is nearly
identical for all compounds. The slope of the curves increases weakly to include
Ge-doping and thus the effective magnetic moment decreases slowly. Notice
that #1, #2 and #3 compounds have an effective paramagnetic moment close
to the expected value for Yb3+ moment (4.5 µB), and it weakly reduces to
4.3 µB for #5. In addition, χ0 varies from −0.21× 10−4 to 1.28× 10−4, which
is negligible compared to the measured value of the overall χ(T ). On the other
hand, the estimated Curie-Weiss temperatures θacw, θbcw and θccw change from
-85.5, 15.1, -25.7 K to -72.7, 5.8 and -24.1 K, respectively, as one progresses
through the sequence of compounds, indicating weak anisotropy that can be
attributed to the CEF effect. Even the polycrystalline Curie-Weiss temperature
goes towards increasingly negative values from -18.15 K in #1 to -23.9 K in
#5 suggesting that antiferromagnetic exchange interactions increase due to
hybridization between the Yb magnetic moment and conduction electrons
leading to an enhancement of the Kondo effect in these compounds [Fig. 8.5].
Thus, in Kondo antiferromagnetic systems, θpcw is a measure of both Kondo
and RKKY interaction. So, it can be used to calculate the Kondo temperature
as TK = |θpcw|

4 [24] whose estimated values are included in Table 8.5. Notice
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that these are lower than TK = 30 K reported in the literature for YbNiSi3 [10]
[sec. 4.3].
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Figure 8.9: Magnetic field dependence of magnetization at T=2 K in H ‖ b orienta-
tion for YbNiSi3−xGe3. The notation used for the compounds correspond to those
given in Table 8.1.

Magnetization measurements along the b easy axis at T=2 K for YbNiSi3−xGex
are shown in Fig. 8.9. Here we observe that there is a shift of metamagnetic
transition toward high magnetic fields from 1.48 T in #1 to 1.52 T in #2,
and it is maintained for other compounds. These behavior was verified in
dM/dH curves [inset Fig. 8.9] and their values are included in Table 8.5, as
well as the high magnetic moment at H=7 T which are very lower that the
expected for Yb3+. On the other hand, the magnetization at T=2, 3, 4, 6 K
for each compound is presented in Fig. 8.10. In all case we perceive that the
metamagnetic transition moves to low fields with increasing temperature and
disappears above the Néel temperature. Even, the curves at T=4 K exhibit a
noticeable curvature change around of 6 T which apparently is displaced weakly
to 5 T for these sequence of compounds. This anomaly can be associated with
high-field metamagnetic transition observed in YbNiSi3 at T=2 K above to
8 T [Fig. 4.14 (d)].

Additionally, we perform susceptibility and magnetization measurements on
compounds with high Ge concentration along H ⊥ c and H ‖ c. Since they are
weakly anisotropic, in Fig. 8.9 we plot the curves in the latter orientation. We
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Figure 8.10: Magnetization as a function of magnetic field for YbNiSi3−xGex at
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observed that in χ(T ) with decreasing temperature, the pure germanium com-
pound exhibits a broad follow by a minimum around 50 K due to the presence of
mixed-valence Yb ions [83] [sec. 4.4]. However, the inclusion of Si atoms allows
that this minimum be gradually broadened and shifted to high temperatures.
Remark that at low temperatures #16 exhibit a weak anomaly around of 2.3 K
which suggests the occurrence of some exchange magnetic interaction in this
compound. This fact is confirmed by plotting M ×H where the magnetization
exhibits a S-like behavior compared to other compounds. Moreover, these are
agree with those found in resistivity measurements [Fig. 8.4].

8.4 Some remarks

The results obtained in this chapter are preliminary and require to be revised
again, after performing Energy-Dispersive X-Ray Spectroscopy (EDS) mea-
surements in order to determine the exact composition of each element in the
samples. With it we will calculate their respective atomic mass and then check
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the sequence of compounds according to Ge concentration increases.

In our attempt to change the distance between ions by introducing Ge-atoms
into YbNiSi3−xGex we are playing with several factors: (i) we try to gradu-
ally change the crystal structure of orthorhombic YbNiSi3 (Cmmm) toward a
tetragonal YbNiGe3 (I41/amd) and simultaneous occupation of Ni and Si/Ge
at some crystallographic position [Tables 4.2 and 4.8]. (ii) We create a chemical
pressure on the Yb atoms (since replacing the ionic radius of Si 0.41 Å with that
of Ge 0.53 Å), which alters the magnetic properties of the compounds. From all
our growth experiments we perceive that the inclusion of Si atoms in YbNiGe3
or Ge atoms in YbNiSi3 compounds is quite difficult due to the instability of
these dilutes. For example, keeping the growth conditions and the same initial
proportion of Yb:Ni:Si:Sn 1:1:3:20 [such as #8 and #2], do not guarantee the
same phase. This occurs due to the magnetic and structural similarity that
YbNiSi3 exhibits with YbNi2Si3. Even, increasing the Sn proportion to 45
[#14] stabilizes the latter phase and on the contrary further destabilizes the
formation of phases with high Ge-concentrations [#18] with respect to the
desired phase.

On the other hand, we expect that the characteristics exhibited by
YbNiSi3−xGex in resistivity and magnetization measurements are due to the
presence of Ge atoms in the samples. These exert a chemical pressure on
some Yb atoms, causing them to increase their local volume through hybridiza-
tion between the conduction and f -states of ytterbium. Thus, the valence
of Yb changes from its trivalent to fluctuating valence state (Yb3+=0.86 Å,
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Yb2+=1.13 Å). This is consistent with the fact that the lattice expansion
enhances the Kondo effect, where we saw it by the shift of Tcoh toward high
temperature with the pressure rise. Also, notice that the magnetic moment of
#4 is weakly reduced to 4.36(1) µB with respect to 4.5 µB expected for Yb3+,
due to the local moment having a low Kondo screening.

It is natural to expect that the pressure effect leads to a reduction of TN . How-
ever, our results demonstrate that for the sequence of compound considered,
the increase of Kondo screening is accompanied by a minimal weakening in the
RKKY interaction which always overcomes the former at low temperatures.
This is verified by averaging the values obtained by resistivity and magne-
tization measurements, where a possible shift towards 4.9 K is observed for
#4, however specific heat measurements should be performed to confirm this
statemet. Thus, the strong competition between Kondo and RKKY interaction
in YbNiSi1−xGex and the existence of CEF make it difficult to change the
magnetic properties of these systems.

The compounds considered and the measurement performed above 2 K are not
conclusive. We do not observe power-law T dependence at low temperature in
resistivity measurements, nor other anomalous behavior in the susceptibility
measurements. However these show that we are well on our way to finding the
quantum critical point.

8.5 Perspectives

In future work we will attempt to grow single crystals of YbNiSi3−xGex
for intermediate Si concentration levels from YbNiGe3 using a Ni–Ge rich
self-flux with a starting molar proportion of 1:1.6:9-x x (Yb : Ni : Ge: Si)
similar to that used by Mun in Ref. [83] in order to avoid the growth of
second phases. Structural and magnetic characterization will require the use
of techniques such as Energy-dispersive X-ray spectroscopy (EDS) and X-
ray absorption/emission (PFY-XAS, RXES or HAXPES) to determine the
exact composition of the compounds and the magnetic state of Yb-systems.
In addition, specific heat and resistivity measurements below 2 K should be
performed to determine possible NFL behavior near the QCP. On the other
hand, it will be interesting to study in detail the importance of CEF in these
systems and its role in the competition between RKKY and Kondo interaction to
stabilize the magnetic ground state of these systems. Finally, we could consider
carrying ac-susceptibility measurements in order to evaluate whether chemical
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disorder produces magnetic clustering that may impact its low-temperature
behavior.



9
Summary

High-quality single crystals of ternary intermetallics YNiSi3, LuNiSi3, doped
systems Gd1−xYxNiSi3, Tb1−xYxNiSi3 (x=0, 0.25, 0.50, 0.65. 0.80) and
YbNiSi3−xGex (x= 0, 0.003, 0.03, 0.05, 0.1, 0.2, 2.7 2.85, 3 still to be verified)
were grown via the Sn-flux method and studied by X-ray diffraction, magnetiza-
tion, specific-heat and resistivity measurements. All single crystals grew in thin
plate geometry with well-defined shapes and shiny surfaces. They assume a
layered orthorhombic SmNiGe3 structure belonging to Cmmm space group, ex-
cept to YbNiGe3 which is a tetragonal crystal class with space group I41/amd.
YNiSi3 and LuNiSi3 are found to be type-I superconductors bulks with critical
temperatures Tc = 1.36(3) and 1.61(2) K, critical fields µ0Hc(0) ≈ 0.05 and
0.08 T, and a jump in specific heat at Tc of ∆Cel/γTc = 1.14(9) and 0.71(5),
respectively, values lower than those expected from BCS theory (1.43). Its
electronic structure calculated from first-principles density functional theory
exhibits highly anisotropic and complex Fermi surfaces with one electronic and
two hole-like branches, where one hole and the electron branches have a large
cylindrical topology connecting the first Brillouin-zone boundaries. The former
is built up by the hybridization of Y(Lu) d, Ni d, and Si p states, and the latter
is built up by Ni d and Si p states. Meanwhile, the phononic structures indicate
that the coupling of the Y(Lu), Ni d with Si p electrons in the low-lying optical
phonon branches are responsible for the formation of Cooper pairs. So, these
can be categorized as anisotropic three-dimensional metals with multiband
superconducting ground states in the weak-coupling regime. On the other
hand, Gd-based systems reveal the gradual emergence of Ni magnetic moment
when the Y-doping level increases, and the coexistence of ferromagnetic (due
to Ni 3d) and antiferromagnetic (due to Gd) interactions which generate that
Gd0.50Y0.50NiSi3 and Gd0.35Y0.65NiSi3 present the exchange bias phenomena
with potential for applications in magnetic memory and spintronics. Similarly,
Y-doping in Tb compounds has remarkable influence on the magnetic properties.
These changes include a decrease in the antiferromagnetic Tb-Tb exchange and
the presence of short-range ferromagnetism due to the presumed magnetism of
Ni atoms which dominates for concentrations x > 0.50. Finally, preliminary
results on YbNiSi3−xGex demonstrate that Ge induces a change in the valence
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state of Yb (3+ to 2+), giving rise to the lattice expansion and an enhancement
in the Kondo effect despite not overcoming the RKKY interaction.
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