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ABSTRACT

Streptomyces coelicolor A3(2) is a model microorganism for the study
of Streptomycetes, antibiotic production, and secondary metabolism in
general. However, little effort to globally study its transcription has been
made even though S. coelicolor has an outstanding variety of regulators
among bacteria. In this work, we aim to reconstruct a Gene Regula-
tory Network (GRN) for S. coelicolor. For this, we manually curated
experimentally validated gene regulatory interactions from which we
reconstruct a curated network. Next, based on this curation, we inferred
a complete regulation network applying different mathematical methods
from two different approaches. One approach was motif detection in DNA
sequences and the other one was an inference from transcriptomic data.
Further, we analyze the structural properties and functional architecture
of both curated and inferred networks. And we compared them to assess
the reliability of the predictions. From this analysis, we proposed the
functional annotation and biological function for some genes of S. coeli-
color. Moreover, we proposed the Natural Decomposition Approach as a
methodology for the assessment of GRN inference. Finally, we present
applications for the curated and inferred networks. The curated networks
were deposited in the Abasy Atlas database while the inferences and
additional information are available in the supplementary file.
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“The important thing is not to stop questioning.
Curiosity has its own reason for existence.

One cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous structure of reality.

It is enough if one tries merely to comprehend
a little of this mystery each day.” — Albert Einstein
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1
INTRODUCTION

1.1 introduction

Streptomyces is a genus of Gram-positive bacteria that is abundant in the
soil, giving it its characteristic odor of wet earth after the rain, courtesy
of one of its secondary metabolites, the geosmin [1]. Streptomycetes
have a very complex life cycle unique among gram-positive bacteria,
comprising a morphological differentiation of diverse cell types. The
process begins with the germination of a spore in a suitable environment
producing one or more hyphae. These hyphae grow by tip extension
forming the vegetative (or substrate) mycelium, which resemblances more
to filamentous fungi than other bacteria. In response to the environmental
condition, specialized aerial hyphae emerge from the mycelium. Many
of them go to produce prespores, which differentiate into mature spores
and disperse in the environment (see Figure 1.1) [2].

PCD releases
nutrients

Competing
microbes

Antibiotic
production

Free
spore

  

Spore
development

Aerial mycelium

Substrate 
mycelium

Figure 1.1: Life cycle of Streptomyces coelicolor.

Related to its complex life cycle and its natural habitat, where the
microorganism faces a great chemical, physical and biological stress;
streptomycetes produce a high variety of secondary metabolites that

1



1.1 introduction 2

help them to survive in this hostile environment, which can be classified
as [3]:

siderophores: These are small molecules excreted by most of the
bacteria with a high affinity for ferric iron, which is essential for cell
respiration and metabolism; and due to its aqueous insolubility, its
normality unavailable for the cell. Siderophores form a complex with
ferric iron, which is actively transported into the cell, dissociated
in the cell interior so the ferric iron can be used as a cofactor in
several cellular processes.[4]

antibiotics: Most of the antibiotics are produced when, due to sub-
state exhaustion, vegetative mycelium degrades to provide the
nutrients necessary for the development of aerial mycelium. They
serve as a defense against other microorganisms that might be at-
tracted by sugars, amino acids, and other small molecules, produced
during this process [4]. Antibiotics can be also key components in
symbiotic interactions of the bacteria with other organisms, such
as fungus, plants, and others; where they prevent infections caused
by other microorganisms [3].

spore pigments: Most streptomycetes have pigmented spores. The
purpose of this might be to provide a higher resistance of the cell
walls to enzymatic digestion, either by the own cell or by other
organisms. Also, in some cases, the pigments increase slightly the
UV protection of the spore [3].

These secondary metabolites have great applicability in the pharma-
ceutical industry. Streptomycetes produce about half the antibiotics
used clinically among other biochemical compounds, such as antifungals,
antivirals, anticancer agents, and immunosuppressives [5]. From genome
sequencing usually, around 20-30 Biosynthetic Gene Clusters (BGCs)
for diverse secondary metabolites are found, most of them different
among species [1], [6], which suggest there is a high number of them
to be characterized and used in the health industry. Nevertheless, their
industrial production is still quite challenging; since most of them are
naturally produced under specififc environmental conditions, most of
them unknown, different from the ones in the laboratory [7]. Just to give
an example, in submerged liquid cultures, like the ones used in industrial
fermentations, aerial mycelium is not formed. This is the stage where
antibiotics are produced [1].

Novel experimental technologies, such as new cultivation strategies,
improved screening techniques, and new genetic engineering tools are
applied in the industry to overcome this difficulty in the production of
new biotechnological products [8]. However, their biosynthesis in the cell
is caused by certain environmental signals, which trigger the expression of
diverse genes responsible for morphological differentiation and secondary
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metabolite production. To conserve energy and resources, the expression
of these genes is controlled by complex processes of regulation at different
levels [9]. The specific regulatory processes of secondary metabolism in
streptomycetes are still not fully understood. Therefore, to properly apply
these novel experimental techniques, especially in the case of genetic
manipulation, a deeper understanding of the whole cellular regulation
process might be highly advantageous [10]. Here is where systems biology
becomes handy since it allows us to create a model for the study of
cellular regulation as a whole system, instead of disconnected individual
components.

For the study of streptomycetes regulation, we choose to focus on
Streptomyces coelicolor A3(2), which along the text will be referred
as S. coelicolor ; nevertheless, this strain is properly a Streptomyces
violaceoruber [11], as also is the strain Streptomyces lividans 66 [12].
S. coelicolor has been the model microorganism for the study of secondary
metabolism and morphological differentiation in streptomycetes [5], [8].
It was early known by its production of the blue-pigmented antibiotic
Actinorhodin (ACT), the red-pigmented antibiotic Undecylprodigiosi
(RED), and the Calcium-Dependent Antibiotic (CDA); nevertheless,
its genome sequencing revealed one of the largest genomes in bacteria,
with more than 20 BGCs [6], such as the Coelimycin A (CPK A), the
precursor of yellow coelimycins P1 (yCPK) and P2 [13], that was later
characterized.

1.2 regulation of secondary metabolism in streptomyces
coelicolor a3(2)

There are two main processes of regulation in the cell. One controls the
amount of the protein, and the other one its activity. First genes are
transcribed into messenger RNA (mRNA), which is then translated into
a protein. The amount of protein is controlled at either the transcription
stage, by the amount of mRNA produced, or at the translation stage, by
the amount of mRNA translated. Afterward, the activity of the protein
is regulated post-translationally, by covalent modification, degradation,
feedback inhibition, and interactions with other proteins (see Figure 1.2)
[9].

In this work, we focus on transcriptional regulation since is the first
and principal process of regulation in the cell. It is important to have
clarity over this step, before introducing other elements in the model
of the cell regulation. Transcription of DNA to RNA starts when the
RNA polymerase recognizes and binds to the initiation site on the
DNA, or promoter. In Bacteria, promoters are recognized by the sigma
factors, which are a subunit of RNA polymerase holoenzyme [9]. Different
molecular mechanisms appear to guarantee the proper distribution of
RNA polymerase among the different promoters, such as the promoter
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Figure 1.2: Regulation of protein activity. Modified from Madigan et al. [9]

DNA sequences, sigma factors, and transcription factors [14]. The basal
control comes from the promoter sequence; in bacteria, there are nearly
2000 different promoter sequences, which causes an uneven distribution
of the RNA polymerase, where some of them function more efficiently
than the others. These differences in the promoter sequences provide
useful control over a high number of genes, however, this control is static
and does not respond to environmental changes [14]. On the other hand,
sigma factors, as was mentioned before, are essential for the recognition
of the promoters. Bacteria usually have one main sigma factor that local tfs

regulate genes of a
specific biological
process
global tfs
regulate genes from
diverse biological
processes

recognizes most promoters, which is called the “housekeeping” sigma
factor, and it is responsible for the transcription of the genes needed
during cellular growth. However, others accumulate in response to a
specific environmental stress, helping the cell to transcribe the genes
needed to counter it [15]. Finally, Trancription Factors (TFs) modulates
the binding of the RNA polymerase, binding to the Transcription Factor-
Binding Site (TFBS) in the DNA. TFs can repress the transcription,
interfering with the RNA polymerase, or activate it, helping in the
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recruitment of the RNA polymerase; TFs can have one or both effects.
Another molecular mechanism is the strength of the effect on the protein
concentration and binding affinity. Strong TFBSs function with lower
concentrations of TFs, whereas weak required higher ones. Moreover, local
TFs usually have high-affinity TFBSs, while global TFs are less specific,
binding to diverse TFBSs. TFs have two important domains related to
its regulatory function. One function by ligand-binding as a signal sensor,
where the ligand is usually a metabolite or a physicochemical signal from
the environment. The other is the responsive component (DNA-binding
domain), interacting with the TFBS in the DNA. The most common
one, in bacteria, is the helix-turn-helix domain. In the case of bacteria,
usually, one protein possesses both components, nevertheless, in the
case of Two-Component Systems (TCSs), one protein functions as a
sensor, phosphorylating the other one, which functions as the responsive
regulator [16].

Years of study of secondary metabolism in S. coelicolor have revealed
very complex processes of regulation both at a global and a cluster-
specific level. This comes from the ability of S. coelicolor to grow in soil,
where a proper response to diverse external stimuli is essential for its
survival. Just for starting, the sequencing of S. coelicolor, among its 7846
annotated ORFs (SCO0001– SCO7846) contains revealed a high number
(965) of proteins with predicted regulatory function, from which 65 are
sigma factor, an exceptional number for bacteria, and from them, 51 are
Extra-Cytoplasmic Function (ECF) sigma factors [17]. These specific
sigma factors are involved in the response to various environmental
stresses; the variety of them may account for the independent regulation
of diverse stress response regulons [6]. It also counts with a high amount
of TCSs; 85 sensor kinases and 79 response regulators were identified,
along with regulators from known families such as LysR, GntR, IclR, and
MerR, among others [6]. Besides many putative DNA-binding proteins
that seem to not belong to any characterized family of regulators in
bacteria [6].

Secondary metabolism usually takes place when the microorganism
senses a nutrient deprivation, or other environmental changes, which
trigger a complex regulatory response. This causes a higher transcription
rate of stress response genes, while expression of genes not highly required
in periods of slow growth is reduced [18]. First, as it was mentioned
before, a morphological differentiation takes place (see Figure 1.1). This
process is mainly controlled by two groups of genes; bld genes which are
essential for the formation of aerial hyphae, and whi genes which are
essential for the sporulation of the aerial hyphae [17]. Since secondary
metabolites are produced during this stage, these genes are part of their
regulation pathways [19]. On the other hand, a secondary metabolite is
usually produced by a clustered group of genes that are categorized as
a BGC. These BGCs are regulated by two types of mechanisms: global
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regulators that are usually TCSs, and pathway-associated regulatory
proteins [20].

For many years, it was considered that global regulators activate BGC
through its pathway associate regulators; however, it has been demon-
strated that they can bind directly to the promoter of the biosynthetic
genes [13]. Therefore, there are many regulatory signals confluent to
activate a BGC instead of a well-defined regulatory cascade [1]. At a
global level, a shortage of nitrogen or phosphate is one of the main
causes of the S. coelicolor morphological differentiation and secondary
metabolites production. This since its main nutirent source is vegeta-
tion, which is rich in carbon and poor in nitrogen and phosphate [21].
The response to changes in nitrogen availability is mainly mediated by
the orphan response regulator GlnR [20]. Under nitrogen starvation,
GlnR activates the transcription of genes involved in nitrogen assimila-
tion, amino acid biosynthesis, and secondary metabolism, among other
processes [22]. In the case of phosphate, the response to its limited
availability is controlled by the TCS PhoR-PhoP, where PhoP is the
response regulator. PhoP also binds to the promoter of the glnR gene
and many genes related to nitrogen metabolism; nevertheless, it has not
been proved control of GlnR over the phoP gene [22]. PhoP also has
another type of cross-regulation with the global regulator AfsR; which
seems to be highly related to the production of the two main antibi-
otics in S. coelicolor : Actinorhodin (ACT) and Undecylprodigiosi (RED).
This cross-regulation shows a deep interconnection between primary
and secondary metabolism, and the complexity of BGCs activation [20].
Besides these global regulators, many others are involved in secondary
metabolism, where most of them are TCSs [23].

Even though most TCSs are located outside the BGCs, there are
some which are part of the clusters as the TCS AbsA1-AbsA2 [20].
The absA operon, which encodes the sensor kinase AbsA1 and the
response regulator AbsA2, is located within the Calcium-Dependent
Antibiotic (CDA) BGC, regulating its production. Nevertheless, it also
has a strong regulatory effect over other antibiotics such as ACT and
RED [20]. These regulatory genes, which are part of the BGCs are
defined as Cluster-Situated Regulators (CSRs), usually control its own
BGC. Nevertheless, as in the case of the TCS AbsA1-AbsA2, they have
been prove also to control different clusters [1], [18]. Part of these CSRs
are the regulatory activators of each cluster, which bind directly to the
promoters upstream the BGC; and in the case of streptomycetes, they
are defined as Streptomyces Antibiotic Regulatory Proteins (SARPs).
The main SARPs of S. coelicolor are: CpkO (also known as KasO) for
CPK A, CdaR for CDA, RedZ and RedD for RED and ActII-orf4 for
ACT [13]. These SARPs are activated by global regulators and in response
to nutrient depletion, through a signal transduction cascade [19]. The
regulatory interactions described above and the lack of understanding
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of the complete regulatory processes in S. coelicolor are what hinder
the overproduction of a desired metabolite through the activation of the
BGC by genetic engineering.

1.3 original contribution

The purpose of this work was to define the best methodology for the
reconstruction of a GRN, which serves as a model of the regulation of
Streptomyces coelicolor, and the following objectives were proposed:

general objective: To develop a methodology for the inference
of gene regulatory networks from genomic and transcriptomic data to
build a proper gene regulatory network of Streptomyces coelicolor, which
eventually will help to improve the modeling of the microorganism
metabolism through its integration into a metabolic model.

specific objectives:

• To collect and curate regulatory interactions experimentally dis-
covered from literature for S. coelicolor

• To develop a new methodology for the inference of gene regulatory
networks from genomic and transcriptomic data.

• To apply the methodology developed to infer a gene regulatory
network for S. coelicolor and assess it with respect to the curated
network, studying its functional architecture and system-level ele-
ments.

• To apply an integration method to the inferred regulatory network
and a metabolic network to improve the modeling of secondary
metabolism in S. coelicolor.

1.4 organization of the thesis

This document is organized into seven chapters, including the Introduc-
tion (Chapter 1) and the Conclusions (Chapter 7). Each chapter has an
introduction, which connects each chapter with the previous ones; its
methodology; and its results. The chapters are:

chapter 2. Gene Regulatory Network Reconstruction: In this chapter
we present the collection and curation of regulatory interactions of
S. coelicolor. Then we reconstruct diverse curated networks accord-
ing to their source. Finally, we analyze the structural properties
and the functional architecture of these networks.
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chapter 3. Gene Regulatory Network Inference from Transcriptomics:
In this chapter, we infer a GRN from transcriptomic data from
different sources. We apply 7 different mathematical methods, from
which two are proposed in this work. Finally, we assess the inference
applying the curated network as GS.

chapter 4. Gene Regulatory Network Inference from Genomics: In
this chapter, we infer a GRN from the genome of S. coelicolor. We
apply 3 different methods for motif discovery in DNA sequence.
Then, we assess the inference and performed a statistical validation
to complement the curated networks.

chapter 5. Assessment of the Inferred Gene Regulatory Networks: In
this chapter, we compared the structural properties and functional
architecture of the curated and inferred networks, to perform a
thorough assessment of the inference.

chapter 6. Biotechnological application of Inferred Gene Regulatory
Networks: In this chapter, we present some of the possible applica-
tions of the curated and inferred networks.

In the supplementary file can be found most of the tables of this work,
along with the final inferred networks.



2
GENE REGULATORY NETWORK
RECONSTRUCTION

2.1 introduction

Biology, traditionally, aimed to understand living organisms from the
detailed knowledge for each one of the components constituting it, even
to the molecular level. Nevertheless, with the increasing level of biological
data and the advances in the computation field, it becomes evident that
the behavior of the systems present in every living organism cannot be
characterized by simple fundamental laws, instead, they work through
complex and non-linear interactions between the different molecules, such
as DNA, RNA, proteins and small molecules [24], [25]. Here is where
systems biology appears as a new field in biology to help us understand
the biological process at a system-level [26]. This approach allows us to
understand a biological process in-depth, revealing its structure, dynam-
ics, and control, besides allowing us to apply methods for the design
and modification of the systems [26]. For the study of some biological
processes such as metabolism and regulation at a system level, biological
networks it is a proper initial approach for its representation. This since
the genes, proteins, and other molecules; and their interactions can be
represented as graphs, moreover, graph theory can be applied to them to
reveal new aspects of the biological processes that are not evident from
the study of the individual components [24].

2.2 gene regulatory networks

Gene Regulatory Networks (GRNs) represent cellular regulation as a
graph, where the nodes or vertexes are the genes, and the links are the
regulatory interactions among them. The number of nodes is denoted by
N and is the same as the size of the network. In this case, as this is an
initial model of S. coelicolor regulation, we focus solely on transcriptional
interactions among Trancription Factors (TFs) and Target Genes (TGs)
(see Figure 2.1). TFs are combined with the gene encoding them, thus
the network is solely among genes. These networks have some specific
structural features, which are presented below [27], [28].

2.2.1 Gene Regulatory Network are scale-free

Traditionally, networks have been represented and analyzed as random
graphs, in which links are placed randomly among the nodes. As nodes

9
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Figure 2.1: Gene Regulatory Network. Red nodes are TFs and grey nodes are
TGs.

are placed randomly, most of the nodes have roughly the same degree,
close to the average degree ⟨k⟩. Thus, the degree distribution follows a degree The

degree of a node,
or connectivity, is
the number of
connections it has
to other nodes. It
is denoted as ki for
the ith node. In the
case of directed
networks, the
incoming
connections are
denoted as kin, the
outgoing as kout,
and the total degree
ki = kini + kouti .

Poisson distribution with a peak at P (⟨k⟩) (see Figure 2.2a). Nevertheless,

degree
distribution
Denoted as p(k), is
the probability of
having exactly a
degree k for a
randomly selected
node.

Barabási et al. [29], after analyzing diverse networks reconstruct from
real data, proposed that the degree distribution of most of these networks,
including biological ones, follow a power law p(k) ∼ k−α (see Figure 2.2b),
instead of a Poisson distribution. The authors denote this type of network
as scale-free since they maintain this property at different stages of their
development. The difference in the degree distributions comes from
that, in random networks, we find few nodes with low connectivity and
practically none with high connectivity; however, in scale-free networks,
most of the nodes have low connectivity, and some nodes with very high
connectivity are present. This is due to two aspects: first, while random
networks are considered to have a constant number of nodes, scale-free
networks growth constantly due to the addition of new nodes; second,
while in random networks the probability of connection among the nodes
is uniform, scale-free networks have shown that new nodes prefer to
connect to highly connected ones. These highly connected nodes are also
known as hubs. The value of α reveals the role of the hubs in the system.
The characteristics of scale-free network are present in networks with
an 2 < α < 3. For α = 2 a hub-and-spoke, where all the nodes connect
to a single central hub. For an α > 3 these characteristics vanish, and
the network starts behaving as a random network. And for an α < 2 the
network has scale-free properties as long as there are multi-links present,
which means two or more links between the same two nodes or self-loops.
[30]
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(a) Poisson (b) Power law

Figure 2.2: Random vs. Scale-free Networks. Modified from Barabási et al.
[30].

2.2.2 Gene Regulatory Network are ultra-small world

The small-world phenomenon is present in all networks, and it states path length is
the distance in
terms of links
between two nodes.

that any two nodes are connected at a small distance compared to the
size of the network. More specifically that ⟨d⟩ ≈ lnN

ln⟨k⟩ , which means that
the average path length depends on lnN which is much smaller than the
size of the network N . In the case of scale-free networks, the presence
of hubs allows the nodes to be at a very short distance from all the
other ones to the order of ln lnN for an 2 < α < 3, causing the effect of
ultra-small world. [30]

2.2.3 Gene Regulatory Network are hierarchical modular

In networks eventually are present communities. These are groups of clustering
coefficient
denoted as Ci,
measures the
interconnection
among the
neighbors of a
node. Ci can vary
from 0 to 1, where
a Ci = 0 implies
that none of the
neighbors connects
to each other, and
a Ci = 1 that all
the neighbors are
connected.

nodes that have a higher probability of connecting to each other than to
nodes outside the community. The concept of communities in networks
is very important in the study of biological networks since it is known
that, in the cell, molecules form functional modules which focus on
specific cellular functions. Nevertheless, the presence of communities
in biological networks might be contradictory to the fact that they are
scale-free, which implies that most of the genes are connected to a few
hubs. In this case, the hierarchical modular network model conciliates
both characteristics. This model consists of small communities that form
larger communities, which in turn are combined again in much larger
communities (see Figure 2.3c). This model produces a scale-free network
with an exponent α = 2.1. In this model the clustering coefficient of
the node depends on its degree; the higher the degree the smaller the
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clustering coefficient C(k) ∼ k−1. This means that small degree nodes
reside in highly connected communities, while hubs are linked to different
communities having a small cluster coefficient. [30]

(a) Random (b) Scale-free (c) Hierarchical
Modular

Figure 2.3: Hierarchical Modular Network. Modified from Barabási et al. [30].

2.2.4 Natural Decomposition Approach

The Natural Decomposition Approach (NDA) is a framework for the
characterization of system-level components of the GRNs based on their
intrinsic global properties. The nodes, in this case, genes are classified
into four categories: global regulators, modular genes, intermodular genes,
and basal machinery genes. They interact with each other in the following
way: global regulators coordinate both the basal machinery of the cell,
genes whose products are essential for the cell maintenance (DNA and
RNA polymerases, transfer RNAs (tRNAs) and its charging enzymes,
ribosomal proteins and RNAs, etc.); and local systems (modules) which
carry specific biological processes and are defined by modular genes.
Meanwhile intermodular genes integrates diverse modules in response to
environmental changes [31], [32].

As it was mentioned before, in the case of hierarchical modular net-
works, the distribution of its cluster coefficient follows a power law,
C(k) ∼ k−1 (see Figure 2.4), which can be divided into two zones: one
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Figure 2.4: Clustering coefficient distribution C(k), and calculated κ value.
The blue line represents the C(k) distribution. The dashed red

line indicates the κ value obtained for this C(k) distribution. Red
triangles represent hierarchical nodes, while green circles indicate

modular nodes. Modified from Freyre-González et al. [31].

where we have nodes with a small degree in highly connected commu-
nities, or modules; and hubs, or in this case global regulators, with a
high degree and low cluster coefficient, connecting to different modules.
To characterize the nodes as hubs we inferred the equilibrium point
where the cluster coefficient distribution diverges; this inflection point
is computed as dC(k)

dK
= −1. From solving this equation, we find the

connectivity (κ) of this inflection point and we characterized nodes with
higher connectivity as global regulators. [31]

These global regulators act as coordinators of the cellular processes;
when they are removed, the network separates into nodes connected in
modules and isolated nodes. These isolated nodes are characterized as the
basal machinery of the cell, as the others are characterized as modular.
Usually, there is a much larger module than the others which is cataloged
as a mega-module. When only genes encoding TFs are considered in
the network reconstruction, there is no evidence of this mega-module,
suggesting the presence of sub-modules and an element of connection in
the mega-module. These nodes that connect the sub-modules and are
non-TFs are therefore characterized as intermodular genes. [31]
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2.3 methodology

2.3.1 Collection and Curation of Transcriptional Regulatory Interac-
tions

2.3.1.1 Data Collection

We review thoroughly literature related to Streptomyces coelicolor A3(2)
to identify its transcriptional regulatory interactions. First, we performed
a quest in Google Scholar and PubMed with the keywords “Streptomyces
coelicolor ” AND “transcriptional” AND “regulation” and different varia-
tions of them. In each of the papers, key information was identified such
as the microorganism strain and mutations, studied genes, experiments
performed, and their experimental conditions. In the case where different
experiments were referend in the paper, or it was a review, the references
were followed to the original research paper.

2.3.1.2 Data Curation

The collected regulatory interactions were standardized and organized
in a table with the following information:

• TF name: Gene name.

• TF locus tag: Gene locus tag as stated in the paper. For papers
published before S. coelicolor genome sequencing a locus tag was
assigned according to the paper information and databases such
as StrepDB1, UniProt2 [33], and BioCyc3 [34], among others.

• TF description: Gene biological function according NCBI database4

[35].

• TG name: Gene name.

• TG locus tag: Same as TF locus tag.

• Experiment: Experiments performed in the research that support
the regulatory interaction; names were standardized and summa-
rized in seek of clarity.

• Evidence: Strongest experimental evidence that supports the regu-
latory interaction. See Section 2.3.1.3.

1 http://strepdb.Streptomyces.org.uk/
2 https://www.uniprot.org/
3 https://www.biocyc.org/
4 https://www.ncbi.nlm.nih.gov/

http://strepdb.Streptomyces.org.uk/
https://www.uniprot.org/
 https://www.biocyc.org/
 https://www.ncbi.nlm.nih.gov/
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• Regulatory Function: Regulatory function of the TF over the TG
according to the experiment performed: activation, repression, or
unknown.

• Evidence Classification: Certainty of the direct interaction; classi-
fied as “strong” or “weak” . See Section 2.3.1.3.

• PubMed ID: PubMed ID of the research paper.

• DOI: DOI of the research paper.

• Year of Publication: Year of publication of the research paper.

• Notes: Comments or clarification about the interaction.

2.3.1.3 Evidence Classification

Following the evidence classification scheme proposed by RegulonDB5

[36], [37], we classified the interactions as “strong” or “weak” according
to the methodology of the experiments performed to identify the tran-
scriptional regulatory interaction. Experiments performed to identify
promoters or binding sites were annotated but not considered in the
interaction classification.

“strong”: Evidence of a highly probable direct physical interaction
between the TF and the TG; usually classical experiments.

“weak” : Evidence of interaction between the TF and the TG; however,
there is no certainty whether it is direct or not; usually a high-
throughput protocol.

Some of the evidences of the regulatory interactions curated are:

• Binding of Purified Proteins: Experiments that identify nucleic-
acid binding proteins performed with purified proteins [38]. We
considered this to be strong evidence.

• in vitro Transcription Assay: The study of transcriptional regula-
tion process of a specific TG and TF performed in vitro [39]. We
considered this to be a “strong” evidence.

• Binding Affinity by Bead-based Assays: Experiments that use
Beads in the process to isolate in vivo DNA sequences that have
binding affinity with the TF, such as ChIP [40] and DACA [41]. As
it is not possible to prove direct binding, we consider this evidence
to be weak.

5 http://regulondb.ccg.unam.mx/evidenceclassification

http://regulondb.ccg.unam.mx/evidenceclassification
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• Binding of Cellular Extracts: Experiments that identify nucleic-
acid binding proteins performed with cell extracts [38]. As there is
no certainty of the proteins present, we considered this to be weak
evidence.

• Gene Expression Analysis: Experiments that quantify gene expres-
sion through the measurement of mRNA [40]. We consider this to
be weak evidence.

• Proteomic Analysis: Experiments that quantify gene expression
through the measurement protein levels. We consider this to be
weak evidence.

2.3.2 Gene Regulatory Network Reconstruction

The curated interactions were combined along previously curated from
two different databases; the first one was provided to us by the DBSCR
team6; and the second one was retrieved from RegTransBase [42], which
is available at the Abasy Atlas database [43]. Information for similar
interactions was combined and all interactions were classified according
to their strongest evidence (see page 15). The regulatory function was
represented as “+” for activation and “-” for repression. In the case in
which there is evidence for both effects and are at the same evidence level
(“strong” or “weak” ), the regulatory function is represented as “+/-”. If
there is evidence for both effects, but at different evidence levels, we
keep the regulatory function with the strongest evidence. Finally, when
the regulatory function is unknown is represented as “? ”.

2.3.3 Gene Regulatory Network Structural Properties

2.3.3.1 Estimation of the Degree Exponent (α)

Plotting the node degree distribution will give us an initial idea of the
structural properties of the networks. There we can see if the network is
scale-free (see Section 2.2.1), or hierarchical modular (see Section 2.2.3).
First, we compute the probability as p(k) = Nk

N
, where Nk is the number

of nodes with degree k. Because of the difference in the degrees, which
can be of many orders of magnitudes (see Figure 2.5a), it is more
suitable to plot the distribution in a log scale instead of a linear scale.
As a power-law distribution in a log-log plot will be a straight line, we
will be able to compute the degree exponent from a linear regression.
Nevertheless, simply plotting the probability in a log-log plot, which
is linear binning, is not the most appropriate to compute the degree
exponent computation. This since, we have a large number of nodes with

6 http://dbscr.hgc.jp/

http://dbscr.hgc.jp/
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a small degree allowing us to do a proper estimation of the probability
of these degrees. However, in the case of large degrees, we have very few
nodes to perfomr a proper estimation of the probability, which will bias
the fit of the linear regression (see Figure 2.5b). An alternative is to plot
the complementary cumulative distribution in a manner of improving
the statistical relevance of the nodes with high degrees (see Figure 2.5c).
The cumulative distribution of a power law is

P (k) = Ck−α+1 (2.1)

Then, applying natural logarithm to plot it in logarithmic scale is

lnP (k) = (1− α) ln k + constant (2.2)

Thus, from a linear regression of the cumulative distribution, we can
compute α [30]. This is the same procedure to estimate the exponent
from the C(k), just plotting the clustering coefficient instead of the
probability.

(a) Linear Scale (b) Linear Binning (c) Cumulative

Figure 2.5: Estimation of the Degree Exponent from the degree distribution
plot. Modified from Barabási et al. [30].

Nevertheless, real systems hardly fit a pure power law, they usually
present two recurring features (see Figure 2.6):

low-degree saturation is a flattened probability for small de-
grees, which means that there are fewer small degree nodes than
expected for the case of a pure power law.

high-degree cutoff is a rapid drop in the region of high degrees,
which means fewer high degree nodes and a smaller maximum
degree than expected in the case of a pure power law.

Therefore, we should verify first that the distribution is a power law,
applying the Kolmogorov-Smirnov (KS) test to compare the degree
distribution to the power law and other heavy-tailed distributions such
as lognormal or exponential. The KS test (D) measures the distance
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Figure 2.6: Real Degree Distribution. Modified from Barabási et al. [30].

between two distribution functions as the maximum value of the absolute
difference between two cumulative distribution functions [44]. Therefore,
to compare a data set cumulative probability distribution SN(x) to a
known cumulative probability distribution P (x), the KS statistics is

D = max
−∞<x<∞

|SN(x)− P (x)| (2.3)

After assuring that the distribution follows a power law, we can compute
the Maximum Likelihood Estimator (MLE) of the parameter ˆalpha (“ ˆ”
represents the estimator) as

α̂ ≃ 1 +N

[
N∑
i=1

ln
ki

kmin − 1
2

]−1

(2.4)

where kmin is the lowest degree where the distribution fits a power law;
this since, as it was mentioned before, real systems present a low-degree
saturation and kmin is the bound of this region. As this value is unknown,
the estimation of the parameter α̂ is solved numerically through an
iterative process introducing as initial values the α and kmin estimated
from the log-log plot. The whole process and algorithm in different
programming languages can be found in Barabási et al. [30]7 and Clauset
et al. [45].

2.3.3.2 Natural Decomposition Approach Computation

As it was mentioned before, the NDA classified the genes in four categories
(see Section 2.2.4). The process of the NDA is as follows: First, the GRN

7 http://networksciencebook.com/

http://networksciencebook.com/
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is represented as a direct graph where the edges go from TFs to TGs.
From this graph, the clustering coefficient Ci for each node is computed
and we plot its distribution depending on the out-degree kout. If we have
various degrees with the same clustering coefficient, we compute the
degree mean; thus, we plot the distribution of

C⟨kout⟩ = γ⟨kout⟩−α (2.5)

From this distribution, we can now compute the inflection point κ, solving
the derivative as

κ = α+1
√
αγ · ⟨kout⟩max (2.6)

Then we start we node classification in the following way: First, nodes

Figure 2.7: Natural Decomposition Approach. Modified from Freyre-González
et al. [32].

with kout > κ are denoted as global regulators. They, along with their
interactions, are removed from the graph, leaving us disconnected groups
of genes (modules) and isolated genes not encoding for TFs (basal
machinery). Afterward, the mega-module is identified. From it, all non-
TFs-encoding genes are removed, revealing isolated groups of TFs, which
are the pre-submodules. Subsequently, non-TFs-encoding genes are rein-
tegrated to the submodules according to their TFs: if its TFs belong to
different submodules, then the gene is categorized as intermodular or is
added to the submodule of its TFs otherwise (see Figure 2.7).
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2.4 results

2.4.1 Collection and Curation

(a) Number of publications per year

(b) Number of interactions reported per year

Figure 2.8: Curation from literature of transcriptional regulatory interactions
for Streptomyces coelicolor A3(2).

The first step was to reconstruct a GRN for Streptomyces coelicolor
A(3)2 from experimental data. For this, we first search for papers related
to transcriptional regulation in S. coelicolor in PubMed and Google
Scholar. We collected and curated a total of 124 papers, covering 29
years (from 1990 to July 2019) (see Figure 2.8a). From these papers,
relevant information related to the transcriptional regulation interaction
was retrieved, organized, and standardized (see Section 2.3.1.2). The
curation can be found in the supplementary file (Table 1). We collected
a total of 9714 regulatory interactions among 5331 genes, some of which
were repeated 2 or more times. The TFs which are more studied in
these papers are the ones encoded by phoP (SCO4230), glnR (SCO4159),
and the sigma factor encoded by sigR (SCO5216). The complete list
of the number of publications in which a TF is present and the most
studied interactions can be found in the supplementary file (Table 3).
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We believe this is an important guide for scientists who are designing
new experiments in S. coelicolor. We noticed a significant increase in
the number of interactions reported and papers publish (seeFigure 2.8)
following the complete sequencing of the S. coelicolor genome, in the
year 2002. This since the standardization of the genes facilitates the
study and reporting of the regulatory interactions.

Figure 2.9: Number of interactions for each type of evidence (see
Section 2.3.1.3).

As part of the standardization of the regulatory interactions, we segre-
gate them according to the experimental methodology applied to infer
the interaction. The classification was performed based on the Regu-
lonDB scheme, where we designate the interaction as “strong” and “weak”
according to the experiment performed (see Section 2.3.1.3). “Strong”
evidence is assigned to experiments that prove a physical regulatory
interaction among the TF and the TG, and “weak” when there is no
evidence of direct interaction (see Figure 2.9). The complete list of ex-
periments present in the curation and their classification can be found
in the supplementary file (Table 2). From this curation, we reconstruct
two networks (see Section 2.3.2):

• Curated_FL with a total of 9454 unique interactions, from which
∼5% (438/9454) are “strong”.

• Curated_FL(cS) with the 438 “strong” interactions from Curated_FL.
cS means that are interactions which are categorized as “strong”
in the curation.

Afterward, we gathered the interactions curated along with curations
previously reported. First with the ones reported in RegTransBase, which
is now available at the Abasy atlas database. Then to the ones reported
in DBSCR, which was shared to us in an XML file by the authors of
the database. We follow the same process for these curations that to our
own. First. we classified the interactions as “strong” and “weak” and
then 3 networks were reconstructed:
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• Curated_DBSCR with the 341 interactions from DBSCR where
the ∼34% (115/341) were classified as “strong” interactions.

• Curated_DBSCR(S) with the 115 “strong” interactions form DB-
SCR.

• Curated_RTB with the 330 interactions of RegTransBase, all of
which were categorized as “weak” since there were no information
of the experiments performed.

Then, merging all these networks, we obtained 2 final networks:

• Curated_FL-DBSCR-RTB which is the merging of Curated_FL,
Curated_DBSCR, and Curated_RTB with a total of 9707 unique in-
teractions for 5386 genes. This is the most extensive experimentally
based GRN up to date.

• Curated_FL(cS)-DBSCR(S)with the “strong” interactions from the
meta-curated network Curated_FL-DBSCR-RTB. This network
consists of 480 interactions for 387 genes.

Figure 2.10: Diagram of the Curated Network Curated_FL(S)-DBSCR(S).

A total of 7 GRNs for Streptomyces coelicolor A(3)2 were reconstructed,
and their complete description can be found in Table A.1.
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2.4.2 Structural Properties of the meta-curated network

Next, we checked the structural properties of the curated networks. The
complete structural properties can be found in the supplementary file
(Table 9). This curated network fulfills the main structural characteristics
of a biological network. First, all have a low network density (< 2%),
where the largest networks (Curated_FL and Curated_FL-DBSCR-RTB)
have the smallest densities (∼ 0.1%), and the smallest networks have
the largest densities. The average path length for all the networks is
smaller than the logarithm of their network size, is in the same order as
ln ln(N) which indicated that they are ultra-small world networks (see
Section 2.2.2). Then, we plot the cumulative probability of the degree
distribution (P (k)). For the meta-curated network Curated_FL-DBSCR-
RTB, the distribution is close to a straight line in a log-log plot, which
indicates that the distribution seems to follow a power-law with and
α = 1.74 (see Figure 2.11a). Thus, we considered this network to be
scale-free (see Section 2.2.1). As it was mentioned before, a network with
an α < 2 can be considered scale-free if there are multi-links present,
such as self-loops, like in this network. From the distribution of the other
curated networks, we concluded that all can be considered scale-free (see
Figures A.1 to A.6).

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure 2.11: Cumulative distribution of the network node degree (P (k)) and
clustering coefficient (C(k)) of the meta-curated network

Curated_FL-DBSCR-RTB.

Knowing that the networks seem scale-free, we next checked if they
were hierarchical modular (see Crefsec:hmod). For this, we plotted the
cumulative distribution of the clustering coefficient (C(K)). For the case
of the meta curated network Curated_FL-DBSCR-RTB, in a log-log plot,
the distribution is close to a straight line with an α = 1.1, which indicated
that the network is hierarchical modular (see Figure 2.11b). The same
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was for all the other curated networks. These three characteristics, small
world, scale-free, and hierarchical modular have been previously observed
in diverse bacterial networks [27]. The structural properties of GRNs for
other bacteria can be found at the Abasy Atlas Database.

To assure that these networks were scale-free, we compute the KS
distance between their degree distribution and several similar probability
functions: power law, truncated power law, log-normal, stretched expo-
nential, and exponential. All the networks have the smallest distance
to a power-law distribution, except to the Curated_DBSCR(S) which
have similar distances to a power law and a log-normal. Assuring that
all the distributions are power-law then we recompute the α through a
maximum-likelihood estimation (see Section 2.3.3.1). All the coefficients
were between 2 and 3, which corroborated that all the curated networks
are scale-free. The KS distances and coefficients can be found in the
supplementary file (Table 8).

2.4.3 Natural Decomposition Approach of the meta-curated network

Figure 2.12: Diagram of the curated network Curated_FL-DBSCR-RTB.

Knowing that the meta-curated network Curated_FL-DBSCR-RTB
is scale-free, which means that hubs (Global Regulators (GRs)) are
present in the GRN; we can categorize the genes applying the NDA
methodology (see Section 2.2.4) in four structural classes: GRs, modular
genes, intermodular genes, and basal machinery. After the κ is computed
(see Section 2.2.4), we found the GRs and removed them from the network
leaving separated subgraphs (modules) (see Figure 2.13), where a mega
module is present, and disconnected genes (basal machinery). From this
mega module, intermodular genes are found. We decided to study the
curated network Curated_FL-DBSCR-RTB since is the most complete
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one. The NDA analysis revealed 20 GRs, 0.37% of the 5386 genes present
in the network, 502 modular genes (9.32% ), 18 intermodular genes
(0.33% ), and 4846 basal machinery genes (89.97% ). The cathegorization
for each gene can be found in the supplementary file (Table 5).

Figure 2.13: Diagram of the curated network Curated_FL-DBSCR-RTB after
removing the predicted Global Regulator by the NDA.

2.4.3.1 Global Regulators

As it was mentioned before, 20 GRs were identified by the NDA. Nine of
which were reported in the review about GRs in Streptomyces published
by Martín et al. [22]. The review provides a list of genes considered as
global and wide-domain regulators, due to the hundreds of genes they
regulate and the multiple effects they produce. In an additional literature
search, we found an additional 20 genes reported individually either
as global or pleiotropic regulators. From these 13 were categorized as
GRs by the NDA. The complete list of publications can be found in
the supplementary file (Table 4). The nine GRs previously reported in
the review are the TFs encoded by argR (SCO1576), absA2 (SCO3226),
phoP (SCO4230), afsS (SCO4425), abrC3 (SCO4596), dasR (SCO5231),
absC (SCO5405), ndgR (SCO5552), and scbR (SCO6265). phoP is the
gene with the highest out-connectivity in the meta-curated network
Curated_FL-DBSCR-RTB. PhoP is a response regulator from the TCS
PhoR–PhoP. It has been experimentally identified to act as GR in vivo
controlling phosphate scavenging systems and cell wall/extracellular poly-
mer biosynthesis [46]. The other 10 genes that were classified as GRs in
the review, were not identified as such by the NDA. The reason for these
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false negatives is the criteria used by the author to their classification
since it is done by their capability to regulate genes from multiple path-
ways (wide-domain regulators) or the regulation of hundreds of genes.
Therefore, in an incomplete GRN, TFs controlling genes from multiple
pathways but with a few TGs in the network will not be identified as
GRs by the NDA. This since a high out-connectivity and low clustering
coefficient of the gene are, by definition, features required to be classified
as GR. Following, we describe the GRs or pleiotropic regulators that
were reported individually. The sigma factor encoded by SigR (SCO5216)
was recently reported as GR controlling DNA repair, protein quality
control, thiol homeostasis, sulfur metabolism, ribosome modulation, and
DNA repair [47]. ScbR2 (SCO6286) has been identified to regulate mor-
phological differentiation and stress response through a plethora of genes
across the S. coelicolor genome, suggesting a global-level regulation
[47]. The ECF sigma factor encoded by SCO4117 has been previously
reported as a pleiotropic regulator that controls secondary metabolism
and morphogenesis [48]. The gene SCO5283 has just been described to
encode the cognate response regulator of the TCS SCO5282/SCO5283,
having a pleiotropic effect in glycolysis, gluconeogenesis, stress-signaling
pathways, proteins secretion, and cell envelope metabolism [49]. Rok7B7
(SCO6008) has been found to control carbon catabolite repression, antibi-
otic biosynthesis, xylose utilization, and morphological development [50].
The TF encoded by SCO7173 has been reported as pleiotropic regulators
of phosphate starvation response and actinorhodin biosynthesis [51]. The
TF encoded by SCO5785 is a response regulator related to antibiotic syn-
thesis, sporulation, and several ribosomal gene [52]. Aor1 (SCO2281) has
been recently described as a global regulator, orphan response regualtor
containing REC and HTH domains, which act as a positive regulator of
antibiotic production of ACT, RED, and CDA; and of the genes involved
in morphological differentiation [53]. WblA (SCO3579) has been reported
as a pleiotropic regulator of various antibiotic pathways, the formation
of aerial hyphae, and response to oxidative stress[54]. HrdB (SCO5820)
is known to be the housekeeping sigma factor of S. coelicolor and to
be essential for its survival, thus affecting a great number of biological
processes and genes [55]. The only gene predicted as GR that has not
been reported as such is SCO3356, which codes for the ECF sigma factor
SigE and has only been reported as a coordinator of the cell wall integrity
system [56], [57]. Nevertheless, the maintenance of the wall integrity
carries diverse biological functions, which might imply a pleiotropic effect
on the cell.

2.4.3.2 Modular Genes

There are in total 46 modules and submodules (see Figure 2.14a). There
is a mega module (Module 16), which is dived into 12 submodules. The
largest of the submodules has 313 genes, which is more than half of
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the modular genes. During the process of the NDA, these modules were
annotated by computing their functional enrichment [43]. The full list
of modules and their annotation can be found in the supplementary
file (Table 6a). From the 46 modules and submodules in the GRN, 26%
(12/46) are annotated. Most of the modules annotated are related to
cellular metabolism, organic substances metabolism, and biosynthetic
processes (see Figure 2.14b), which are fundamental processes for every
cell. There are also modules related to the response to stimulus, which is
one of the main characteristics of S. coelicolor, its ability to respond and
adapt to environmental change. From the annotation of these modules,
through the systems-level guilt-by-association strategy, we were able to
suggest the annotation for 79 genes that were not annotated before in
Gene Ontology Annotation (GOA) [58] (Supplementary file Table 6b).
This is one of the main applications of the NDA methodology.

(a) Number of genes per module

(b) Distribution of the modules per biological function

Figure 2.14: Modules of the meta-curated network
Curated_FL-DBSCR-RTB.
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2.4.3.3 Intermodular Genes

Intermodular genes integrate the regulatory response of different modules,
which means they coordinate different biological processes in the cell. This
analysis also revealed 18 intermodular genes. Five genes are predicted as
intermodular genes. Two genes glnA (SCO2198) glnII (SCO2210), en-
code glutamine synthase and the amtB-glnK-glnD (SCO5583-85) operon
encodes an ammonium transporter, a PII protein, and an adenylyltrans-
ferase. These five genes are known to be mediators between the nitrogen
and phosphate metabolism through the binding to their promoter of the
GlnR (SCO4159), the major regulator of nitrogen metabolism, and PhoP
(SCO4230) the principal regulator of phosphate metabolism [59]–[61].
Moreover, glnII is also involved in the onset of mycelial differentiation,
which might suggest a role in the regulation of secondary metabolism
[62]. Additionally, an intrinsic role of glutamine synthetase in secondary
metabolism has been also suggested in S. lividans [63]. This suggests
that both genes might have in role in the coordination of nitrogen and
phosphate metabolism, along with the secondary metabolism. Another
gene, ssgB (SCO1541) a homolog of the sporulation gene ssgA, and its
product has been suggested as a key regulator of the process of growth
cessation before sporulation-specific cell division, affecting cell sporula-
tion along with actinorhodin production [64]. Regarding another gene
cluster agl3EFG (SCO7165-67) classified as intermodular, Hillerich et al.
[65] suggested it have the function of carbohydrate transport. This cluster
appears to be regulated by GlnR (SCO4159) and Agl3R (SCO7168), a
GntR family transcriptional regulator. While GlnR is known to regulate
the genes involved in nitrogen metabolism [66], many GntR family regu-
lators have been proved to have a role of repression in carbon metabolism
[65]. This might suggest that this cluster has a role in coordinating ni-
trogen and carbon metabolism, as it has been shown for other processes
such as nitrogen and phosphate metabolism [59]. Other intermodular
genes are the actII-orf2 and actII-orf3 (SCO5083-84), which are part
of the BGC of ACT antibiotic. Both genes are regulated by actII-orf4
(SCO5085) (the SARP of ACT), AfsS (SCO4425) and SCO7173. AfsS
integrated the response to phosphate limitation, through PhoP, and the
response to unknown stimuli, through AfsR (SCO4426) [67]. SCO7173 is
also involved in phosphate metabolism and also affects the biosynthesis
of ACT, which might be achieved through these intermodular genes [52].



3
GENE REGULATORY NETWORK INFERENCE FROM
TRANSCRIPTOMICS

3.1 introduction

We curated a high number of regulatory interactions inferred experimen-
tally from the literature. As a result of this curation, we were able to
reconstruct a GRN for Streptomyces coelicolor A(3)2. Nevertheless, the
meta-curated GRN covers only the ∼ 65% (5386/7825) of its genome and
has ∼ 41% (9707/23908) of the expected total regulatory interactions (see
Section 3.2.4). Considering that many of these interactions are indirect
effects, we are still missing a great portion of the regulatory interactions
among all the genes in the microorganism. However, with the high-
throughput technologies developed in recent years, the reconstruction of
a complete GRNs through computational inferred regulatory interaction
appears as an appealing alternative. From these high-throughput tech-
nologies, we can obtain genome-wide expression profiles, measured as the
amount of RNA transcripts related to each gene, at different conditions.
Then, through mathematical, statistical, and computational tools, we can
infer regulatory influences among RNA transcripts [68]. Moreover, the
reconstruction of a regulation model would be advantageous for properly
analyzing the vast amount of information obtained by high-throughput
data [69]. Here we infer a GRN from transcriptomic data, through seven
different methods, and assess their performance considering the curated
network Curated_FL(cS)-DBSCR(S) as the Gold Standard (GS).

3.2 methodology

3.2.1 Data Extraction

We collect transcriptomic data for S. coelicolor from two different sources.
First from the NCBI Gene Expression Omnibus (GEO) [70], and second
from the COLOMBOS database [71]. COLOMBOS is a compendium
of microarray and RNA sequencing (RNA-Seq) data from NCBI GEO
and ArrayExpress. From there we obtain a dataset of 371 samples of
microarray data for 8239 genes. In the NCBI GEO database, to June of
2019, there were 121 samples from RNA-Seq data and 888 samples from
microarrays. Nevertheless, not all RNA-Seq datasets were processed the
same, and the microarray data came from different platforms. The list
of datasets of RNA-Seq and their normalization can be found in the
supplementary file (Table 7a). For RNA-Seq we take the higher amount

29
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of data that have the same normalization. Thus, we selected the series
GSE132487 and GSE132488, which came from the same study, for a total
of 54 samples. In the case of microarrays, as there is not an approved
methodology for platform integration for GRN inference, we chose to
work with the gene expression data from only one platform. The two
largest ones were the GPL4908 for spotted cDNA with 238 samples
and the GPL9417 for Affymetrix with 137 samples. We decided to use
the data from the Affymetrix platform, due to higher confidence in its
measurements[72]–[74] and the tools available for its handling.

For the COLOMBOS and the RNA-Seq data, we worked with the data
provided without any further processing. For the Affymetrix data, we
downloaded the raw data form NCBI GEO with the GEOquery package
[75]. Then we performed a Robust Multi-chip Averaging (RMA) nor-
malization with the affy package [76]. The RMA is a method developed
specifically for Affymetrix normalization [77]. Then we identified a batch
effect in the data after the normalization through a guided Principal
Component Analysis (PCA) [78]. The batch effect is data variations
among groups of samples analyzed together (batches) and is related to
experimental features that are not biological, such as performing different
experiments in different machines [79]. This analysis was performed with
the gPCA package. Afterward, we correct this batch effect with the
ComBat method [79] from the sva package [80]. All the packages are
available in Bioconductor for R1. As most of the articles curated are
from plasmid-free strains of S. coelicolor, we selected only the genes in
the chromosome. Thus, after filtering all the datasets, we finally obtained
for Affimetrix the gene expression data of 7738 genes, for COLOMBOS
the data of 6952 genes, and for RNA-Seq the data for 7824 genes, of the
7846 genes of the chromosome according to NCBI Genome [81].

3.2.2 Network Inference

Marbach et al. [82] performed a comprehensive assessment of over 30
GRN inference methods as part of the Dialogue on Reverse Engineer-
ing Assessment and Methods (DREAM) project, and it was called the
DREAM5 challenge. This challenge with in silico data and biological
data from different microorganisms. They did not find a method that
performed the best consistently through the different data sets. Nev-
ertheless, there were some methods that stuck out, such as TIGRESS,
CLR, GENIE3, two-way ANOVA and Inferelator. In previous works at
FreyreLab with different microorganisms, we also found these methods
to be among the best, plus MRNET, which was not evaluated in the
DREAM challenge. Therefore, we selected these methods to perform a
GRN inference of Streptomyces coelicolor A3(2). Moreover, we proposed

1 https://www.bioconductor.org/

https://www.bioconductor.org/
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a variation for the two-way ANOVA method and a new method for GRN
inference, which will be described below.

These methods can be divided into two categories, co-expression meth-
ods, and influence methods. The first category is a methodology that
finds genes with similar expression profiles, which will imply that they
are expressed simultaneously. If one of these genes is a TF, we assumed
that there is a regulatory interaction between the TF and the other gene.
This is a rough assumption since the TF and the gene might also be part
of the same regulon and are regulated by a second TF. Also, in the case
that both are TFs we will have to count the interactions on both sides
since there is no certainty in the direction of the regulatory interaction.
The second one is a methodology that measured the influence of one
gene expression profile over the other one. In this case, we have certainty
in the regulatory interaction and a clear direction of this interaction.

3.2.2.1 Co-expression Methods

• Context Likelihood of Relatedness (CLR) applied the relevance
network approach. This method scores the similarity between
the expression profiles of two genes through mutual information.
This metric identifies statistical dependence between two variables,
without assuming linearity, continuity, and other properties, as
in the case of the correlation metric. The relevance network is
then refined through a background correction step, where indirect
influences and false correlations are eliminated. This is done through
the computation of the statistical likelihood of each score obtained
by mutual information compared to the distribution of all the scores,
taking the ones that are significantly higher than the background
distribution. [83]

• MRNET is based also on the mutual information metric. The
method applied Maximum Relevance/Minimum Redundancy (MRMR)
which selects the variables with the highest mutual information
score with respect to a given gene (maximum relevance). These
variables are selected from the ones that are maximally mutual
independents (minim redundancy). The purpose of this is to min-
imize the inference of indirect interactions since they will have
redundant information with respect to the direct ones. [84]

Both methods are implemented in R and are available in the minet
package [85] of Bioconductor.

3.2.2.2 Influence Methods

• Gene Network Inference with Ensemble of trees (GENIE3) divided
the problem in N number of subproblems, where N is the number
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of genes in the data. Each subproblem aims to determine the
regulators of the given gene, and it is independent of the other
ones. As the main purpose is to identify genes that directly influence
the expression of the gene, the subproblem can be addressed as a
feature selection problem. Therefore GENIE3 applied the embedded
feature ranking mechanism of tree-based ensemble methods. [86]

• Inferelator applied standard regression and model shrinkage (LASSO)
to infer regulatory influences among genes, considering the expres-
sion levels of the regulators and the interactions among them.
Inferelator considers a regression problem where they want to pre-
dict the expression level of a given gene from the expression level
of its regulators. There Least Absolute Shrinkage and Selection
Operator (LASSO) shrink or set to 0 some of the coefficients of the
regression. This is to reduce the variance of the predicted values
to improve the accuracy of predictions. Also, it will allow us to
easily identify the variables with the strongest effect, in this case,
the regulators with the higher influence. [87]

• Trustful Inference of Gene REgulation using Stability Selection
(TIGRESS) applied Least Angle Regression (LARS) along with
stability selection. LARS is highly related to LASSO regression,
from which they select a set of regulators. The stability selection
process is to run several times LARS resampling in each run the
data and the variables. TIGRESS finally select the regulators that
were selected with the higher frequency across all the runs. [88]

We used the Matlab implementation for GENIE3 and TIGRESS and
the R implementation for Inferelator.

3.2.2.3 Proposed Methods

friedman: We proposed a modification of the method proposed
by Küffner et al. [89]. Here a new score for GRN inference derived
from the Analysis of Variance (ANOVA) is suggested. This score id
a non-linear correlation coefficient which described the likelihood of
interaction between a TF and a TG. A two-way ANOVA is used to model
a dependent variable (TG expression) as a response of two independent
variables C and G, as well as the error. In this case, C is the effect across
different experimental conditions of the differential expression and G is
the similarity in the expression profiles of the TG and the TF evaluated.
The null hypothesis for a two-way ANOVA is that there is no significant
difference in means of C, G, and their interaction. Thus, the sum of
squared deviations (SS) is divided into four components:

SST = SSC + SSG + SSCG + SSerror (3.7)
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Where a high SSC represents a strong difference in the expressions
among conditions. A high SSG represents a strong difference in the
expression of both genes. And a high SSCG indicates that the two effects
are liked, which means strong differences among conditions due to strong
differences between the genes. Therefore, the strength of association
(η2+) is proportional to the fraction of SSC of the total sum ST , i. e. the
fraction of the total variance that corresponds to the difference in the
expression among conditions.

η2+ =
SSC

SST

(3.8)

In contrast to other correlation coefficients, η2+ do not identify negative
correlations. Thus, reversing the signs of the TF expression profile, we
can compute η2−. And compute the final η2 as

η2 = max(η2+, η
2
−) (3.9)

However, ANOVA has specific requirements to perform a proper applica-
tion of the metric. One of them is that the distributions are assumed to
be normal [90]. This might not be accurate in the case of gene expression
profiles. Therefore, we proposed to compute the non-linear correlation
coefficient from a Friedman Test instead of a two-way ANOVA. This is a
non-parametric alternative since it does not assume normality [91]. The
computation of η2 is the same as in Equations (3.7) to (3.9). The algo-
rithm was implemented in Matlab, both the ANOVA and the Friedman
method.

statmodel: Based on the Statmodel method [92], we proposed a
novel method for GRN inference. This method is an alternative tool for
statistical modeling and analysis of experiments than ANOVA. Since this
methodology allows us to determine the influence of independent factors
(TFs expression) over a response variable (TG expression, we found it
as a proper tool for GRN inference. For this purpose, we proposed a
modification of the methodology initially presented and a suggested
score for the interaction reliability. Statmodel presents some advantages
concerning ANOVA, such as no assumption of the data distributions and
the minimization of the variance of the residual error probability model,
reducing the chances of over-fitting. Moreover, this methodology reduces
the spurious effects minimizing the number of predictor variables, which
is mainly what we look for in GRN inference.
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The method is based on the following model where a response variable
(Y ) is represented as a linear combination of the predictor variables (Xi)

Y = β0 +
n∑

i=1

βiXi + ε (3.10)

where βi is the coefficient for each one of the predictors, β0 is the
independent coefficient and ε is the random error of the model. To find
the best model representing the response variable, we minimize the
error variance maintaining the model unbiased and parsimonious. This
is achieved through the following optimization problem:

min
β

{V ar(ε), n}

s. to E(ε) = 0
(3.11)

where ε is obtain form Equation (3.10) as

ε = Y − β0 −
n∑

i=1

βi(Xi) (3.12)

To accomplish the restriction E(ε) = 0 and reduce the effect caused by
different orders of magnitudes among the variable, we can rewrite the
Equation (3.10) as

Y − ⟨Y ⟩
max(Y )−min(Y )

=
n∑

i=1

β∗
i

Xi − ⟨Xi⟩
max(Xi)−min(Xi)

+ ε∗ (3.13)

which is obtained by replacing

β0 = ⟨Y ⟩ −
n∑

i=1

βi⟨Xi⟩ (3.14a)

βi = β∗
i

max(Y )−min(Y )

max(Xi)−min(Xi)
(3.14b)

ε = ε∗(max(Y )−min(Y )) (3.14c)

Considering that the expected value of the average value of a random
variable X is

E(⟨X⟩) = E(X) (3.15)
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From Equations (3.13), (3.14c) and (3.15)

E(ε) = (max(Y )−min(Y ))E(ε∗)

= E(Y − ⟨Y ⟩)−
n∑

i=1

β∗
i

max(Y )−min(Y )

max(Xi)−min(Xi)

E(Xi − ⟨Xi⟩)
= 0

(3.16)

Therefore, the restriction in Equation (3.11) is fulfilled and the predictions
of the model can be considered unbiased.

Moreover, to obtain a parsimonious model, we should reduce the num-
ber of parameters of the model. This can be done through a hypothesis
test to find the coefficients β∗

i that are significantly different from zero,
as following

H0 :β
∗
i = 0

Ha :β
∗
i ̸= 0

(3.17)

To perform this test without making assumptions of the distributions of
the variables, we can rewrite Equation (3.13) as

Y − ⟨Y ⟩
max(Y )−min(Y )

= β∗
i

Xi − ⟨Xi⟩
max(Xi)−min(Xi)

+
∑
i ̸=j

β∗
j

Xi − ⟨Xi⟩
max(Xi)−min(Xi)

+ ε∗

= β∗
i

Xi − ⟨Xi⟩
max(Xi)−min(Xi)

+ ε∗i

(3.18)

where

ε∗i =
∑
i ̸=j

β∗
j

Xi − ⟨Xi⟩
max(Xi)−min(Xi)

+ ε∗ (3.19)

is a random variable consolidating all the effects different from Xi,
maintaining the restriction E(ε∗i ) = 0.

Therefore, we can evaluate each predictor variable independently.
Considering to subgroups from the data, one positive Xi ≥ ⟨Xi⟩ and
one negative Xi ≤ ⟨Xi⟩, we can perform the hypothesis test. If the
expected value of the standardized response variable

(
Y−⟨Y ⟩

max(Y )−min(Y )

)
for the positive group is different form the one for the negative group
(Equation (3.20), the coefficient β∗

j is considered to be significantly
different from zero.

H0 :E(Y |Xi ≥ ⟨Xi⟩) = E(Y |Xi ≤ ⟨Xi⟩)
Ha :E(Y |Xi ≥ ⟨Xi⟩) ̸= E(Y |Xi ≤ ⟨Xi⟩)

(3.20)
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To perform the hypothesis test, first, we find the probability distri-
bution that better adjusts to Y . Then, we evaluate if the data for the
smallest subgroup is adjusted to this probability distribution. To evaluate
this, we applied a χ2 test in Matlab. The coefficient β∗

j is considered to
be significantly different from zero if the alternative hypothesis cannot
be rejected. This means that the null hypothesis Is rejected by the χ2

test. We selected the smallest group since it has less statistical power
for the hypothesis rejection [93]. Thus, a hypothesis rejected with the
smallest group will be rejected with the other one. Then, the non-zero
β∗
i can be computed as

β∗
i =

Cov(Y,Xi)

V ar(Xi)
· max(Y )−min(Y )

max(Xi)−min(Xi)
(3.21)

This β∗
j gives us the minimum V ar(ε∗j).

For the GRN inference, we proposed as a score of reliability of the
interaction the − log(p-value) of the χ2 test. This, since we look for the
TFs that most affect the expression of the evaluated TG, and according
to the method should be the ones that produce the most different
distributions of Y between both subgroups. Thus, they are the ones that
have the smaller p-values of the χ2 test.

We run all inference methods for each one of the gene expressions
datasets and take as a list of TFs the ones obtained from the meta-
curated network Curated_FL-DBSCR-RTB. We use this list since those
are the genes that are experimentally proven to be TFs. In the case of
co-expression methods, the interactions were filtered so at least one TF is
present. In the case that both genes are TFs the interaction is duplicated
in the opposite sense since there is no certainty of the direction of the
regulation. The output of the inference methods is a list of interactions
ranked according to their score, from the highest to the lowest. The score
is different for each method since it depends on the methodology applied.

3.2.3 Community Networks

As it was mentioned before, the DREAM project [82] performed an eval-
uation of a high variety of methods, from different methodologies. They
were not able to find a tendency in their performance over the different
data sets. This aspect was also seen in previous projects at the Freyre
Lab. This since each method applied different mathematical strategies,
each one with different assumptions and biases [69]. Therefore, each
methodology highlights different aspects of the network. The integration
of the inferred networks presented a robust performance across differ-
ent data sets since it takes the advantages of each methodology while
reducing the biases [69], [82]. Thus, we decided the integrate the inferred
networks into one community network applying the Borda count method.
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We considered Borda since the score is different for each methodology
and it would be difficult to integrate them. Meanwhile, in the Borda
method [82] we considered the position of the interactions in each one
of the ranked lists obtained. The final position of the interaction is the
average position across the lists. If an interaction is missing in one list, its
position in the list is the total number of interactions +1. Thus, missing
interactions have a higher penalization in larger lists. Interactions with
the same score, have the same position in the list.

3.2.4 Network Refinement

From the inference methods, we obtained thousands of interactions,
with, sometimes, all regulators interacting with almost all the genes.
It is established that most regulators interact with genes related to a
specific biological function. Therefore, a methodology must reduce this
large amount of interaction to a more reasonable number. Campos et network

density describes
the fraction of
actual interactions
with respect to the
number of all
possible
interactions among
the nodes

al. [94] performed an extensive study about GRNs properties with all
the networks available, at that moment 71, at the Abasy Atlas database
[43]. They identified a constraint in the network density, which they later
applied in the prediction of the number of regulatory interactions in a
complete GRN. vWhen the density (d) of all the networks was represented
as a function of the number of nodes (n), a decreasing tendency to a
specific value was perceived. They found that this tendency followed a
power law d ∼ n−α with α ≈ 1. As the density is related to the number of
interactions (I), this model was reformulated as I ∼ n−γ with γ = 2−α2.
Assuming n as the total number of genes in the genome, we would be
able to predict from the model the total number of interactions of the
GRN. The exact value of α is computed considering the totality of the
networks and is updated as new networks are added to the database.
Thus, the total number of interactions of a microorganism might slightly
change over time. [94]

3.2.5 Assessment

To perform an initial assessment of the inferred networks, we computed
the Area Under the Receiver Operating Characteristic (AUROC) and
Area Under the Precision-Recall (AUPR) for each one of the networks
using Curated_FL(cS)-DBSCR(S) as the GS. First, for each inferred
network a confusion matrix is computed (see Figure 3.1, which is the base
for these and other metrics. There each one of the inferred interactions
is classified in four categories [95]–[97]:

• True Positives (TPs) describes the inference of an interaction
presented in the GS.

2 https://abasy.ccg.unam.mx/

https://abasy.ccg.unam.mx/
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Figure 3.1: Confusion Matrix.

• False Positives (FPs) describes an inference interaction that is not
part of the GS.

• True Negatives (TNs) describes an interaction that is neither in-
ferred nor part of the GS.

• False Negatives (FNs) described an interaction that is not inferred,
however, is present in the GS.

A Receiver Operating Characteristic (ROC) curve portray the relative
trade-off between the benefits, in this case the TPs interactions (y), and
the cost, the FPs interactions (x) [95].

TPR =
TP

TP + FN
(3.22)

FPR =
FP

FP + TN
(3.23)

We can build a curve computing the True Positive rate (TPR) and False
Positive rate (FPR) of the predictions taking different thresholds for the
score, having a point for each one [95]. We considered only as inferred
(positive) interactions those with a score above the threshold. In this
case, we take each score value as a different threshold. For some methods,
this implies adding one interaction at a time, while for others, where
many interactions have the same score, is more than one interaction.

The point (0, 0) is the point where no interaction is classified as positive
(part of the GS), so there is neither FP, neither TP. The opposite will
be the point (1, 1) where all the interactions are considered positive. The
point (0, 1) is a perfect inference since all the interactions are TP. Thus,
a point is better than another if it has a higher TPR, a lower FPR,
or both. Any point in the diagonal line y = x, the baseline, represents
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predictions performed randomly, and point below this line are predictions
worse than random predictions. [95]

A Precision-Recall (PR) curve is built by plotting the precision against
the recall. The recall, the same as the proportion of the GS total inter-
actions retrieved, is computed as the TPR (see Equation (3.22)). While
precision, the proportion of the GS in the total predicted interactions, is
computed as follow [97]

Precision =
TP

TP + FP
(3.24)

The point (1, 1) represents a perfect prediction since the prediction will
be the same as the GS. The ideal will be a PR curve that goes towards
that point [96]. While the baseline of the ROC curve is fixed to the line
y = x. In the case of the PR curve change for each prediction. It is
determined by the ratio of interaction in the GS (positives (P)) and the
interactions outside of it (negatives (N)) [97], as

y =
P

P +N
(3.25)

As curves are difficult to compare, it is advisable to represent the curve
with a scalar value [96]. Therefore, we compute the AUROC and AUPR
for all the predictions to make the assessment easily comparable. We
considered as the total space of the problem only the interactions among
the genes present in the GS. This since to compute the TN and the FN,
we need to consider all the possible interactions among all the genes,
that are not in the GS. There are 480 interactions for 387 genes (see
Table A.1), then if we consider the 7846 genes of S. coelicolor, the space
of the problem will be much larger. This will produce a larger proportion
of FPs since the method might be inferring actual interactions that have
been not experimentally proved yet [98].

Even though we computed both metrics, we focused primarily on the
PR. This since it has been shown that this metric is more informative than
the ROC in imbalance problems [97]. As the GS has only 480 interactions
and all the possible interactions will be a permutation with repetitions of
the 387 genes, which is equal to 149769 possible interactions. Therefore,
the positive fraction of the GS is much smaller than the negative fraction,
causing this to be an imbalance problem.

PR is more informative in imbalance sets since it focuses on the
correctly predicted GS interactions, while ROC is a trade-off of the
TPRs and the FPRs. However, a high acTPR might depend on a small
set of FN, and a low FPR might depend on a large set of TN, Thus,
the aim of the assessment which is to evaluate the method that better
inferred the GS is a straightforward result of the PR metric, while in the
ROC metric will be more challenging to discern. [97]
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3.3 results

To complement the curated network, we collected high-throughput data
of Streptomyces coelicolor to infer the missing regulatory interactions.
We performed a GRN inference from transcriptomic data, from different
sources. First, we used the microarray data consisting of 371 samples
available from the COLOMBOS Database [71]. Second, we obtain mi-
croarray and RNA-Seq data from NCBI GEO [70]. As there is not a
consensus method for microarray data integration from different plat-
forms, we decide to take the platform with the largest dataset (137
samples), which was an Affymetrix platform. This data was taken raw,
and RMA normalization was performed [77] and the data was batch-
effect corrected [79]. For the case of RNA-Seq, the data is available with
different types of normalization for each series. Therefore, we decided
to take the largest dataset as well (54 samples) (see Section 3.2.1). We
used seven methods for GRN inference based on the gene expression
data: CLR, Friedman, GENIE3, Inferelator, MRNET, Statmodel, and
TIGRESS (see Section 3.2.2.2). Since most of the experiments in the
curation were performed on the S. coelicolor A3(2) strain M145, and
other plasmid-free strains, we restricted the inference to interactions
among genes of the chromosome.

The inference form expression data was performed over the 5 datasets
available, to select the best datast for the inference:

• COLOMBOS (colombos)

• RNA-Seq (rnaseq)

• Affymetrix raw (raw)

• Affymetrix with RMA normalization (rma)

• Affimetrix with batch-effect correction (rmabatch)

To provide insights on the quality of the predictions, the inferred GRNs
were assessed using the network Curated_FL(cS)-DBSCR(S) as GS, and
the AUPR were computed for each one of the networks (see Figure 3.2).
We assessed the inferred GRN based mostly on the AUPR since, as it
was mentioned before, it is more informative for imbalanced datasets
(see Section 3.2.5). Before the assessment to prune the inferred GRN
to its predicted number of interactions, which at the moment, with the
networks available in Abasy, is 23908 interactions (see Section 3.2.4).
This number might be slightly different if new networks are added to the
database. From this evaluation, we notice that, despite a large amount
of data, the prediction with the dataset from COLOMBOS performs
poorly than the other data sets. From the Affymetrix data, the rmabatch
set performed the best with a very similar result to the rnaseq dataset.
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However, the latter comes from one unique study, while the Affymetrix
data comes from different studies with more diverse data. Then, we
selected the Affymetrix rmabatch as our dataset for the final inference
from transcriptomic data. This, since we believe a more diverse data
will allow us to identify a higher quantity of regulatory interactions.
Moreover, due to the overly poor performance of ANOVA across the
data sets, we decided not to consider it for the GRN inference.

Figure 3.2: AUPR for inference by transcriptomics with different gene
expression datasets.

According to the AUPR, TIGRESS performed better, followed closely
by GENIE3 and Inferelator. According to the AUROC Stamodel per-
formed better, follow closely by GENIE3 and TIGRESS. All these meth-
ods measure the influence of the expression of a TF over the expression
of a TG (see Figure 3.3). This indicated that this is a better methodology
for GRN inference than the co-expression methods, where correlations
among the expression of the gene are measured. The correlations might
be misleading since a TF and a TG regulated by a same TF might have
a high correlation, but it might not be a direct interaction among them.
Nevertheless, all methods have a very similar performance, which be-
comes difficult to assure which methods performed the best. This might
be to the very small size of the GS, which only has 387 interactions,
corresponding to ∼1.6 % of the 23908 regulatory interactions expected
in the complete regulatory network of S. coelicolor. However, using the
meta-curated GRN Curated_FL-DBSCR-RTB as GS could produce
spurious results in the evaluation since indirect regulatory interactions
are not adequate to assess causal interactions. Therefore, since it is not
possible to properly discern which inferred GRN, is the most accurate;
we decided to build a community network (see Section 3.2.3), to which
we will be referring to as Inferred_Exp.
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Figure 3.3: AUPR and AUROC for each method of inference by
transcriptomics.

From the PR curves (see Figure 3.4) we see that for the methods
Friedman, GENIE3 and somehow for TIGRESS, the highest precision
of curves is at the beginning, which are the interactions in the top of
the list. Meanwhile, for the others, the curve starts at low precision
and increases after. Some have a more regular tendency such as CLR
and Statmodel, while others have a more irregular form like MRNET.
This is directly related to the scoring process of the methods. A good
scoring will place the TP interactions at the top of the list. Nevertheless,
these curves show us that the TP are scattered across the whole list of
inferred interactions. On one side, when pruning the GRNs, we might be
losing many TP interactions. On the other side, as the proportion of FP
interactions is increasing the precision is decreasing. Thus, an inferred
network with TP interactions at the top of the list will have high values
of precision (see Equation (3.24)). Meanwhile, the same TP interactions
in other positions in the list will produce low values of precision, which
will affect the final AUPR. Therefore, a proper scoring process is highly
relevant in the GRN inference methodology. In the case of the community
network, the curve has a descending tendency, which indicates that this
integration is a good filter and reordering of the TP interactions (see
Figure 3.4h).
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(a) CLR (b) Friedman

(c) GENIE3 (d) Inferelator

(e) MRNET (f) Statmodel

(g) TIGRESS (h) Community Network

Figure 3.4: Precision-Recall (PR) curves for the inference by transcriptomics.



4
GENE REGULATORY NETWORK INFERENCE FROM
GENOMICS

4.1 introduction

Previously, we reconstructed a complete GRN from regulatory interaction
inferred computationally from gene expression data. However, given what
seems a low goodness-of-fit between the curated and the inferred GRN,
we chose to study a different approach in the search for a more reliable
inferred GRN. To clarify, we are not certain that the low goodness-of-fit
of the inferred network is due to the poor performance of the inference
methods, it could be also because of the incompleteness of the GS
applied in the evaluation. Thus, the inference of a GRN with a different
methodology and data could also shed some light on the deficiencies in
the methods for inference of GRNs. In this case, we select to reconstruct a
GRN for Streptomyces coelicolor A(3)2 from genomic data, which means
performed a regulon extension through sequence motif discovery [99]. A
sequence motif is a short sequence pattern of nucleotides in the DNA
that is recurring through the whole genome. They are assumed to have
a biological function, usually related to protein binding sites, although
others are related to processes at RNA level [100]. Here, we are focused
solely on sequence-specific binding sites for TF. The consensus sequence
of the Transcription Factor-Binding Sites (TFBSs) is described through
a Position Frequency Matrix (PFM), which is a representation of how
often each base appears in each position of each sequence [100]. Then,
if we normalized the count by the number of sequences, we would have
a Position Probability Matrix (PPM), which shows us the probability
of each base in each position. Therefore, from the curated network, we
separate the TGs for each of the TFs. For each one of these regulons, we
predict the sequence motif for the TFBSs and compute their PPM with
diverse de novo motif discovery tools (see Figure 4.1) [101]. Then, using
Find Individual Motif Occurrences (FIMO) as a motif scanning tool, we
compute a Position Weight Matrix (PWM) and with it we search new
TGs with a similar TFBS through the whole genome [102].

4.2 methodology

4.2.1 Sequences Retrieval

As an initial step, we retrieved the sequences of the upstream and the
initial part of the coding regions of all genes in the genome of Streptomyces

44
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Figure 4.1: Motif representation as a PPM.

coelicolor. This is since activators usually bind upstream of the gene
promoter, while repressors bind overlapping the promoter to prevent the
binding of RNA polymerase. Thus the TFBS of repressors might slightly
overlap with the coding region [103]. These sequences were obtained
from the RSAT “retrieve sequence” online tool1 [104], as a specific region
of each gene from the genome of S. coelicolor reported in the GenBank2

[81]. There we selected to retrieve the non-overlapping region -300 bp
to +50 bp, which are the limits usually applied for bacteria [105], [106].
These values are the base pairs from the position of the star of the ORF,
which means that the first nucleotide of the start codon is the coordinate
0 (see Figure 4.2). Non-overlapping means that the sequence obtained
does not take information from other genes, thus, if the intergenic region
is less than 300 bp, we take only the intergenic region.

Figure 4.2: Upstream Sequence. Modified from RSAT website [104].

4.2.2 Motif Discovery

For the motif discovery, we took as a starting point the network Curated_FL(cS)-
DBSCR(S) since we are certain of the physical binding of the TFs to
their TGs. For each one of the TFs present in the network, we selected
the upstream regions of its TGs. Then, we attempt to find de novo the
motifs present in these upstream regions. We assumed the motif to be
the binding site sequence of the TF selected. TFBSs are usually between
∼12 to 30 bp; thus, finding a motif of this size among the selected genes,

1 http://embnet.ccg.unam.mx/rsat/
2 https://www.ncbi.nlm.nih.gov/genbank/

http://embnet.ccg.unam.mx/rsat/
https://www.ncbi.nlm.nih.gov/genbank/
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where for each one we have 350 bp is not a straightforward task. Since
there is not an established methodology for motif discovery, we decided
to apply three different tools with different methodologies. We selected
the tools based on the following criteria: First, we look for tools that were
public, well-documented, and that they need only sequence and no other
information such as gene expression data or phylogenetic relationships.
It was also important that the tools could be used from the command
line since it would facilitate the automatization of the process. Moreover,
we selected the tools with the best performance in the best-curated
microorganisms in previous works performed at the FreyreLab. The tools
finally selected are the following:

• Multiple EM For Motif Elicitation (MEME) looks for motifs by
searching for sites in the input sequences that are remarkably similar
to one other site or more, applying the Expectation-Maximization
(EM) algorithm. MEME searches for the most "significant" motifs,
where significance is determined by the length of the pattern, the
number of times that appear, and the degree of similarity among all
the appearances. To give a measurable value of significance, MEME
employs a statistical objective function based on the information
content of the motif. MEME gives each motif an E-value, which
is an approximation of how many motifs will be found by chance
if the basis in the input sequences were shuffled. Thus, a small
E-value indicates that the motif has a very low probability of being
a random sequence. [107]

• BioProspector applies Gibbs sampling technique to look for regula-
tory sequence motifs in the upstream region of genes. BioProspector
employs zero to third-order Markov background models, with user-
supplied parameters or parameters inferred from a sequence file.
The significance of each motif discovered is determined using a
Monte Carlo method to estimate a motif score distribution. Bio-
Prospector also modifies the motif model used in previous Gibbs
samplers to allow gapped motifs and motifs with palindromic pat-
terns. [108]

• Motif Discovery Scan (MDscan) combines two commonly used mo-
tif search techniques, word enumeration and position-specific weight
matrix updating. Since these sequences have a higher signal-to-
noise ratio, the assumption is to look for similar terms in sequences
more likely to include the motif first. Words in each similarity
group can start a PPM, which can then be updated and refined
using the entire input sequences. Even though MDscan aims to
find motifs in ChIP experiments, the authors state that can be
applied to a group of sequences that can be hypothesized to have
abundant motif sites. [109]
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4.2.3 Motif Scanning

As a motif scanning tool, we decided to use FIMO, since it presented the
best results in other bacteria in previous works performed at FreyreLab.
FIMO take as input motifs represented as PPMs. Then transformed the
PPM into a PWM computing its elements as log-likelihoods using a
background model specific to the microorganism. The background is the
expected proportion of each nucleotide in the genome. For the case of
S. coelicolor as it has a high proportion of GC (72%), the background is
A: 0.14 T:014 G:0.36 C:0.36 instead of the standard A:0.25 T:0.25 G:0.25
C:0.25. The score of a match sequence is computed as the sum of the
values in the matrix for each nucleotide in each position. These scores
are transformed in P-values, assuming a zero-order null model in which
sequences are generated at random according to a background specific
to the microorganism. This p-value is the probability that a random
sequence will have an equal or better score than the match sequence.
Then a q-value is computed, which is defined as the false discovery rate,
in the case the match sequence is cataloged as significant. [102]

Therefore, we introduce the PPMs in FIMO along with the upstream
regions of all the genes. This is to find possible match sequences. Bio-
Prospector and MDscan have as an outcome a list of sites that correspond
to the motif of the TF. In this case, we applied the sites2meme tool from
the MEME Suite [110] to transform the list of sites into a PPM. We
took as the final match sequence those with a p-value smaller than the
threshold 1e−4.

4.2.4 Network Reconstruction and Inference Assessment

Next, we take the downstream operon of the upstream region with the
match sequences. In the case the match sequence is in an interoperon
region, we take only the downstream genes. Thus, assuming that the
motif predicted corresponds to the binding site of the TF studied, we
link these genes to the TF. We consider as the confidence score of the in-
teraction the p-value computed by FIMO. We merged all the interactions
in a list ranked by the confidence score. As in the previous chapter, we
reconstruct a community network from the three methods for motif dis-
covery, applying the Borda approach (see Section 3.2.3). Then we prune
the list to the expected regulatory interaction for S. coelicolor (23908)
(see Section 3.2.4). Finally, with this list of interactions, we reconstruct
the inferred network by binding site prediction for S. coelicolor. Then
we proceed to compute the AUPR and the AUROC (see Section 3.2.5)
of the three methods along with the community network to assess the
performance of the inference by binding sites prediction.



4.3 results 48

4.2.5 Statistical validation of ChIP data

The sequence motif analysis, like the one performed in this chapter,
can be used to pinpoint the precise position in the potential target
regions obtained by ChIP. Moreover, trough the corroboration of the
presence of a TFBS, we can validate the interactions obtained by ChIP
as “strong” interactions instead of “weak” as defined in the curation (see
Section 2.3.1.3). [36]

4.3 results

(a) BioProspector (b) MDScan (c) MEME

Figure 4.3: Precision-Recall (PR) curves for the inference by genomics.

For the GRN inference from genomics, we performed a regulon recon-
struction, through the de novo prediction of TFBSs and linked them to
downstream genes. The regulon reconstruction was based on the network
Curated_FL(cS)-DBSCR(S) using three methods for motif discovery:
MEME, Bioprospector, and MDscan (see Section 4.2.2). Moreover, we
applied FIMO as the scanning method over the genome. As in the
case of the inference by transcriptomics, we restricted the inference to
interactions among genes of the chromosome. Next, we assessed the
inferred networks considering again Curated_FL(cS)-DBSCR(S) as the
GS (see Section 3.2.5). From the AUPR, it is evident that in general
GRN inference from genomics performed better than the inference from
transcriptomics (see Figure 4.3). MEME performed better than the other
methods and Bioprospector also had a good performance. Meanwhile,
MDscan did not perform well considering the results of the other two
methods. Nevertheless, as the GS was used as prior for the regulon
extension, it might provide an advantage for the network inferred by
genomics. Moreover, because of its methodology, inference by genomics
predicts direct regulatory interactions. Thus, there is a higher probability
that these interactions are present in the GS, as it is formed only by
direct interactions. Meanwhile, the inference by transcriptomics predicts,
apart from direct regulatory interactions, also indirect ones, which are
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not present in the GS. Therefore, it is expected that the inferred GRN
by genomics have a higher AUPR than by transcriptomics. However, due
to the size of the GS, we are not completely confident of these results.
Thus, we decided to also reconstruct a community network, which will
be designated as Inferred_BSs.

Figure 4.4: AUROC and AUPR for all inferred and community networks.

Figure 4.5: Statistically validated interactions from ChIP experiments by TF.

As an approach of integration of both inference methodologies, we
decided to reconstruct another two community networks. The first
one, Inferred_BSs-Exp, is a community network of both networks In-
ferred_Exp and Inferred_BSs. The second one, Inferred_All, is a com-
munity network of all individual inferred networks. We considered only
three inferred networks from transcriptomics to balance the number
of networks from both methodologies. We selected the three methods
with the better performance, considering the AUPR and the AUROC.
These methods were: GENIE3, Statmodel and TIGRESS. Then we also
assess these community networks with the same GS (see Figure 4.4).
Inferred_BSs outperformed the rest of the community networks at both
AUPR and AUROC. Meanwhile, both integration communities present
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Figure 4.6: AUROC and AUPR for all inferred and community networks.

very similar results in both metrics. However, MEME outperformed all
inferred and community networks at both metrics.

Given the outstanding performance of MEME, we applied it to perform
a statistical validation of “weak” interactions supported by ChIP-data
(see Section 4.2.5). A total of 55 “weak” interactions were reclassified
as “strong” (see Figure 4.5 and supplementary file Table 7c). PhOP
(SCO4230) was the TF with the most interactions validated. One of
these interactions (SCO4230-SCO4878) was already reported as “strong”
in the DBSCR database (Curated_DBSCR(S)). These statistically val-
idated interactions were added to the networks Curated_FL(cS) and
Curated_FL(cS)-DBSCR(S) to reconstruct the Curated_FL(S) and
Curated_FL(S)-DBSCR(S). We reassessed the inferred network predic-
tions with Curated_FL(S)-DBSCR(S) as GS and the results remained
virtually the same (see Figure 4.6).



5
ASSESSMENT OF THE INFERRED GENE
REGULATORY NETWORKS

5.1 introduction

In previous chapters we performance an GRN inference from transcrip-
tomic and from genomics. The AUROC and the AUPR metrics revealed
that the inference from genomics performed better. However, there are
some aspects related to this assessment that we should consider. First,
these metrics depend primarily on the raking of the inferred interactions.
Where a high rank for a false positive will heavily penalize the final
metric score. As we have such a limited GS with ∼ 2% (480/23908) of the
final interactions, we have a very large proportion of missing interactions
from the GS taken as false positive. Moreover, the size of the GS itself
causes the assessment to be not very trustworthy. Therefore, we decided
to assess the structural properties of the inferred GRNs, comparing
them to the ones from the curated networks. This aimed to complement
the initial assessment, evaluating which inferred GRN possess the most
similar structural properties of a biological network.

5.2 methodology

5.2.1 Cluster Analysis of Structural Properties

Additionally, to the structural properties presented in Chapter 2, we
compute other properties, for both curated and inferred networks. The
properties considered were:

• Percentage of Regulators: Percentage of genes regulating other
genes (TFs).

• Directed regulatory interactions: All the interactions in the network
since GRNs are directed graphs.

• Self-regulations: Genes regulating themselves.

• Maximum out-connectivity: The largest number of genes regulated
by one regulator.

• Network density: See Section 3.2.4.

• Average short path length: See Section 2.2.2.

• Network diameter: The longest of the shortest path lengths [28].

51
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• Average clustering coefficient: See Section 2.2.3.

• Weakly connected components: A directed subgraphs where all the
genes are connected by undirected edges [111].

• Genes in the giant component: The largest connected subgraph,
where all the nodes have a path that connects them to each one of
the other nodes. In a graph, some subgraphs might be disconnected
from the rest of the nodes.

• Feedforward circuits, complex feedforward circuits, and 3-Feedback
loops: Network motifs (small subgraphs repeated at a higher fre-
quency than random ones) usually found in biological networks.
These motifs are often related to biological functions. [28], [31]

• P(k) R²adj: The R2 of the linear regression. See Section 2.3.3.1.

• C(k) R²adj: The R2 of the linear regression. See Section 2.3.3.1.

Then we build a clustered map of the vector of properties for each network.
This is represented as in a heatmap with dendrograms (see Figure 5.1).
This since, due to the number of properties and networks, this type
of representation allows us to have a clearer a more straightforward
picture of the whole data. The dendrogram is built through hierarchical
clustering. There the networks are assembled in a tree, where networks
with a similar vector of properties are linked by short branches, and
as the similarities decrease, the length of the branches increase [112].
First, we compute the pairwise Pearson correlation among the vectors of
structural properties, and this value is represented in the heatmap. The
networks were then clustered based on their Euclidean distance applying
as linkage method Ward’s method.

Figure 5.1: Example of a clustered map.

5.2.2 Network Dissimilarity

In addition to the previous analysis, we also compute the dissimilarity
measure (D) proposed by Schieber et al. [113]. This measure identifies and
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quantifies the differences in the structural topology among networks. This
is done through the comparison of the probability distribution functions
of the connectivity distance of the nodes. There are three distances
considered in a three-term function: a) the distance distribution of the
network, which captures the global topology; b) the distance distribution
of each node, to compare the connectivity of each node; and c) the
centrality of the nodes, to analyze how this connectivity occurs. This last
term is not indispensable, but it is necessary in the case of comparing
networks of different sizes (in terms of nodes). This was computed
with the parameters proposed by the authors (0.45, 0.45, 0.1) and then
clustered in the same way that the Pearson correlation of the vector of
properties.

5.2.3 Natural Decomposition Approach

To complement the topological comparison of the inferred GRNs, we
classified the genes of all networks in the four categories of the NDA
(see Section 2.2.4): global regulators, modular genes, intermodular genes,
and basal machinery. Next, we compared the sets of each category
among networks applying the Simpson’s similarity index [114], [115]
(see Equation (5.26)). This, as its name state, measures the similarity
between two sets, telling us if their composition is similar concerning
the smallest set. This means that if one of the sets is a subset of the
other one, we will obtain a score of 1, and from two different sets, we
will obtain a score of 0. It is important that it is measured concerning
the smallest subset since curated networks are way smaller than inferred
ones. Therefore, the subsets are all different sizes. Other indexes, such
as Jaccard measure if all the elements of one set are presented in the
other one. Thus, in this case, these indexes might not be informative,
since it is not possible to have a complete set of an inferred network
in a curated one. These pairwise indexes were also clustered as in both
previous analyses.

SI =
a

min(S1, S2)

where
a = Elements present in both sets
S1 = Size of set 1
S2 = Size of set 2

(5.26)

Additionally, we assessed the global regulators inferred by the NDA in
the curated and inferred networks based in the literature. As GS for the
assessment, we considered the regulators reported as global or pleiotropic.
We based the GS in the review published by Martín et al. [22] and
complemented it with regulators reported in individual publications. To
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perform the evaluation, we compute the precision (see Equation (3.24)),
Matthews Correlation Coefficient (MCC) (see Equation (5.27)) and F1-
score (see Equation (5.28)) of the global regulators inferred for each
network [116]. These metrics are based on the classification presented in
Section 3.2.5.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

(5.27)

F1-score =
2 · TP

2 · TP + FP + FN
= 2 · precision · recall

precision+ recall
(5.28)

5.3 results

5.3.1 Assessment by their Structural Properties

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure 5.2: Cumulative distribution of the network node degree (P (K)) and
clustering coefficient (C(K)) of the inferred network

Inferred_BSs.

Even though the AUPR and AUROC metrics allow the assessment of
the predictions, both metrics heavily rely on the ranking of the predicted
interactions. Moreover, the GS is not complete and missing interactions
would be still classified as false positives, decreasing the score more
as higher their ranking is. Therefore, we also decided to assess the
inferences in terms of their structural properties and compared them
against the curated networks to compensate for such drawbacks. Note
that this approach has its caveats. The global structural properties of
the network might be different once the GS is complete, this can be
approached by comparing the predictions to all the curated networks,
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(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure 5.3: Cumulative distribution of the network node degree (P (K)) and
clustering coefficient (C(K)) of the inferred network

Inferred_Exp.

each of them with different completeness. Also, two networks could have
the same topology with different node entities. For this reason, we use
the topological assessment in complement with the AUPR and AUROC
metrics to identify the best prediction.

One of the main characteristics of biological networks is that they
are scale-free and hierarchically modular. Same characteristics that our
curated networks have been proved to possess (see Section 2.4.2). There-
fore, as an initial approach, we asked whether the inferred networks
are also scale-free. First, to compute the α of the degree distribution
for the inferred networks (see Section 2.3.3.1), we performed a robust
linear regression over a log-log plot of the complementary cumulative
degree distribution and corrected the exponent accordingly (see Fig-
ures 5.2 to 5.5). All degree distribution seems to follow a power law
according to the adjusted coefficient. Nevertheless, the data points in
that Inferred_All appear to be divided into three regions with different
tendencies, instead of the two that are present in the other networks.
Usually, this type of network is divided into two regions, the region
of the nodes (genes) with a low degree, and the one with nodes with
a high degree (see Section 2.3.3.1). The appearance of a third region
might be a consequence of merging networks inferred with methods with
different approaches. This could affect the structural properties of the
merged networks, while communities from the same approach appear to
have more similar structural properties. In the case of Inferred_BSs-Exp,
the construction of communities ahead by each approach creates more
compatible networks in terms of structure that can be conveniently
mixed.

Next, we wanted to confirm that their degree distribution followed a
power law, so we performed a KS test between each potential power law
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(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure 5.4: Cumulative distribution of the network node degree (P (K)) and
clustering coefficient (C(K)) of the inferred network

Inferred_BSs-Exp.

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure 5.5: Cumulative distribution of the network node degree (P (K)) and
clustering coefficient (C(K)) of the inferred network Inferred_All.

of the inferred networks and alternative fat-tailed probability distribu-
tions (see Section 2.3.3.1). The values can be found in the supplementary
file (Table 8a). We found that the degree distribution of the inferred
networks adjusted better to a power-law distribution than to an alterna-
tive distribution. Then, we computed a maximum likelihood estimation
for the exponent of the power law and found that most of them are
between two and three, except for Inferred_All. This shows that it is
an anomalous scale-free network (Supplementary file Table 8b), per-
haps due to the mixing of networks with diverse structural properties.
Nevertheless, we could consider all inferred networks to be scale-free.
However, we wanted to check the other properties of scale-free networks.
All the properties can be found in the supplementary file (Table 9).
The four community networks have small average shortest path lengths
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and a high clustering coefficient. Inferred_BSs has the smallest average
short path length, while Inferred_All has the highest average clustering
coefficient. Scale-free networks also present an ultra-small world effect,
which implies that the average path length is proportional to ln(ln(N))
(see Section 2.2.2). This is the case for all the inferred networks. Another
characteristic of GRNs is their hierarchical modularity. In a scale-free
network, this implies that the clustering coefficient depending on the
degree follows a power law whit a coefficient close to 1 (see Section 2.2.3).
Inferred_BSs has the exponent closest to −1 (0.92), with the best R2.
Even though Inferred_BSs seems to be the network that behaves closest
to a GRN, all networks have similar values, which makes it difficult to
discern the most reliable inferred network.

Figure 5.6: Cluster map of pairwise Pearson correlation coefficient of the
profile of structural properties.

Figure 5.7: Cluster map of pairwise dissimilarity measure (D) of the networks.
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To perform a more thorough comparison of their structural graph
properties, we include several others. We clustered the vectors of struc-
tural properties for the curated and community-inferred networks (see
Figure 5.6). The clustering partitions the networks into two major groups.
The first one contains the curated networks and Inferred_BSs, while the
second group contains the other inferred networks. The first group is in
turn also divided into two groups: one with the two largest curated net-
works and Inferred_BSs, and the other one with the remaining curated
networks. The reason for this may be due to the size of the networks
(see Table A.1).

To reduce the network size influence we used the network dissimilarity
measure (see Section 5.2.2). We considered the third term which makes
the distance measure robust to graph size in terms of the number of
nodes (genes) (see Figure 5.7). Even with this metric, the two largest
curated networks were clustered with the inferred networks. This might
be a consequence of the high fraction of maximum out-connectivity and
structural genes in the largest curated networks, like those found in the
inferred networks. This shows that the inferred networks are similar to
the most complete curated networks in terms of structure, suggesting
their reliability.

5.3.2 Assessment by their Natural Decomposition Approach components

Figure 5.8: Cluster map of the pairwise Simpson’s similarity index of the GR.

We compared all curated and community inferred networks based
on Simpson´s similarity index of the four components proposed by the
NDA: global regulators, modular genes, intermodular genes, and the
basal machinery (see Section 5.2.3). The number of genes predicted in
each category can be found in the supplementary file (Table 10). When
comparing the global regulators (see Figure 5.8), there is not a dis-
tinct division among the networks. Inferred_BSs-Exp and Inferred_Exp
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have a similar correlation with all the curated networks, slightly higher
with Curated_DBSCR(S), Curated_FL, and Curated_FL-DBSCR-RTB.
These two inferred networks have the highest amount of GR, 116, and
114 respectively; thus, the other GRs predicted could be easily a subset of
them. In the case of Inferred_BSs, it has the highest correlation with the
“strong” networks. This is expected since these networks have only direct
regulatory interactions, as the interactions predicted in Inferred_BSs,
while there is no evidence of direct regulation for transcriptomic-based
inferred interactions. This can affect the measurement of the effect of GR
over the rest of the genes since the GRs which regulates a few targets
from different processes might not be predicted as such in the “strong”
networks. However, when their indirect influence is represented in the
network, their ranking as GRs is noticeable.

Figure 5.9: Cluster map of the pairwise Simpson’s similarity index of the
modular genes.

When analyzing the modular genes, there are two major groups (see
Figure 5.9): the major group, with the curated networks, is divided
into two subgroups, one with Curated_RTB, Curated_DBSCR, and its
“strong” version Curated_DBSCR(S), and the second subgroup contains
the integration proposed in this work. Interestingly, the meta-curated
network Curated_FL-DBSCR-RTB correlates very well with all the
networks it contains, from which we could deduce that modular genes
are conserved despite the addition of new regulatory interactions. In the
second group, composed of the inferred networks, we can see there is
not a high correlation among them. Inferred_BSsis the closest to the
curated networks, while Inferred_Exp and Inferred_BSs-Exp have a
high correlation. This tells us that the interactions in Inferred_Exp have
a larger influence on the module configuration of Inferred_BSs-Exp than
Inferred_BSs. The difference between the curated and inferred networks
might come from the fact that inferred networks have a greater number
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of GRs and a much lower number of modular genes when compared with
the curated networks.

Figure 5.10: Cluster map of the pairwise Simpson’s similarity index of the
intermodular genes.

Figure 5.11: Cluster map of the pairwise Simpson’s similarity index ofthe
basal machinery.

Intermodular genes are the less conserved NDA class (see Figure 5.10).
There is overlap only among the smallest curated networks, all share
the intermodular de gene SCO5877, which appears as a TF in the
other curated networks. Moreover, an overlap among Curated_FL and
Curated_FL-DBSCR-RTB, which share most of the interactions. Thus,
is expected that they also share most of the intermodular genes. Note
that the networks Curated_DBSCR(S) and Inferred_BSs-Exp are not
included in the clustering since they did not present any intermodular
genes. Finally, when analyzing the basal machinery (seeFigure 5.11), the
larger curated networks are grouped on one side, next to the inferred
networks, and finally the smallest curated networks with Curated_RTB
as an outgroup. Even though Inferred_BSs is grouped with the other
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inferred networks, it has a higher correlation with Curated_FL(S) and
Curated_FL(S)-DBSCR(S), which again evidence the similarity among
these three networks.

(a) MCC

(b) F1-Score

(c) Precision

Figure 5.12: Assessment of the Global Regulators predicted by the NDA.

Because of the NDA algorithm, the identification of global regulators
is a key step in the classification of every node in the GRN. Previously,
it has been reported a high overlap between the predictions of global
regulators by the NDA and those reported in the literature for E. coli [31],
B. subtilis [117], and C. glutamicum [32]. We used the set of GRs reported
by Martín et al. [22], besides those reported in independent articles, and
the union of both sets. This can be found in the supplementary file
(Table 4). Then we assessed the predictions of the GR using the MCC
(see Figure 5.12a). We used the MCC score as it is more informative
and reliable than F1-score for binary classification evaluation [116] but
using the F1-score and the precision we obtained consistent results (see
Figure 5.12b). Curated_FL and Curated_FL-DBSCR-RTB have the
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best performance in GR prediction. However, the “strong” networks have
a slightly smaller score even having much less genomic coverage. This
shows that the GRs are very robust to perturbations in the network as
previously shown [31]. On the other hand, despite the high coverage of
the inferred networks, their performance of the predictions was poor.
This could be, as it was mentioned before, due to the great amount of
GRs predicted by these networks, which would cause a high proportion
of false positives, affecting the score. Inferred_BSs produced the most
conservative prediction (lowest false-positives rate) among the inferred
network (see Figure 5.12c).



6
BIOTECHNOLOGICAL APPLICATION OF
INFERRED GENE REGULATORY NETWORKS

6.1 introduction

The GRNs presented in the previous chapters have multiple applications
in different fields. Apart from the results already presented where we sug-
gested annotations, NDA component characterization, and interactions
for different genes, we decided to apply the meta-curated and the inferred
network to demonstrate their applicability. First, we performed a com-
parison of the meta-curated network Curated_FL(S)-DBSCR(S) against
a curated network of Corynebacterium glutamicum. There we complete
the curated networks with the curated interactions of the other ones.
Moreover, we compare the NDA characterization of orthologs presented
in both networks. Second, from the inferred network Inferred_BSs, we
found genes that might regulate one or more of the SARPs, since they
are responsible for the production of secondary metabolites of interest in
the biochemical industry. These proposed regulators might help to eluci-
date novel regulation and metabolic processes of the senary metabolism.
Besides, they can be targets for genetic modification, to increment the
yields of these metabolites.

6.2 results

6.2.1 Comparative analysis with Corynebacterium glutamicum

The diamond-shaped structure identified by the NDA is conserved be-
tween E. coli and B. subtilis [117]. As an application of the meta-curated
network, we studied the conservation of its system-level components,
comparing it against the C. glutamicum network, which is phylogenet-
ically related to S. coelicolor, and a model organism for the study of
GRNs [32]. We applied the regulogs analysis [118] with one-to-one or-
tholog relationships to alleviate network incompleteness and make them
comparable. As prior networks, we used Curated_FL(S)-DBSCR(S) (534
interactions) for S. coelicolor and 196627_v2020_s21_eStrong from
Abasy Atlas (2941 interactions) for C. glutamicum [119]. considering
only the interactions between two genes both mapping to a locus tag.
We used MEME to construct a PWM for every TF with at least three
TGs using their upstream sequences. These sequences were defined as
the non-overlapping regions of up to -300 to +50 bp with respect to
the translation start codon and were obtained with retrieve-seq from
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RSAT (see Section 4.2.1). Then, we used FIMO with the PWM of the
TFs from S. coelicolor to find individual occurrences with a p-value
< 1e−4 in the upstream sequences of C. glutamicum. The same was
done in the opposite direction. With this, we seek to alleviate network
incompleteness by extrapolating known interactions from an organism
to the other [118]. Predicted interactions were sorted by p-value and,
in the case of redundant interactions, only the best scoring result was
conserved. Afterward, we used Orthofinder to find one-to-one ortholog
relationships between both microorganisms. We used OrthoFinder due
to its high accuracy [120]. We obtained a total of 188 GRN-wide orthol-
ogous relationships from a total of 995 1:1 orthologs. The orthologs were
used to further filter FIMO predictions to conserve interactions in which
both TF and TG have a one-to-one orthologous relationship in the other
organism. We considered the original “strong” network interactions at
the beginning of the interactions list. After the regulogs analysis, we
ended up with 2966 interactions in C. glutamicum and 692 interactions
in S. coelicolor.

Figure 6.1: Conservation of the systems-level components between
S. coelicolor and C. glutamicum.

The NDA was applied to both expanded GRNs to identify ortholog
systems and only the genes with one-to-one orthologs in the other
organism’s network (GRN-wide orthologs) were considered in the analysis.
Then, computed the fraction of the GRN-wide orthologous in each
combinatory relationship between the components (see Figure 6.1). We
found that most of the GRN-wide orthologous (54%) are classified as
basal machinery in both microorganisms. This is expected since 73% and
74% of the genes correspond to the basal machinery in the complemented
networks of C. glutamicum and S. coelicolor respectively. Moreover, the
distribution of the genes in the chromosome of S. coelicolor shows a
central core, where are genes likely related to primary functions such as
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DNA replication, transcription, translation, and amino-acid biosynthesis;
and likely non-essential genes such as secondary metabolism are in
the chromosome arms [6]. More than 59% (111/188) of the GRN-wide
orthologs conserved the same class in both microorganisms showing high
conservation of the NDA classification.

Figure 6.2: Simpson similarity index of NDA between S. coelicolor and
C. glutamicum.

We studied the pairwise Simpson similarity index between the four
classes between the two microorganisms to remove the problem of the
imbalanced classes in both microorganisms (see Figure 6.2). GRs is the
class with the highest conservation rate, the orthologs of seven of the eight
GRs in C. glutamicum are also GRs in S. coelicolor. The conservation
between the same class in the two microorganisms is also high for the basal
machinery, while poor for the modular genes. For the case of intermodular
genes, even though the networks were complemented with information
from the other network, they are not conserved at all. Previous work
reported intermodular genes as the least conserved of the system-level
components [32]. Intermodular genes are the most likely responsible
for giving the GRN flexibility and increasing evolvability by scouting
different combinations of regulatory interactions between physiological
functions, so the organism could adapt better to environmental changes
[117]. These results agree with a previous analysis of the robustness
of the NDA to a random node and edge remotion showing GRs and
intermodular genes as the most and least conserved classes, respectively
(see Figure 8 in Freyre-González et al. [32]).

On the other hand, 24% of the GRN-wide orthologs that are modular
genes in C. glutamicum were classified in S. coelicolor as basal machinery.
This could be due to three possible reasons [117]: i) the basal machinery
genes in S. coelicolor are misclassified and further research is needed to
find the missing regulatory interactions that will integrate some of the
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basal machinery genes into a module. ii) The GRs controlling C. glu-
tamicum genes are not yet identified as such. iii) Genes in S. coelicolor
need a more direct regulation because of their physiological function
(high plasticity of transcriptional regulation). The previous comparison
between S. coelicolor, Mycobacterium tuberculosis, and Corynebacterium
diphtheriae showed a synteny among the whole chromosome of these last
two micro microorganisms and the core of the chromosome of S. coelicolor
[6]. C. glutamicum is phylogenetically closely related to M. tuberculosis
and C. diphtheriae, with roughly similar genome size. Therefore, a similar
result would be expected. Furthermore, as more classical experiment
data become available, new regulations for the currently basal machinery
would turn those genes into the modular class. However, a deeper analysis
of diverse factors such as genome size, the niche of the microorganisms,
and a wider range of microorganisms are required to further study the
robustness of the NDA analysis.

6.2.2 Prediction of new Trancription Factors for the most studied
Streptomyces Antibiotic Regulatory Proteins

Even though other similar studies suggest the integration of inference
approaches as the most suitable methodology for GRN reconstruction
[121], [122], because of the analysis performed in this paper, we consider
Inferred_BSs as the most reliable inferred network. From the evaluation
against the GS, where it presented the highest AUPR and AUROC
among the community networks, through its structural properties along
with the NDA analysis where it showed the most similar configuration
to a GRN reconstruct from biological experiments. Moreover, it has
the largest genomic coverage among all the networks, which would
be advantageous for a deeper study of transcriptional regulation in
S. coelicolor. Therefore, we decided to use Inferred_BSs to further
study the regulation of the SARPs of the most studied antibiotics in
S. coelicolor : ActII–orf4, redD/RedZ, CpkO (also known as KasO),
and CdaR, which regulate the production of ACT, RED, CPK A, and
CDA, respectively [23]. A total of 13 new interactions for the SARPs
were predicted, providing us a great opportunity to find new targets to
manipulate the S. coelicolor antibiotic production. Next, we describe
some of the TFs predicted for the SARPs:

• For actII-orf4 (SCO5085) only one regulator was inferred, MacR
(SCO2120) which is the response regulator of the TCS MacRS. This
TCS has been proved to activate ACT production. Nevertheless, a
ChIP-qPCR analysis was not able to prove an in vivo interaction
between MacR and actII-orf4, although a direct binding was not
tested as Inferred_BSs predicted [123].
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• For redD (SCO5877) two new regulators were predicted, LipR
(SCO0712) and actII-ORF4 (SCO5085). LipR is related to AfsR
(SCO4426) [124], homolog to the SARPs, and activator of the
ACT and RED production [125]. Moreover, its mutant affects
ACT production [124], which makes it plausible to affect RED
production as well. It has been suggested that actII-ORF4 might
regulate the production of other antibiotics [7], which could be by
binding directly to their CSR.

• For redZ (SCO5881) five new regulators were predicted, among
them is GluR (SCO5778) which has been shown to affect RED pro-
duction. Nevertheless, it has been shown that GluR does not bind
directly to redZ, thus it could be more an indirect regulation [126].
Another one, StgR (SCO2964) has been shown, by an RT-qPCR
experiment, to be a repressor of redD [127], thus this repression
could be through the direct binding to redZ. HpdA (SCO2928)
and HpdR (SCO2935) are related to Tyrosine catabolism, which
produces important precursors for antibiotic biosynthesis [128].
Moreover, HpdA has been shown to activate actII-ORF4, therefore
might have a more direct role in RED production.

• In the case of cdaR (SCO3217), we have four predicted regulators,
among them, OsdR (SCO0204) and RamR (SCO6685). Both are
related to the response to stress and the development of S. coeli-
color [129], [130]. SsgR (SCO3925) regulates the sporulation and
morphological differentiation [131]. These all processes are highly
related to antibiotic production.

• Finally, for cpkO/kasO (SCO6280) six new regulators were in-
ferred, among them OsdR (SCO0204), LipR (SCO0712), and StgR
(SCO2964) were described before. Another one is NnaR (SCO2958),
which regulates spore formation and antibiotic production [132].

The complete list of predicted interactions for the SARPs can be found
in the supplementary file (Table 11).
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CONCLUSIONS AND OUTLOOK

This work has three main outcomes. First, a meta-curated GRN for Strep-
tomyces coelicolor A3(2) (Curated_FL-DBSCR-RTB) was reconstructed
from a collection and curation of regulatory interactions experiments in
literature and databases. This network is the most complete up to date
in terms of genome coverage and number of interactions. The size of this
network allows us to have a better analysis of its structural properties and
therefore of their NDA components. Thanks to it, we were able to identify
20 global regulators, of which 95% (19/20) have already been reported
as global or pleiotropic regulators; 18 intermodular genes, some of them
are already known for their involvement in different metabolic pathways;
and 46 modules and submodules, allowing to propose the function for 79
genes without previous functional annotation. Moreover, this network
helps us to complement the GRN of Corynebacterium glutamicum and
to compare the function of their orthologs in both microorganisms.

Second, we inferred a GRN applying different strategies for it. From this
work, we perceive that the inference from genomics has an outstanding
performance over the inference from transcriptomic data. In the inference
from genomics, we based our inference on the curated network. However,
we only consider the “strong” interactions as the GS of the evaluation,
which were quite fewer than the complete meta-curated network. We are
aware that this might present a bias in the assessment. Therefore, we
believe the metrics AUPR and AUROC are helpful tools for the judgment
of individual inference methods in both methodologies (genomics and
transcriptomics). Nevertheless, it does not seem appropriate for the
judgment between the methodologies, and between the methods of
methodology integration.

And third, we found in the NDA a valuable tool for GRN inference
assessment. In the first part of the work, we present that GRNs have
defined structural properties. These are related to gene organization in
the regulation process. Therefore, is highly important for an inferred
GRN to present these same structural properties, to assure the reliability
of the inferred interactions. However, a comparison of the properties
did not provide proper discrimination of the inferred networks. Here is
where NDA appears as an additional tool for the structural comparison,
focusing on the system-level components instead of their properties. In
the comparison of the NDA components among, we concluded that the
inferred network from genomics (Inferred_BSs) has a structure closer
to a GRN. Then, we applied this network to suggest new regulators
for the SARPs. Most of them are known to indirectly affect antibiotic
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metabolism or to be related to secondary metabolism and morphological
differentiation. Therefore, this inferred network could be applied in
the design of experiments in S. coelicolor secondary metabolism and
regulation in general. Moreover, it could be used also for the modeling
and computational analysis of S. coelicolor metabolism and regulation.
Thus, this network could have many applications in diverse research
fields.

This work was an initial approach to the modeling of S. coelicolor
and in general cell regulation. There is still plenty of room, both in the
complete reconstruction of a GRN for S. coelicolor and in the GRN
inference. It is imperative the realization of classical experiments to
identify “strong”interactions. As we stated before, there is only known
around 2% of the direct interaction expected for S. coelicolor. High-
throughput is also a valuable tool since provides us with a wider view
of the regulatory processes. Nevertheless, some of these interactions are
indirect effects, and from only these experiments it is impossible to know
the actual regulation path. A larger “strong” network will result in a more
proper characterization of the NDA components and a more reliable
prediction of the biological function of each gene. Moreover, we would
be able to infer a more accurate GRN. Also, we will be very helpful
in the development of methodologies that allow the cross-validation of
“weak” interaction into “strong” as the statistical validation of Chromatin
Immunoprecipitation (ChIP) experiments applied here. In this way, we
would be able to reconstruct the “strong” network at a higher rate. In the
field of network inference, there are also plenty of things to accomplish for
a proper inference. We stated the importance of a good score procedure,
however, we perceived that some of the methods have a deficient process
in this matter. Improvements in the scoring process are necessary. Also,
it is important the development of integration methods, both in data
and in methodologies. From the use of COLOMBOS data, we perceived
that if the transcriptomic data from different sources are not properly
integrated, its application could cause more drawbacks than advantages.
In methodologies is also important a proper integration of predictions.
Intuitively the integration of genomics and transcriptomics seems an
adequate approach since we have data for in vitro and in vivo interactions.
However, in practice, we saw that the integration by Borda was not a
proper methodology. The integration methods need to maintain the
network structure. Finally, the development of mathematical methods
with a more biological background will be a very important resource for
an accurate GRN inference.
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(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.1: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_RTB.

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.2: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_DBSCR.
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(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.3: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_DBSCR(S).

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.4: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_FL.
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(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.5: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_FL(S).

(a) Network degree distribution (b) Network clustering coefficient
distribution

Figure A.6: Cumulative distribution of the network node degree (P (k)) and clustering coefficient
(C(k)) of the curated network Curated_FL(S)-DBSCR(S).
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Table A.1: Description of the curated and inferred networks in this work

network abasy id genes interactions description

Curated_RTB 100226_v2015_sRTB13 311 330 Network from RegTransBase database
Curated_DBSCR 100226_v2015_sDBSCR15 273 341 Network from Database of transcriptional reg-

ulation in Streptomyces coelicolor and its clos-
est relatives.

Curated_DBSCR(S)100226_v2015_sDBSCR15_eStrong 112 115 Filtration of interactions with strong evidence
from the DBSCR network.

Curated_FL 100226_v2019_sFL 5331 9454 Network from the collection and curation per-
formed for this work.

Curated_FL(cS) Not Reported 347 438 Filtration of interactions with strong evidence
from the FL network (cS=curated strong)

Curated_FL(S) 100226_v2019_sFL_eStrong 396 493 Filtration of interactions with strong evidence
from the FL network along with statistically
validated interactions.

Curated_FL-
DBSCR-RTB

100226_v2019_sFL-DBSCR15-
RTB13

5386 9707 Meta-curation of RTB, DBSCR and FL net-
works.

Curated_FL(cS)-
DBSCR(S)

Not Reported 387 480 Filtration of interactions with strong evidence
from the meta-curated network.

Curated_FL(S)-
DBSCR(S)

100226_v2019_sFL-
DBSCR15_eStrong

435 534 Filtration of interactions with strong evidence
from meta-curated networks along with sta-
tistically validated interactions.

Inferred_BSs Available as a supplementary file 6263 23908 Inferred GRN from binding sites prediction.
Inferred_Exp Available as a supplementary file 4739 23908 Inferred GRN from transcriptomic data.
Inferred_BSs-
Exp

Available as a supplementary file 4763 23908 Community network from Inferred_BSs and
Inferred_Exp .

Inferred_All Available as a supplementary file 3804 23908 Community network from all the inference
methods.
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