
Detection and Mitigation of DDoS/Dos Security threats in an NFV Architecture

Jorge Steven Martinez osorio

Tesis de maestría presentada para optar al título de Magíster en Ingeniería de
Telecomunicacionesr

Director
Prof. Dr.-Ing. Juan Felipe Botero Vega

Universidad de Antioquia
Facultad de Ingeniería

Maestría en Ingeniería de Telecomunicaciones
Medellín, Antioquia, Colombia

2022

Cita Martinez Osorio Jorge Steven, 2022 [1]

Referencia

Estilo IEEE (2020)

[1] Martínez Osorio J. S. “Detection and Mitigation of DDoS/Dos Se-
curity threats in an NFV Architecture”, Tesis de maestría, Maestría
en Ingenieria de Telecomunicaciones, Universidad de Antioquia,
Medellín, Antioquia, Colombia, 2022.

Maestría en Ingeniería de Telecomunicaciones, Cohorte XIV.
Grupo de Investigación Telecomunicaciones Aplicadas (GITA).

Biblioteca Carlos Gaviria Díaz

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.
Decano/Director: Jesús Francisco Vargas Bonilla.
Jefe departamento: Augusto Enrique Salazar Jiménez.

El contenido de esta obra corresponde al derecho de expresión de los autores y no
compromete el pensamiento institucional de la Universidad de Antioquia ni desata
su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los
derechos de autor y conexos.

Acknowledgments

This project would not have been possible without the support of many people. I would
also like to extend my deepest gratitude to my adviser, Juan Felipe Botero, who read my
numerous revisions and helped make some sense of the confusion and offered guidance
and support to make it possible. I also wish to thank to Jaime Alberto Vergara, who was
an important partner during this process offering your knowledge and valuable advice
to improve this work.

Thanks to the University of Antioquia for awarding me a Master Fellowship, providing
me with the a huge part financial means to complete this project. And finally, thanks to
my girlfriend, parents, and numerous friends who endured this long process with me,
always offering support and love.

Abbreviations

BIC Bayesian Information Criterion.

DDoS Distributed Denial of Service.

DoS Denial of Service.

DPI Deep packet inspection.

EM Expectation Maximization Algorithm.

ETSI European Telecomunications Standards institute.

GMM Gaussian Mixture Model.

IDS Intrusion Detection System.

LB Load Balancer.

MANO Management and Orchestration.

ML Machine Learning.

NFV Network Functions Virtualizations.

NFVI Network Functions Virtualization Infrastructure.

NS Network Service.

ONF Open Network Foundation.

OSM Open Source Mano.

OVS Open Virtual Switch.

i

PDF Probability Density Function.

RF Random Forest.

SDN Software Defined Networking.

SLA Service Level Agreement.

SP Service Provider.

UBM Universal Backgfround Model.

VIM Virtual Infrastructure Manager.

VM Virtual Machine.

VNF Virtual Network Function.

VNFM Virtual Network Function Manager.

ii

List of Figures

1 NFV approach vs traditional approach. 4
2 NFV architecture vs traditional architecture [1]. 8
3 NFV architecture MANO proposed by ETSI NFV framework, taken from

[2]. 9
4 SDN architecture, taken from [3]. 12
5 NFV MANO framework structure proposed by [2] 23
6 Cumulative Explained Variance applying PCA. 34
7 Accuracies, Training time and Prediction time for experimental scenarios. 38
8 OSM interaction with VIM and VNF. 45
9 Experimental environment architecture. 46
10 Network service deployed through OSM and OpenStack. 47
11 Flowchart for the developed strategy. 48
12 CPU consumption of the Web server N°1 with the detection and mitiga-

tion strategy disabled. 55
13 CPU and RAM consumption of the Web server N°1 with the detection

and mitigation strategy enabled. 55
14 Traffic statistics of the Web server N°1 with the detection and mitigation

strategy disabled. 56
15 Traffic statistics of the Web server N°1 with the detection and mitigation

strategy enabled. 56
16 CPU and RAM consumption of the Web server N°1 with the load balanc-

ing strategy disabled. 59
17 CPU and RAM consumption of the Web server N°1 with the load balanc-

ing strategy enabled. 60
18 Traffic statistics of the Web server N°1 with the load balancing strategy

disabled. 60
19 Traffic statistics of the Web server N°1 with the load balancing strategy

enabled. 61
20 Web server status with the load balancing strategy disabled. 61
21 Web server status with the load balancing strategy enabled. 62

iii

22 Latency measure for the Web server N°1 with the load balancing strategy
disabled. 62

23 Latency measure for the Web server N°1 with the load balancing strategy
enabled. 63

iv

List of Tables

1 Security threats and vulnerabilities in each layer (NFVI, VNF, NFV MANO). 25
2 Countermeasures and Mechanisms proposed to improve the security in

the NFV environment. 27
3 Open issues and challenge In the NFV environment. 30
4 Features generated by the CICFlowMeter tool. 33
5 Dataset segmentation for UBM approach. 33
6 Dataset segmentation for GMM approach. 34
7 Accuracy by gaussian in UBM scenario. The accuracy average is 56.3%. 35
8 Summary results for UBM. 36
9 Accuracy by gaussian in GMM scenario. The accuracy average is 80.3%. 36
10 Summary results for GMM. 37
11 Summary for 19 results for RF. 40
12 Minimum devices requrements. 45
13 Features generated by the algorithm tool. 49
14 Flow rules installed in the OVS inside of OpenStack. 58
15 Summarize the Load balancing strategy. 63

v

Contents

List of Figures iii

List of Tables v
Abstract . 1
1 Introduction . 3
2 Background . 7

2.1 Network Functions Virtualization (NFV) 7
2.2 Virtual Network Function (VNF) 8
2.3 Management and orchestration (MANO) 9
2.4 Load Balancer (LB) . 10
2.5 Software Defined Networking (SDN) 11
2.6 SDN and NFV . 12
2.7 Security on data networks . 13
2.8 Gaussian Mixture Model (GMM) 14
2.9 Universal Background Model (UBM) 15
2.10 Random Forest . 16

3 State of the Art . 18
3.1 Principal threats and vulnerabilities on NFV environments . . . 18
3.2 Proposals and countermeasures 22
3.3 Classification and taxonomy . 23
3.4 DDoS/DoS in NFV environments 26

4 DDoS/DoS attack detection and mitigation proposal in NFV/SDN Envi-
ronments . 31
4.1 Distributed Denial of Service (DDoS)/Denial of Service (DoS)

detection process . 31
4.1.1 Traditional ML-based detection techniques 31
4.1.2 Data-set and Feature Extraction 32
4.1.3 Experimental scenarios 33
4.1.4 Performance Evaluation 35

vii

4.1.5 Preliminary conclusions for the proposed detection strat-
egy . 40

4.2 Attack mitigation process . 41
5 Experimental settings . 43

5.1 NFV platform . 43
5.2 Experimental setup requirements 45
5.3 Attack detection process . 48
5.4 Attack mitigation process . 49
5.5 Experimental scenarios metrics 50
5.6 Attack detection and mitigation scenario 51
5.7 Load balancing scenario . 52

6 Performance Evaluation . 54
6.1 DDoS/DoS detection and mitigation strategies using GMM ap-

proach . 54
6.2 Load balancing strategy . 57

7 Conclusions and Future work . 64
7.1 Publication Results . 65

Bibliography 67

viii

Abstract

DDoS/DoS attacks are one of the most used attacks by cybercriminals. Due to their
huge impact in traditional or novel network architectures, these kinds of attacks can
make that the biggest websites fail.

The novel Network Functions Virtualizations (NFV) architecture can also be affected
by the external attacks, and the DDoS/DoS also affect the NFV layers, being the Net-
work Functions Virtualization Infrastructure (NFVI) the most critical layer as it hosts
the major part of the attack that also affect the other layers. This fact makes the NFV
architecture an interesting target for the attackers.

There are many different kinds of traditional techniques used for DDoS/DoS attack
detection, some of them include Artificial Intelligence, Intrusion Detection Systems
(IDSs), Deep packet inspection (DPI). Most of them are well known and have remained
unchanged during the last few years. In this work, we implement a novel technique
called Gaussian Mixture Model (GMM), normally used in other scientific or engineer-
ing areas, to detect DDoS/DoS cyberattacks in a real NFV environment.

Moreover, this work developed a mitigation strategy to avoid the negative impact
caused by DDoS/DoS attacks, inside the Software Defined Networking (SDN)-NFV
environment.

Finally, this work presents an additional strategy as a complement to the aforemen-
tioned mitigation strategy to cover all aspects that can affect Web service availability.
This strategy looks for the implementation of a load balancer to distribute the network
traffic through a pool of servers to avoid the situation in which thousands or millions
of users sent requests to the Web service and provoking, denial of service with legiti-
mate traffic.

As a results, this work proves that the novel Machine Learning (ML) technique (GMM)
implemented to prevent the attack was very powerful blocking around 1.3 million of
DDoS/DoS packets (this amount of traffic represents around 90% of the incoming
traffic in this test) sent by the attacker, allowing the Web server to continue to provide
the service without any interruption. Also, the load balancing strategy was able to
cover and manage situations with a huge volume of traffic requests sent to a Web
server and proving that it is capable to preserve the service availability and the benefit
of using it was over 36% much efficient in contrast to not using it.

1

This work performs the implementation of the previously mentioned strategies and
shows their benefits in a real NFV environment where the system was able to mitigate
the DDoS/DoS attacks and avoid the negative impact caused by thousands of users,
guaranteeing the service availability exposed in the NFV environment.

2

1 Introduction

For almost three decades, the Internet has been accepted and used widely; nowadays
it supports abundant technologies and distributed applications [4]. To cope with the
growing complexity demanded by the modern Internet applications, Service Providers
(SPs) have implemented many different technologies causing a slow evolution of
networks, as all stakeholders must find an agreement to improve or change the ar-
chitectures and adopt new technologies [5]. To implement and deploy these new
technologies, offering new services and maintaining service level agreements, SPs
have increased the Operational and Capital expenditures (Opex and Capex) due to the
need of installing new specialized hardware (also known as middleboxes) [6].

For the last few years, an emergent paradigm from the industry is changing the way
SP deploy, manage and operate network services; it is called NFV [2]. With NFV, the
middleboxes from traditional networks are managed as simple modules of software
aiming to decouple the network functions from the proprietary hardware in order to
use general purpose commodity hardware [6, 2]. This approach allows the SP to create,
configure and maintain network services in an easier way. It also provides an easy
way to deploy new network services in few days at a lower cost reducing the Capex.
The reduction of Opex is also possible thanks to the implementation of more effi-
cient operation, maintenance and updating of the network functions. These actions
can be performed remotely and at scale, allowing to improve the efficiency, agility, re-
source utilization and scalability of the network services offered by SP (see Fig. 1) [2, 7].

In November 2012, the European Telecomunications Standards institute (ETSI) was
selected to be the home of the Industry Specification Group for NFV (ETSI ISG NFV).
Since this date, this community is responsible for updating the following items: archi-
tectural NFV framework, computation descriptions, hypervisor, NFV infrastructure,
and Management and Orchestration (MANO), among other concepts [8, 9, 1].

Taking into account the growth of information technology, several threads and vulner-
abilities have been used by the attackers to get some benefits. It is possible due to the
fact that cyberattacks are cheaper and the attackers use the anonymous nature of the
Internet to perform their attacks. Cybersecurity addresses multiple issues including
different kind of technologies creating countermeasures to mitigate or reduce the im-
pact of those attacks aiming to preserve the confidentiality, integrity, and availability
of the information [10].

3

Fig. 1. NFV approach vs traditional approach.

In spite of the effort to cover the major part of threads on traditional technologies,
cybersecurity concerns have gained attention, since some threats and vulnerabilities
are still not tackled in NFV MANO. For instance, there is no definition of a standard
interface in the ETSI NFV architecture to deploy virtual security functions reacting to
various threats in real time [2, 11]. Also, handling DDoS or DoS [12] and the triggering
of automatically orchestrated security functions in the NFVI are still ongoing research
topics [2].

The previous open issues are some of the many challenges that must be addressed
to provide an NFV platform with a set of tools to detect and mitigate security threats
and implement countermeasures for any type of security attack in NFV environments.
One of the most important or vulnerable sectors is the NFVI. NFVI is where the major
part of security threats and vulnerabilities in the NFV environment are found [13, 2].
This shows the NFVI as a critical point to implement strategies to detect and mitigate
attacks. Any effort to develop countermeasures in NFV is a significant support to
consider in order to improve the security in these new technological environments.

Taking into account this background, our main aim in this research work is to develop
a strategy to detect and mitigate an attack to the NFVI and prevent that other Virtual
Network Function (VNF) could be attacked.

4

To carry out this proposal, we selected a cyberattack called DDoS/DoS, that is very
common but also represents and important risk in terms of information availability.
To address this attack in a NFV environment, it is necessary to define a technique
to detect it. The proposed techniques are a Gaussian Mixture Model classifier and
Universal Background Model which are widely used in speech recognition applica-
tions as generic probabilistic models for speaker detection or verification [14, 15]. We
proposed this GMM classifier to explore how new classification mechanisms, used
for other applications, perform in the detection of DDoS attacks [16] and it will be
used to detect the DDoS/DoS attack and normal traffic inside a NFV environment.
Also, we explore the Universal Backgfround Model (UBM) classifier because this is a
large GMM containing a relatively big set of population features which could show
interesting results.

The GMM and UBM classifiers are interesting because these strategies in general
terms try to model the extracted features of the phenomenon as a mixture of Gaus-
sians, offering a different way of analyzing the data. Attack and benign traffic could be
modeled by a set of Gaussians and each new flow in the network should match one of
the two models to determine whether it is malicious or normal traffic. It is important
to mention that both GMM and UBM have different ways of determining whether
incoming traffic in a time window transformed to a mixture of Gaussians is an attack
or not.

To evaluate the GMM and UBM classifiers we will make a comparison with a traditional
Random Forest (RF) classifier, allowing us to have a preliminary remarks about the
experiments. After making this traffic classification, we define an strategy to mitigate
DDoS/DoS attacks and prevent future troubles with the same thread.

The mitigation strategy consists of installing flow rules on an SDN switch to drop those
malicious traffic during a established time.

In summary, our contributions are focused on:

• This work implements from scratch a private cloud computing platform using
Open Source Mano (OSM) and OpenStack and defines an starting point for every
future work inside the GITA research group that needs a private cloud or a real
NFV environment to test or develop new research ideas over a complete NFV
environment.

• Also, this work develops a strategy to detect one of the most common cyberattacks
on the industry (DDoS/DoS) through a novel ML technique in networking (called

5

GMM) to perform a wise attack detection.

• This work develops a mitigation strategy deploying a set of drop flow rules to
avoid the failure of the compromised VNF inside the Network Service (NS).

• Finally, this work shows an easier way to add other strategies to improve the per-
formance of a VNF and a NS such as implementing a load balancer that is enabled
just when the strategy detects a high throughput and this high throughput does
not match as DDoS/DoS attack. This additional strategy works as an evaluation
scenario for the detection strategy.

6

2 Background

This section shows a set of concepts such as NFV, SDN, MANO, VNF, network security,
and the selected ML technique called GMM aiming to subsequently present the main
contributions of this work.

2.1 Network Functions Virtualization (NFV)

Network Functions Virtualization represents the implementation of data plane net-
work functions (traditionally implemented in specialized hardware), in software able
to run in commodity hardware; the main idea of NFV is the decoupling of the network
functions from the physical (specific-purpose) devices [17, 7]. This paradigm offers
new possibilities to manage the network infrastructure resources more efficiently and
gives SPs more flexibility in network capabilities, allowing to deploy or support new
services faster and cheaper with more agility.

The decoupling of both parts (network functions and physical infrastructure) helps to
reassign and share physical resources, allowing several functions to run at the same
time in the same commodity host or data center. This decoupling allows the innova-
tion and evolution of these two parts independently and improves their lifecycle [7].

NFV deployment will reduce the Capex and Opex in contrast to traditional infras-
tructure, where network functions are provided by specific-vendor hardware [17].
This allows that the telecommunications market becomes more dynamic with new
operative focuses, as the network functions are managed as simple virtual modules.

On the other hand, traditional network infrastructure is often forced to integrate de-
vices with specific purposes, implying higher complexity in network operation and
maintenance. In addition, for traditional network infrastructure, hardware’s lifecycle
ends quickly, implying that the cycle of acquisition, integration, and deployment is
repeated continuously [18, 6]. the comparison between NFV and a traditional archi-
tecture is shown in Fig. 2.

Some advantages of NFV are:

• Reduction of energy consumption.

• Less time for developing and offering new network services.

7

Fig. 2. NFV architecture vs traditional architecture [1].

• Deployment of new services with reduced risk.

• Flexibility and dynamism would permit the development of demand-oriented
services.

• Reduction of Capex and Opex.

NFV aims to transform the perspective of the network operators using the evolution
of virtualization technology, in order to consolidate different network functions in
general purpose hardware [18]. Fig. 3 shows the NFV architecture proposed by ETSI
that is composed by the NFVI, VNF, and application or business layers.

2.2 Virtual Network Function (VNF)

To explain a VNF, we first define a Network Function (NF) as a functional block inside
the network infrastructure that has external interfaces and a well defined functional
conduct. NFs are known in traditional networks as middleboxes. The VNFs are NFs
that run on virtual resources from commodity hardware like Virtual Machines (VMs)
[7]. An example of some NFs can be firewalls, IDS, load balancers, among others [17].

8

Fig. 3. NFV architecture MANO proposed by ETSI NFV framework, taken from [2].

2.3 Management and orchestration (MANO)

With the implementation of NFV, a new set of MANO functions became necessary
due to decouple NFs from physical devices. These new MANO functions allow to
create new dependencies between NFs and physical devices to ease the network
management and to provide a more scalable and flexible architecture. To achieve that,
a set of features are required:

• Interoperable standard interfaces.

• Common information models.

• Mapping of information models to data models.

MANO is used to provide the functionality required to configure the VNFs, to manage
the physical and/or logical resources, and to support the infrastructure virtualization
and NFVs lifecycle. Furthermore, MANO includes the databases used to store the
information and data models that define the deployment, lifecycle properties, services
and resources [6].

As Fig. 3 shows, NFV-MANO is composed of the orchestrator, the Virtual Network
Function Manager (VNFM)), and the Virtual Infrastructure Manager (VIM) [7].

• The orchestrator is responsible for managing and supporting the databases, way
points, and interfaces used to exchange information among all components. This
information can be used by multiple managers to apply changes in NFVI or in
VNFs.

• A VNFM has control over single or multiple VNF instances, and manages their

9

lifecycle.

• The VIM is used to control and manage the physical resources and machines that
are part of NFVI under a single authority domain. There could exist more than
one VIM in a NFV architecture in order to manage a specialized NFVI.

2.4 Load Balancer (LB)

A load balancer is a network function used to distribute the network traffic through a
set of servers that could handle multiple request within the same service. A common
load balancer follows a set of steps to handle the incoming request:

• It receives multiple requests from different kinds of clients.

• It builds the request queue to manage the incoming requests.

• It monitors the load status of the servers on the set of available servers.

• It uses the chosen load balancing strategy/algorithm/heuristic to send the incom-
ing request to the selected server.

A load balancer technique helps to increase the resource availability for an specific
service, reduce the amount of request that could be handled by a unique server and
makes it possible to have a huge range of flexibility when the service needs to increase
its availability [19].

The most common load balancing strategies are:

• Least-Connection Load Balancing: When a new request arrives to the Load
Balancer (LB), the LB chooses the server with least active connections.

• Weighted Least-Connection Load Balancing: It is an extension of least-connection
load balancing where each server is given by a wight among 0-1, and the server
with 1 will not receive more requests.

• Dynamic Feedback Load Balancing Scheduling: The LB takes into account in-
formation of availability, load information and response time. these information
are extracted periodically to send incoming request to the server pool.

• Round-Robin Load Balancing: This load balancer gives to each server in the
server pool one request to handle. The server number one in the pool servers will
receive the next request to handle when the last server inside the pool receives its
request.

• Weighted Round-Robin Load Balancing: This LB is an extension of the round
robin LB where servers are given different weight numbers according to their

10

capability. Each server will receive request first if its weight is more higher than
other.

2.5 Software Defined Networking (SDN)

In traditional networks the design, configuration and network management have high
complexity and depend on manual intervention in each device (using low-level com-
mands) [20]. These current networks are integrated with a vertical model of control
and data plane, that are bundled inside the network devices [21]. The high complexity
and manual intervention can result in possible failures, making the networks hard to
manage and upgrade, which implies that flexibility, scalability, and evolution are not
possible [20].

SDN is born in the first half of the 1990s with active networks [22, 3], and some promi-
nent works are RCP [23], 4D [24] and Ethane [20], where the goal was to give the
capability to the network to perform actions that can be programmed.

SDN is an initiative that arises as an emergent network paradigm, which can give
possible solutions to the traditional networks problems. SDN breaks the vertical in-
tegration of control plane (takes the decisions of how to manage the network traffic)
and data plane (forwards the traffic and takes the actions established by the control
plane), decoupling both and establishing a logically centralized control of the network
(controller or network operating system-NOS). This simplifies policy implementation
and network reconfiguration, allowing the innovation and evolution of networks, and
tries to solve the current problems in traditional networks, making it easier to create
and to add new network abstractions [21, 3]. The SDN architecture is depicted in Fig. 4.

Two concepts have been introduced to deploy SDN in the industry. These concepts
are the southbound and northbound interfaces. The first one represents the interface
and protocols that perform the communication between programmable switches and
the software controller. The second one is like a middleware between the application
layer and the controller that determines the operational tasks, network policies and
translation of these policies for the controller to interpret them correctly [25, 3].

The most important southbound interface at the moment is OpenFlow [26], which is
considered as the defacto standard defined by the Open Network Foundation (ONF).
Many vendors have included it in their programmable switches. There are many
OpenFlow controllers such as NOX [27], POX [28], ONIX [29], Floodlight [30], Open-
DayLight [31], Ryu [32] and Onos [33]. Which are developed in different programming

11

Fig. 4. SDN architecture, taken from [3].

languages: C++, Java or Python. Selecting one of these depends on the robustness and
response time needed in the application.

2.6 SDN and NFV

NFV is an emerging technology, which can be highly complementary with SDN, but is
important to clarify that they do not depend on each other, and both can be imple-
mented separately; however, their combination can enhance their performance[18].

With the current techniques used in data centers, NFV can be accomplished, but with
the separation of control and data plane by SDN; NFV can facilitate the operations and
maintenance procedures and simplify the compatibility with ongoing deployments.
Additionally, NFV and SDN are closely aligned to use commodity hardware [18, 6, 8].

12

SDN can play an important role in NFV infrastructure and orchestration of resources
where some features as provisioning and configuration of network connectivity, band-
width provisioning, security, and policy control are relevant. This join effort can speed
up deployment improving the flexibility and automation. With SDN, we can program
logical functions that can be adapted to the NFVI [1, 7].

2.7 Security on data networks

A security attack on communication networks may refer to any effort to expose, disable,
disturb, destroy or access private information without authorization [34]. Security
can be defined as a set of guidelines to apply on the network design and their future
expansion, aiming to minimize the leak, disturb or improper use of the information
that the communication networks manage.

The principal concepts on security data networks are:

• Availability: It represents the response time that must be guaranteed for any
device inside the network; this device must be ready to perform its functions
without the additional processing. To make this possible is necessary to raise
countermeasures and mechanisms to prevent failures in different devices in the
network without adverse consequences in the performance, and accessibility in
case of any emergency.

• Integrity: It guarantees that the information life cycle (generation, transmission,
and receives) remains genuine even if any attacker (internal or external) tries
to change or modify it. This process can be defined as authenticity and non-
repudiation, thus, is necessary to discard false information and to implement
countermeasures.

• Confidentiality: It refers to the fact that no external agent can have access to the
network information without the necessary credentials. Mechanisms must exist
to perform the validation of the information in real-time and continuously in
order to guarantee that sensible information does not leak at any time affecting
the normal behavior of system.

To get more details about these concepts, please refer to [35].

13

2.8 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model is a probabilistic model aiming to depict data as of a
Gaussian distribution or a combination of multiple Gaussian distributions [36]. This
technique is widely used in speech recognition where it is important to detect a spe-
cific speaker or validate a set of speakers inside a given application.

A Gaussian distribution is composed by a random variable X following a Gaussian
Probability Density Function (PDF) in one dimension:

f (x) = 1

σ
p

2π
exp(−x −µ2

2σ2)
.= N(x;µ,σ2) (1)

Where µ is the mean and σ is the standard deviation of X . This distribution is widely
used in different areas as science or engineering and can be used to generalize prob-
lems with different nature [37]. The multivariate case of the Gaussian distribution
follows the next equation:

f (x) = 1

Σ
1
2 (2π)

D
2

exp(−1

2
(x −µ)TΣ−1(x−µ))

.= N(x ;µ,Σ) (2)

Where µ ε RD is the means vector and it is composed of the mean of each dimension
of the random variable X . Also, Σ ε RD×D is the covariance matrix and represents the
variance of the random variable in a higher dimension.

The GMM can be used to represent data as a linear combination of a number of
Gaussian distributions, where, for example, each distribution could represent a sub-
population of the dataset, and by joining all these distributions,a good representation
of the whole population can be obtained. The GMM can be generalized from Eq. 2:

f (x) =
M∑

m=1

cm

|Σm | 1
2 (2π)

D
2

exp(−1

2
(x −µm)TΣm

−1(x−µm)) (3)

f (x) =
M∑

m=1
cm N(x ;µm ,Σm) (4)

M∑
m=1

cm = 1 (5)

14

Eq. 3 shows that a GMM is the sum of M Gaussian distributions (or multivariate Gaus-
sian distributions), each one of them weighted by the parameter cm . This parameter
must be less or equal than 1 and the sum over all cm must be equal to 1. The number
of Gaussian distributions can be determined in different ways. One alternative is run-
ning a grid search, where different GMM are compared according to accuracy results
obtained in the training and test steps. On the other side, an Information criterion
like the Bayesian Information Criterion (BIC) or the Akaike Information Criterion can
be used to understand how well the model represents the data [38].

In order to estimate the parameters µ, Σ, and cm of the distribution, the GMM al-
gorithm uses the Expectation Maximization Algorithm (EM). This algorithm iterates
between two steps to calculate and refine the parameters that increase the model’s
likelihood. In the first step, called the expectation step or E step, the parameters to
determine can be randomly initialized or a clustering algorithm can be used, after
this probability of a sample belonging to a particular Gaussian m in the iteration j is
calculated. Then, in the second step called the maximization step or M step, a new
set of parameters Λ(µm ,Σm , cm) that maximizes the aforementioned probability is
chosen. These two steps will be repeated until the probability difference between two
iterations is less than a certain threshold [39, 40].

2.9 Universal Background Model (UBM)

In a general form, the UBM is a large GMM containing a relatively big set of population
features. There are different ways to obtain the final model. One of them, and probably
the easiest one, is to generate a large GMM using all the data of the training step. The
classes must be balanced to avoid biases over the dominant class. Another way to ob-
tain the final model is to train an individual UBM for each class in the training dataset
and then mix all of these subpopulation models. The latter approach has the possi-
bility of using unbalanced data and controlling the composition of the final model [14].

After the UBM is generated, an adaptation method must be used to fit the trained
model to the new data and to generate the final model, taking a part of the training
data and the trained model. This is done by executing the Maximum A Posteriori (MAP)
estimation. MAP will be applied over the UBM to estimate a class dependent model
[41]. MAP provides an alternative to maximum likelihood estimation for machine
learning. Also, MAP tries to estimate the updated distribution and the parametersΛ
that explain in a better way the population maximizing the a posteriori probability
without the need of calculating it. According to the Bayes theorem the a posteriori
probability can be calculated by:

15

P (A|B) = P (B |A) P (A)

P (B)
(6)

Commonly this equation can be referred to as the a posteriori probability of A given
B and the P (A) is the a priori probability of A. P (B) is used to normalize the result, it
can be removed and the a posteriori now is proportional to the probability of P (B |A)
multiplied by P (A).

P (A|B) ∝ P (B |A) P (A) (7)

MAP estimation is not interested in calculating the exact value or the a posteriori
probability, instead, MAP is interested in optimize P (B |A) P (A), aiming to estimate
the distribution and the parametersΛwhich could explain in the best way the phe-
nomenon.

maximize P (Λ|x) = P (x |Λ) P (Λ) (8)

The GMM and UBM techniques will be used to perform the experimental analysis
as they provide a different way of modeling the network data based on a mixture of
Gaussians where we do not know anything about the distribution of the data nor what
the behavior of the data is. Furthermore, these techniques could be used to perform a
classification analysis to detect benign or malicious traffic, or even they could even
be used to perform an anomaly detection where we model only a well known traffic
(legitimate traffic) and in the case of detecting any anomaly we could take some action
with the traffic such as isolating it, blocking it, among others.

2.10 Random Forest

Random Forest (RF) is a machine learning algorithm composed of predictive models
called decision trees which are formed by binary rules where is possible to allocate the
samples according to their attributes and predict the value of the response variable.
Each decision tree is trained with a slightly different sample in comparison with the
other decision trees. These samples with slight differences are obtained by a boot-
strapping method that samples the training dataset and assign these samples to the
decision trees defined by the random forest model [42, 43].

Random forest obtains a new prediction taking into account the predictions of all
the decision trees. RF is capable of choosing the features from the dataset to use in
the model automatically. RF is used in regression and classification problems and it

16

does not require a lot of data pre-processing. On the other hand, RF can not be used
to extrapolate results with different features in the training step. Also, the model’s
interpretability can be lost using multiple decision trees. RF will be used as a baseline
to compare the performance of GMM and UBM in the attack classification task.

17

3 State of the Art

As a small context, the principal goal of the NFV environment is to provide the user
with a set of tools that helps him/her to: build an underlying infrastructure, build se-
cure services, have an optimal management and orchestration of his/her architecture,
have a flexible infrastructure, and make an easier maintainability of all NFV layers.
This means, to provide a novel way to design, build, manage and orchestrate services
starting from the definition of the required infrastructure until release the network
service according to the particular needs.

For SPs that have implemented a NFV environment, these tasks represent several
challenges and complexity to ensure the requirements that must be satisfied for each
tenant. One of the most important objectives is to provide well-defined security
policies, mechanisms, and countermeasures in order to guarantee the Service Level
Agreements (SLAs) for each tenant [2, 13].

The following subsections are going to present a set of threats and vulnerabilities that
have been detected by different authors in the literature showing a set of different
proposals or countermeasures to avoid such threats.

3.1 Principal threats and vulnerabilities on NFV environments

According to the authors in [2], the NFV environment has several challenges, open is-
sues, threats, and vulnerabilities inevitably induced due to the fact that the traditional
attack vectors could take action in NFV and also, new threats and vulnerabilities could
appear when the attackers take advantage of this new architecture. To cover these
concerns, the administrator of the NFV platform must implement countermeasures
to detect and mitigate many different actions performed by the attackers when they
try to modify, break the platform, leak the data, gain access, execute malicious code or
trigger any other suspicious action.

Several works have tried to solve or present novel strategies to guarantee the SLAs,
trustworthiness of the platform, and security levels of an NFV environment [2, 13,
12, 11, 44, 45, 46, 47]. For instance, the authors in [2] present an exhaustive work in
security threat analysis, best practices, and countermeasures to prevent and mitigate
the cyberattacks and improve the security in the NFV architecture. They highlight
that the possible vulnerabilities in the NFV environment can be even larger than
the ones of traditional architecture. Some vulnerabilities in NFV can be due to: or-
chestration of policies, administrative errors, deployment of corrupted VNFs on new

18

hardware, domain administration, and frequent migration. These vulnerabilities open
the landscape to possible attack vectors and several challenges in the identification
and enforcement of security policies. These issues are related to the fast development
of NFV, which makes it difficult to implement a robust defense security system.

In [2], the authors analyze different scenarios with possible threats and vulnerabilities.
Then, they show different use cases and what kind of threats or vulnerabilities can
appear, allowing the SP to deploy cost-effective security according to his/her needs.

To present the detected threats and vulnerabilities on the NFV architecture is necesary
to define the NFV layers showed in Fig. 3:

• NFVI layer: It concentrates the issues related to the hypervisor, VM and hardware
vulnerabilities.

• VNF layer: It concentrates the issues related to network service vulnerabilities.

• NFV MANO layer: It concentrates the issues related to the management, orches-
tration and control plane attacks, isolation failures, policy violation, and lack of
interoperability.

We have organized the approaches [2, 13, 12, 11, 44, 45, 46, 47] according to the NFV
layer as follows:

• NFVI layer: Authors in [2] talk about NFV infrastructure as a service (NFVIaaS)
where the NFVI provides storage, network processing capabilities, and fundamen-
tal computing resources. It allows the customers to run arbitrary network services
without managing the underlying infrastructure. Guest VM, can be exploited with
malicious code and can be a victim of DDoS or Man in the Middle attacks (among
many others). Also, an attacker can:

– Violate the isolation of a VM.

– Manipulate memory and execute operations in another VM.

– Gain access to the hypervisor getting root privileges.

– Gain access to a VM.

– Break the hypervisor by sending packets to induce buffer overflow.

– Gain root privileges to run malicious code.

If the hypervisor is compromised, a new hypervisor could run on top of the origi-
nal one, putting at risk different VMs. Bad configurations of the hypervisor could

19

lead to giving more resources to an attacker and enabling the attacker to assault
other guests VM.

Authors in [12] show several security challenges in the NFV environment, which
includes problems in the NFVI such as:

– Network elasticity.

– Unauthorized access.

– Data leakage on hypervisor domain.

– Security threats in shared computing resources (CPU, Memory).

– Privilege control.

– Network configurations.

– Security policies.

Different threats and vulnerabilities such as insecure management interfaces,
compromising virtual network components, security pitfalls of OpenStack, inad-
equate enforcement of security policies, shared physical and virtual resources
could appear.

The work in [11] explains the pros and cons of the NFV architecture implementa-
tion. They argue that possible flaws in the underlying infrastructure can affect
the system’s resiliency and the quality of the offered services. The principal focus
must be the virtual infrastructure manager, where the hypervisor is the main
element to protect.

Some potential risks are:

– Isolation failure risk: Here the attacker tries to gain access to the hypervisor
through an infected VNF that runs over the hypervisor, affecting the NFV
architecture and its functionality.

– Network topology validation and implementation failures: Avoiding the uti-
lization of validation tools could lead to errors in highly dynamic services.

– Security logs troubleshooting failures: These kinds of attacks can overload
the log files on the hypervisor, making the logs hard to analyze for any VNF
that runs over the hypervisor. Also, if the logs are leaked, an attacker could
extract sensitive data.

20

Some of the possible and most critical attacks that could be deployed in this layer
are the DDoS/DoS, Man in the Middle, sniff attacks, spoofing attacks and mali-
cious Troyan code. These attacks are caused by different reasons like bad design
or configuration that allows the attacker to use more resources than allowed,
insecure management interfaces, inadequate enforcement of security policies,
improper isolation between hypervisor and VNFs, among others.

• NFV MANO: Authors in [2, 12] talk about Virtual Network Platform as a Service
(VNPaaS) that allows an enterprise to develop and deploy their custom services
to meet their business purpose. Some of the threat vectors for VNPaaS could be
exploiting default application configuration, flaws of SSL/TLS, security breaches
resulting from lack of interoperability, security flaws in the development life cycle,
and Malicious insiders.

Some of the possible and most critical attacks that could be deployed in this
layer are DDoS/DoS, backdoor attacks, attacking public key infrastructure (PKI).
These attacks are caused by different reasons like exploiting default application
configuration, flaws of SSL/TLS, flaws in development life cycle, flaws in control
plane and management, among others.

• VNF: Authors in [2] talk about Virtual Network Function as a Service (VNFaaS):
Here, the enterprise is a customer that can configure the applications without
having control over the underlying infrastructure; it is similar to VNPaaS, but the
difference is the scale of service and programmability. Here we can find signifi-
cant threats because the SP does not expose the internal infrastructure and users
do not have control over network resources.

Some of the possible and most critical attacks that could be deployed in this layer
are DDoS/DoS, bypass firewall restrictions and spoofing attacks. These attacks
are caused by different reasons like flaws in VNF software, lack of interoperabil-
ity, flaws in security policies, improper isolation between hypervisor and VNFs,
among others.

Summarizing, the major part of the NFVI attack vectors are replicated over the other
NFV layers and the DDoS/DoS attack appears in all layers.

21

3.2 Proposals and countermeasures

To solve the mentioned problems, the authors in [12] also mention some security
solutions existing in the industry to provide and enforce security in NFV:

• Policy Manager for NFV [48].

• Virtualized security at the network edge: A user-centric approach [49].

• VMware vCloud NF [50].

These platforms propose different solutions trying to mitigate or solve problems like
enforcing security policies, providing safe and efficient allocation of data flows across
VNFs, and processing and analyzing historical and real-time data.

Furthermore, the authors in [11] also present a set of best practices to implement in
an NFV architecture in order to prevent possible threats and vulnerabilities. Here, they
mention some mechanisms to enforce security and mitigate possible attacks such
as the implementation of a trusted platform module to verify and store the measure-
ments of sensitive components of the system, validating the platform measurements
before performing any action. Also, they propose to disable all the unused services to
prevent possible threats and vulnerabilities, creating isolated traffic zones or traffic
for similar functionalities to protect these data using access control policies. Finally,
they propose to protect the data of VNF volumes/swap areas using encryption and
storing the cryptographic keys in safe locations.

In [2],the following mechanisms are shown to compare the different implementations
between traditional network scenarios and NFV environments in the aforementioned
aspects.

• Security Management and orchestration

• Identity and Access Management (IAM)

• Intrusion Detection and Prevention (IDS/IPS)

• Network Isolation

• Data Protection

In each mechanism, the authors perform a comparison between a traditional im-
plementation and a NFV based implementation, analyzing some aspects such as
flexibility, centralized control and management, the complexity of lifecycle man-
agement, scalability, cost, effectiveness, and security enhancement. Some security
countermeasures and recommendations in NFVI Layer, VNF Layer, and NFV MANO

22

Layer are presented to guarantee the security and protection of data in case of any
attack. Also, they propose a framework structure trying to cover all security threats
and vulnerabilities, using the most relevant countermeasures to improve security in a
NFV environment, this framework is depicted in Fig. 5.

Fig. 5. NFV MANO framework structure proposed by [2]

Also, authors in [51] propose a ML technique to manage traffic and detect attacks
on the NFV architecture. Their solution works as an agent which receives different
network metrics and builds network profiles according to these metrics to perform
different actions. In this case, the authors implement two profiles, one of them is a
strategy used to detect and mitigate DoS attacks and the other profile is used to per-
form a load balancing strategy if the throughput of normal traffic in the environment
increases. This work deploys a prototype using Docker to implement the network
functions, POX as SDN controller, and Mininet to emulate network topologies. It is
an interesting approach as this work deploys the detection and mitigation strategy to
prevent possible troubles caused by the attack and generates an additional profile to
guarantee the service availability with high throughput. This work inspired us to de-
velop our proposal; however, it would have been very interesting to see this work in a
real scenario to take it as a point of reference to compare it results with other proposals.

3.3 Classification and taxonomy

To summarize this chapter, we have proposed a taxonomy based on a clear classifi-
cation criterion, this section shows a set of tables that aim to condense the reviewed
literature in a clear way.

23

Table 1 exposes a review of security threats and vulnerabilities found in the literature.
The review has been classified into three layers, NFVI, VNFs, and NFV MANO, and
shows the possible attack vectors in each layer.

Table ?? collects the countermeasures and the mechanisms that can be implemented
in an NFV environment to prevent and mitigate the security issues and vulnerabilities
presented in these three layers. And finally, Table 3 presents the open issues and
challenges still present in the NFV environment.

In synthesis, all authors have proposed a compilation of threats and vulnerabilities in
three principal aspects. The most critical vulnerabilities are found in NFVI because
they are shared in more than one layer, and affect the upper layers of a NFV envi-
ronment. To prevent these problems, it is necessary to enforce the mechanisms and
policies used in NFVI layer, to reduce the volume and impact of attack vectors.

Here, we note that there are many open challenges and issues to address and solve
in the future. Probably, a long time is needed to adopt a standardized framework to
cover the most important concerns in NFV security. All of these reviewed works show
a huge challenge principally in NFVI, as depicted in Table 1, where the major part of
the threats and vulnerabilities to address are allocated.

24

Table 1. Security threats and vulnerabilities in each layer (NFVI, VNF, NFV MANO).
NFV
layer

Security threats and vulnerabilities possible Attacks Literature

NFVI

Data leakage.
Violate the isolation between guest VM.
Manipulation of memory allowing to write, read and exe-
cute in other VM.
Break the hypervisor to gain access and run any code or put
a new hypervisor on top.
Bad design or configuration that allows the attacker to use
more resources than allowed.
Insecure management interfaces.
Inadequate enforcement of security policies.
Shared physical and virtual resources.
Infected VM images.
Compromising VM migration.
Bad manage and inappropriate operations.
Lack of security evaluation and integration and interoper-
ability among different software.
Improper isolation between hypervisor and VNFs.
Create a quick and dynamic service decision with virtual
network component are a mistake.
Service disruption or unavailability by exhaust the hypervi-
sors or physical resources.
Leaked of infrastructure logs.
Platform integrity.
Data transmitted unencrypted.
Malicious administrator.
Unsuitable service composition (flaws security protection).

DDoS, mali-
cious Troyan
code, Man in
the middle,
sniff attack,
Hyperjacking,
insider attack,
spoofing attack,
DNS amplifi-
cation attack,
eavesdropping
attack

[2, 13, 12,
11, 44, 45,
46, 47]

VNF

Flaws in VNF software.
Lack of interoperability.
Flaws in development life cycle.
Flaws in security policies.
Insecure interfaces.
Data loss and information leakage.
Malicious insiders.
Flaws in management and control plane.
Problems in fault detection and troubleshooting.
Improper isolation between hypervisor and VNFs.
Data transmitted unencrypted.

bypass firewall
restrictions,
DDoS, spoof-
ing attack, VM
escape attack,
eavesdropping
attack

[2, 13, 12,
11, 44]

NFV
MANO

Exploiting default application configuration.
Flaws of SSL/TLS.
Breaches in lack of interoperability and inconsistency
in management and orchestration (between multi-vendor
software, diverse computational resources and sophisti-
cated isolation by enterprises and operators).
Flaws in development life cycle.
Malicious insiders.
Insecure interfaces.
Exploit insecure VNF API to dump the records of personal
data from the database to violate user privacy.
Malicious administrator.
Flaws in control plane and management.
Lack of well-defined policies and isolation.

DDoS, back-
door attacks,
attacking pub-
lic key infras-
tructure (PKI),
hyperjacking,
VM escape, VM
hoping

[2, 13, 12,
11, 44, 45,
47]

25

3.4 DDoS/DoS in NFV environments

For this work, we will select a DDoS/DoS attacks as it is a very common and critical
security threat that is transversal to all NFV layers to find an efficient strategy to detect
and mitigate this security threat on NFV environments and to explore a different
way to address this kind of threats in NFV environments. The idea is to open the
possibilities to implement and deploy NFV platforms for different future projects. This
attack was selected as it affects the availability of NS and could even affect the entire
NFV environment.

In Tables 1, ??, and 3, we presented the principal security issues in an NFV environ-
ment. There we remarked the critical weakness through the NFV layers (NFV MANO,
VNF, NFVI), also, Chapter 3 shows that the NFVI is the most critical layer where we
could find the major part of threats and vulnerabilities. Additionally, a lot of these
threats and vulnerabilities are transversal to the NFV layers, which means that if we
cover the principal issues on the NFVI layer, we will cover a high part of cybersecurity
troubles and will maintain a safe NFV environment.

For this reason, this work will be oriented to develop a tool that performs Detection
and mitigation in an NFV environment to prevent malicious actions, maintain the in-
formation safe, and guarantee an adequate performance of the different architectures
and services implemented within the platform.

For this purpose, our work will consist on the proposal of detection and mitigation
techniques for DDoS/DoS attacks in NFV environments, remarking that handling
DDoS/DoS attacks and the triggering of automatically orchestrated security functions
in the NFVI are still ongoing research topics [2]. Our proposal is based on a work
of the Canadian Institute for cybersecurity of the University of New Brunswick that
performed a research using real network traffic to study different kind of attacks with
different types of targets like Windows or Linux machines. They present a robust
dataset created using a tool called CICFlowMeter [52, 53] developed by them. This tool
models DDoS/DoS attacks with current malicious software, including other malicious
attacks with other behaviors.

Therefore, our goal is to develop a tool to detect and mitigate DDoS/DoS attacks using
the dataset released for the Canadian Institute for cybersecurity and implement a
ML technique to detect a DDoS/DoS attack in a real NFV environment. Furthermore,
this work will develop a strategy to maintain the performance of the network service
deployed inside of the NFV environment where there is not a volumetric attack but
the throughput through the NS gets over a certain boundary.

26

Table 2. Countermeasures and Mechanisms proposed to improve the security in the NFV
environment.

NFV Covered Layer
Mechanisms and countermeasures proposed NFVI VNF NFV MANO
Allows Advanced security service deployment to achieve high-level agility and efficient
service deployment (mechanism), [2]

3 3

Improving capability of defending against massive attacks using metadata, limited band-
width, etc. (mechanism), [2]

3 3

Automation and central management of security functions according to the common
policies (mechanism), [2]

3

Security orchestrator based on Moon framework to provide policy enforcement and val-
idating security characteristics (mechanism), [2, 13]

3

Has design principles as specify high level policies, achieving fine-grained security con-
trol and provide a set of security functions (mechanism), [2]

3 3

Virtualized access control based on federated identity to provide flexible management
and increase security (mechanism), [2]

3

Virtualization of content-aware identity and access control management to cover all
necessary requirements including privileged user management, fine- grained access
control, among others (mechanism), [2]

3

Security monitoring appliance to provide active, transparent, and real time security
monitoring (mechanism), [2]

3 3

Encrypted virtual machine introspection to provide users a complete status of their vir-
tual instances, while keeping confidentiality of user’s data by using encryption tech-
nique (mechanism), [2]

3 3

Security health monitoring – CloudMonatt to provides a flexible distributed cloud archi-
tecture to detect and monitor the security health of customer’s VMs based (mechanism),
[2]

3 3

Virtualized network isolation to provide traffic isolation in a virtualized datacenter envi-
ronment (mechanism), [2, 13]

3

Virtualized network isolation to provide traffic isolation in a virtualized datacenter envi-
ronment (mechanism), [2]

3

Logical isolated network partitions to maintain end-to- end isolated network virtualiza-
tion (mechanism), [2]

3 3

Data leakage detection – CloudSafetyNet is a propose to examine the data flow of tenant
applications in the cloud platform whether there is any data leakage (mechanism), [2]

3 3

Data confidentiality protection, architecture that proposes to protect user privacy and
ensure that service providers are not able to collect any user’s data (mechanism), [2]

3 3 3

Key-insulated symmetric key cryptography tries to mitigate the repeated exposure of
secret keys, in which the keys need to be updated frequently (mechanism), [2]

3 3

Key management in the clouds – EnCloud tries to solve a set of problems of insecure key
creation, key management, and key renewal (mechanism), [2]

3

Decomposing services for data plane and control plane, enforcing policies and virtual-
izing resources for control functions, and managing and controlling the whole network
to improve the security in NFV (mechanism), [2]

3

Establishing trust domain to provide confinement boundaries, create secure communi-
cation, and maintain security among group’s members (countermeasure), [2, 44]

3

Dynamic and adaptive access control to protect, monitoring and enforce the policies to
access the data stored across NFVI (countermeasure), [2, 13]

3

Hypervisor introspection or Virtual Machine Introspection is used to scrutinize software
running inside the VMs, and then analyze suspicious events and anomalous activities
(countermeasure), [2, 11]

3

Separation of administrative duties to identify what administrative roles should be sep-
arated and what these can do (countermeasure), [2]

3

Security service chaining aims to maintain closed-loop security protection or to achieve
autonomic controllability (countermeasure), [2, 44]

3

Regular VM updates and patches to reduce vulnerabilities and mitigate security risks
from VM attacks (countermeasure), [2, 13, 11]

3

Remote attestation, with this technic/process the user is able to verify whether a queried
cloud platform is booted in a trusted manner (mechanism/countermeasure), [2, 11, 46]

3

27

NFV Covered Layer
Mechanisms and countermeasures proposed NFVI VNF NFV MANO
Design of trustworthy hardware and platform to provide a secure execution environ-
ment in the processor supply chain and the hardware mechanism, tries to improve se-
curity in virtualization, among others (countermeasure), [2]

3

Defining standards to support service interoperability to support interoperability be-
tween the various NFV elements, covering both standalone VNF instances, NFVI plat-
forms, and network functions (countermeasure), [2, 13]

3

Ensuring robustness of service chaining to ensure availability of each independent net-
work services in service chaining (countermeasure), [2]

3

Establishing trust relationships between intra, inter, and extra domains to ensure that
all parties in the same trust domain can securely communicate with each other (coun-
termeasure), [2, 13]

3

Security monitoring to provide visibility into the network events and activities of interest
the status of infrastructure resources, network services, VNF instances, and other related
events (countermeasure), [2, 13]

3 3

Data encryption and leakage prevention to protect data in transit, at rest, and in use
(countermeasure), [2, 12]

3

VNF image signing and software integrity protection, aims to verify that the images don’t
being infected with malwares or others attacks (countermeasure), [2, 11]

3

Security management, orchestration, and automation to ensure secure and fast service
delivery, while improving end user experience (countermeasure), [2, 13, 11]

3

Transparency to network control and management to ensure the confidentiality of data
and it can only operate with the user permission, make the environment trusted (coun-
termeasure), [2]

3

Access control virtualized network function to verify the large number of VNF appliance
(authentication and authorization) (/mechanism/countermeasure), [2, 12]

3 3

Have strict operational procedures for people to mitigate internal threats from inappro-
priate operations (countermeasure), [12]

3

The devices should have a security certification process to eliminate possible threats
from design and implementation (countermeasure), [12]

3

NFVI should has and adopt standard security mechanisms for authentication, autho-
rization, encryption, and validation (countermeasure), [12]

3

Secure networking techniques should be adopted, such as TLS, IPSec, and SSH to pro-
vide security in shared logical networking layer and shared physical network interface
controllers (countermeasure), [12]

3

Defines standard interfaces (authentication, user privilege control, among others) to im-
plements these in virtualized security functions (challenge), [12]

3 3

Decomposing services for data plane and control plane, (2) enforcing policies and vir-
tualizing resources for control functions, and (3) managing and controlling the whole
network (countermeasure), [12]

3 3 3

Trusted platform module (TPM) to verify and store measurement of system sensitive
components and validates the platform measurements before performed (mechanism),
[11, 46]

3

Create and isolate zone traffics or similar functionalities and protect these data with
access control policies and dedicated firewall based (mechanism), [11, 13]

3 3

Disables all services that are not in use to prevent possible threats and vulnerabilities
(mechanisms), [11]

3 3

Use Secure virtualization (sVirt) to integrate mandatory access control security with
Linux based hypervisors, provides isolation between VM processes and data files (mech-
anism), [11]

3

Protect the data of VNF volumes/swap areas using encryption and storing the crypto-
graphic keys in a safe locations (mechanism), [11]

3 3

Define an up/down resource optimization to provide a higher level of scalability (mech-
anism/countermeasure), [44]

3 3

Enable the resilience, survivability and ensure the availability of security services (mech-
anism), [44]

3 3 3

28

NFV Covered Layer
Mechanisms and countermeasures proposed NFVI VNF NFV MANO
protecting integrity of a virtualized infrastructure managed by a Cloud Service Provider
(OpenCIT) allowing the following aspects: Integrity of the NFVI host platform, Integrity
and confidentiality of VNFs, and Integration of trust with the MANO stack (mechanism),
[45, 46]

3 3

Uses a external trusted security orchestrator to perform VNF related security operations
(mechanism), [46] 3

Uses a Security orchestrator as an extension of NFV orchestrator (Moon-based) (mecha-
nism), [47, 13] 3

implement a strategy to provide security service on demand (countermeasure), [13]
3 3

Ensuring controller availability because is the centralized decision point of an NFV en-
vironment (countermeasure), [13] 3

29

Table 3. Open issues and challenge In the NFV environment.

Open security challenge Proposed by
Define the standard interface in the ETSI NFV architecture to deploy virtual security
functions to react to various threats in real time

[11]

Perform the trust management between different vendors who build NFVs hardware
and software

[11]

Run time attestation is still an open research area that needs to be explored further.
[11]

What is the level of intelligence that must be achieved in NFV MANO, more importantly,
a basic set of security functions should be automatically orchestrated and intelligently
deployed to the appropriate NFV Infrastructure for protecting network assets based on
the predefined policies

[2]

Find the best process that ensures the correct configuration of network security tech-
nologies in intra and inter policies avoiding conflicts

[2]

The risks of unauthorized disclosure of their data performing by untrusted service
providers could be high. The challenge is that users have to ensure the service providers
do not break down their privacy and confidential data.

[2]

(Compromised NFV) How to detect compromised components and mitigate their im-
pact remains a challenge

[12]

(Distributed Denial-of-service attacks) How to utilize the flexibility of VNF to defend
against DDoS attacks in the network

[12]

(Trust management in NFV) how to manage the trust chain and evaluate the trustwor-
thiness of products

[12]

How to adaptively configure VNFs by choosing software to minimize security risk of the
network

[12]

The implementation of Trusted Computing methodologies by the Trust Manager should
be assessed because of the extensive use of virtualization in NFV (attestation of VNFs is
a relevant topic from the research perspective as it encompasses the challenges into
establishing trust for different virtualization technologies)

[45]

Attestation of container-based VNFs is a promising area for further research because of
the lack of production-ready solutions that apply to different OS virtualization technolo-
gies

[45]

VNF image integrity and confidentiality
[45]

Inside the Relationship between trust and the MANO stack, Trust Manager should be
able of providing limited visibility of attestation reports to the other components of the
MANO stack depending on the assignment of hosts to specific tenants.

[45]

Impact on performance and scalability of trust operations because is introduced a la-
tency during the measurement and attestation phases, and the verification phase re-
quires the remote verifier.

[45]

TelcoCloud has a requirement to remain resilient and fault tolerant under extreme cir-
cumstances to maintain service level agreements (SLAs) in the following scenarios: 1)
Unavailability of resources that satisfy a policy 2) VNF integrity is compromised 3) Bind-
ing of VNF resulted in failure 4) NFV platforms are not trusted

[45]

trusting the infrastructure focusing on the requirements for trusted hardware and a
trusted virtualization layer

[46]

30

4 DDoS/DoS attack detection and mitigation proposal
in NFV/SDN Environments

This Chapter will show an introduction about the traditional ML techniques used to
detect DDoS/DoS attacks, also, it will show the feature extraction process and data
prepossessing, the description of each experimental scenario, and the performance
evaluation obtained on each experiment. additionally, this chapter will show a prelimi-
nary conclusions after analyzing the experimental results and the proposed mitigation
process to face the DDoS/DoS attacks or tackle the availability problems provoked by
high volume of requests.

4.1 DDoS/DoS detection process

This subsection will show preliminary experiments and results to subsequently define
the DDoS/DoS detection proposal.

4.1.1 Traditional ML-based detection techniques

The intrusion detection inside the computer networks is an important topic to address
due to the risk suffered by the information. Focusing on the prevention and detection
of DoS/DDoS attacks over computer networks. These works are using traditional IDS
or traditional machine learning (ML) techniques. The following works show different
approaches and methodologies to detect the aforementioned attacks :

The authors in [54] generate a huge IDS data-set called CICIDS2017, used in this
work that contains a different kind of cybersecurity attacks, and then, the authors
perform an analysis to determine the best feature sets and detect different attacks
using common ML methods like Random Forest, KNN, Naive-Bayes, among others.

They present good results as a preliminary evaluation of the data-set presented in the
paper. In [55] the authors show a huge amount of intrusion detection techniques from
traditional IDSs and ML and neural network techniques. This work gives a good base
to take into account to work in this area.

In [56] the authors present a technique based on a nonparametric cumulative sum
(CUMSUM) oriented to detect DoS attack in web servers where the DoS attacks
have different behaviors with a high volume of traffic or low volume of traffic in
the application layer.

The authors in [57] proposed an IDS using a convolutional neural network technique
to detect DoS attacks and compare the performance of it with other techniques as

31

KNN, SVM, and Naive-Bayes.

Additionally, In [58] the authors present a smart DoS/DDoS detection, designed to
detect high and low Dos attacks. This work uses random traffic samples collected on
the network devices using stream protocol and random forest technique.

All these works propose interesting ideas to address the detection of DoS/DDoS
cybersecurity attacks but most of them are based on traditional ML techniques. For
this reason, we proposed a different approach using a GMM and UBM technique as a
novel method to detect DoS/DDoS cybersecurity attacks inside a network.

4.1.2 Data-set and Feature Extraction

This section explains how the used dataset was built starting from the captured data
and how the feature extraction over these data was performed.

The dataset used in this work is “Intrusion Detection Evaluation Dataset (CICIDS2017)",
it contains benign network traffic and updated common security cyberattacks. The
authors ensure that the dataset resembles the true real-world data, and CICFlowMeter
was used to extract data from traffic flows [59]. They added 85 statistical features, but
more can be included [60, 61]. Table 4 shows some of these features.

The dataset was built on the behavior of 25 users generating HTTP, HTTPS, FTP, SSH,
and email traffic, these flows are labeled as BENIGN. The dataset also includes attacks
like Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet, and DDoS. This work uses only the data that contains DoS/DDoS and normal
traffic included in a 12.5GB pcap file. The original dataset has 692703 samples with
both traffic labels/classes and 85 features. These features were reduced to 68 deleting
features that provide little information. The removed features helped to identify the
traffic flow but do not provide information about the network phenomenon.

The dataset has 251712 samples with the label “DDoS/DoS" and 439683 samples
with the label “Benign". In order to use a balanced dataset to construct unbiased
GMM/UBM, 251712 samples were randomly selected from the BENIGN traffic. Next,
standardization and a correlation analysis were performed. Some of the features were
correlated, so a dimension reduction via Principal Component Analysis (PCA) was
conducted, ending with 18 components that contain 77.69% of the variance from the
original dataset. The explained variance Analysis is depicted in Fig. 6 where the sum
over the first 18 components gives the aforementioned variance.

32

Table 4. Features generated by the CICFlowMeter tool.

Feature Name Description
Flow duration Duration of the flow in Microsec-

ond
Total Fwd
Packet

Total packets in the forward di-
rection

Total Bwd
packets

Total packets in the backward di-
rection

Total Length
of Fwd Packet

Total size of packet in forward
direction

Total Length
of Bwd Packet

Total size of the packet in back-
ward direction

Fwd Packet
Length Min

Minimum size of the packet in
forward direction

... ...
std idle Standard deviation time a flow

was idle before becoming active
Init Win bytes
forward

The total number of bytes sent
in initial window in the forward
direction

Init Win bytes
backward

The total number of bytes sent in
initial window in the backward
direction

Act data pkt
forward

Count of packets with at least 1
byte of TCP data payload in the
forward direction

4.1.3 Experimental scenarios

This section shows how was the dataset split in each experimental scenario and what
technique was used in each experiment.

For the UBM approach, 50% of the dataset will be used to build the UBM. After this,
30% will be used for training, which includes the generation of GMMs for benign
traffic and for attack traffic and the implementation of the MAP algorithm. Finally, the
remaining 20% will be used for the testing phase. This is summarized in Table 5.

Table 5. Dataset segmentation for UBM approach.

Class Samples by
class

UBM-data
samples

Training sam-
ples

Test sam-
ples

Attack 251712 125954 75337 50422
Benign 251712 125758 75690 50264

33

Fig. 6. Cumulative Explained Variance applying PCA.

For the GMM approach, 70% of the dataset is used for training and estimating the
parameters of each combination of Gaussians, and 30% is used in the test step, as
shown in Table 6. Both scenarios will rely on the scoring metric included in the sklearn
library for classification tasks. The analysis was performed by testing with models that
had from 1 to 19 Gaussians in order to compare the results of different combinations
of distributions.

Table 6. Dataset segmentation for GMM approach.

Class Samples by
class

Training sam-
ples

Test sam-
ples

Attack 251712 201399 50313
Benign 251712 201340 50372

For the Random Forest experiment, the data is split in the same manner as the GMM
experiment. In this case, a search grid is used to determine the best model, changing
parameters like n estimators (number of trees in the model), max features (the number
of features to consider when looking for the best split), max depth (the maximum
depth of the tree), and criterion (the function to measure the quality of a split) [62],
giving a total of 144 different models. These parameter will take values as follows:

• n_estimators = {15, 20, 25}

• max_features = {3, 5, 7, 9}

• max_depth = {None, 6, 7, 8, 9, 10}

34

• criterion = {"gini", "entropy"}

Taking into account the explanation about the three experimental scenarios; the
following section shows the performance of each experiment and some conclusions
about this work.

4.1.4 Performance Evaluation

This section shows the performance for each experiment, mentioning the advantages
or shortcomings found in the implementation of each algorithm, starting with the
UBM experiment, followed by the GMM experiment, and finishing with the RF ap-
proach. As preliminary conclusions, we found the RF approach worked very well in
this classification problem showing better performance than GMM and UBM. GMM
performed better than UBM. Finally, the following results show an important first step
to use these novel techniques in the networking area.

UBM scenario For this experiment, the accuracy is shown in Table 7 and Fig. 7a.
After 9 Gaussians overfitting over the attack class appears, whilst with less Gaussians,
the accuracy goes from 60% to 77.5%. Table 8 shows a summary of this experiment,
including the precision and sensitivity of the scenario.

Table 7. Accuracy by gaussian in UBM scenario. The accuracy average is 56.3%.

Gaussians 1 2 3 4 5
ACC 0.617 0.707 0.655 0.696 0.602
Gaussians 6 7 8 9 10
ACC 0.775 0.400 0.663 0.537 0.494
Gaussians 11 12 13 14 15
ACC 0.544 0.501 0.501 0.501 0.5001
Gaussians 16 17 18 19
ACC 0.501 0.501 0.501 0.501

Additionally, the Confusion matrix for 2, 3, 4, and 6 Gaussians are the best result found.

Confusion Matrix - 2 Confusion Matrix - 3
Attack Benign Attack Benign

Attack 46723 3698 21420 29001
Benign 25820 24444 5758 44496

Confusion Matrix - 4 Confusion Matrix - 6
Attack Benign Attack Benign

Attack 28914 21507 36447 13974
Benign 9106 41158 8666 41598

GMM scenario For this experiment, the accuracy is shown in Table 9 and Fig. 7c.
This model shows a good classification of the test dataset in the different combinations

35

Table 8. Summary results for UBM.

Gaussian Precision % sensitivity %
- Attack Benign Attack Benign
1 57 85 95 28
2 64 87 93 49
3 79 61 42 89
4 76 66 57 82
5 59 62 69 51
6 81 75 72 83
7 35 43 23 57
8 65 68 72 61
9 52 55 67 41

10 50 49 50 49
11 55 54 52 57
12 50 0 100 0
13 50 0 100 0
14 50 0 100 0
15 50 0 100 0
16 50 0 100 0
17 50 0 100 0
18 50 0 100 0
19 50 0 100 0

from 1 to 19 Gaussians; the optimal point in this experiment could be from 3 to 9
Gaussians, where the accuracy values are good and the model is not too complex or too
simple to represent the phenomenon. Table 10 shows a summary of this experiment.

Table 9. Accuracy by gaussian in GMM scenario. The accuracy average is 80.3%.

Gaussians 1 2 3 4 5
ACC 0.605 0.735 0.770 0.771 0.769
Gaussians 6 7 8 9 10
ACC 0.814 0.826 0.828 0.823 0.833
Gaussians 11 12 13 14 15
ACC 0.823 0.825 0.824 0.828 0.828
Gaussians 16 17 18 19
ACC 0.833 0.838 0.839 0.843

The best confusion matrix for 6, 7, 8, and 9 Gaussians are:

36

Table 10. Summary results for GMM.

Gaussian Precision % sensitivity %
- Attack Benign Attack Benign
1 56 83 95 26
2 77 71 68 79
3 92 70 59 95
4 93 70 59 95
5 93 70 58 95
6 90 76 70 92
7 94 76 70 96
8 94 76 70 95
9 92 76 70 94

10 95 76 70 97
11 93 76 70 95
12 94 76 70 95
13 94 76 70 95
14 95 69 76 96
15 95 69 76 96
16 95 69 76 96
17 96 77 70 97
18 96 77 70 97
19 97 77 71 98

Confusion Matrix - 6 Confusion Matrix - 7
Attack Benign Attack Benign

Attack 35355 14958 34997 15316
Benign 3785 46587 2201 48171

Confusion Matrix - 8 Confusion Matrix - 9
Attack Benign Attack Benign

Attack 35330 14983 35436 14877
Benign 2353 48019 2899 47473

Additionally, Figs. 7b and 7d show the training time and prediction time on each
experiment, this can be useful to understand how much time is required to train and
use a model with different number of Gaussians. Actually training time is relatively
low, considering the amount of samples, having around 40-500 seconds for the UBM
experiment and 200-450 for the GMM experiment.

RF scenario As stated before, in this case, 144 models with a different set of parame-
ters were evaluated. In Fig. 7e, the accuracy went from 85.13% up to 96.7% showing
better results in comparison with the GMM and UBM scenarios. Table 11 shows 10
of 144 results where the second column is the accuracy of each result and the next

37

(a) Accuracy results for UBM scenario (b) Training time and prediction time for UBM sce-
nario

(c) Accuracy result for GMM scenario (d) Training time and prediction time for GMM
scenario

(e) Accuracy results for RF scenario (f) Training time and prediction time for RF sce-
nario

Fig. 7. Accuracies, Training time and Prediction time for experimental scenarios.

columns depict the chosen parameters to generate each model.

The training time by each model in Fig. 7f depends only on the parameters chosen. For
the last three models, the training time is around 35-51 seconds, and the prediction
time is around 0.79-1 seconds for the RF experiment.

38

The best three results have the following confusion matrices where the accuracy by
each one is 96.1%, 96.2%, amd 96.7% respectively:

Confusion Matrix - 17 Confusion Matrix - 18
Attack Benign Attack Benign

Attack 45315 4998 46772 3541
Benign 196 50176 340 50032

Confusion Matrix - 19
Attack Benign

Attack 46788 3525
Benign 266 50106

The results of the experiments show that the RF algorithm works very well, obtaining
up 96% of accuracy in this classification problem which is not that complicated and
the simplicity of this problem may be one reason why the methods GMM and UBM
did not work better than RF, but the first steps with the others two methods are really
good because this shows an opportunity to improve the GMM and UBM methods
and enrich the model to perform more complex classification experiments due to the
GMM and UBM techniques worked very well in multiclass classification or multiclass
verification problems in areas as speech recognition according to [14, 36]. These
methods could show a better performance in problems where the goal is to classify
different kinds of cyberattacks or classify the different strategies to deploy the same
type of attack; there the robustness of the GMM or the UBM can be used. Additionally,
these results are a good first approximation to improve the experiments and begin to
work with these techniques in other domains. The GMM and UBM could work better
in more complex scenarios, since these techniques are models that could generalize
better a phenomenon. A further work could be a study that includes other databases
including different features in order to compare the performance of the GMM and
UBM against traditional ML techniques. In comparison, the training times for UBM
and GMM are longer than the RF alternative, but these are short times taking into
account that there are some ML models that can take much longer in the training
process. As a future work, these training times could allow to make an automatic
retraining process that could contribute to improve the performance of the GMM and
UBM over time.

Note: Accuracy was used to show the main results and facilitate comparison of the
scenarios presented in this chapter. In addition, the confusion matrix was used to
expose the true positives, true negatives, false positives and false negatives to easily
identify classification errors in each scenario. Also, the information from the confusion
matrix allows the calculation of other metrics such as precision, recall and F1 score
Eqs. 9,10,11 that are commonly used to analyze ML techniques.

39

Table 11. Summary for 19 results for RF.

N accuracy criterion max depth max features n estimators
1 0.851 gini 10.0 9 20
2 0.852 gini 10.0 9 25
3 0.853 gini 6.0 9 15
4 0.853 gini 6.0 9 20
5 0.854 gini 6.0 9 25
6 0.854 gini None 7 15
7 0.867 gini 9.0 7 15
8 0.867 gini 9.0 3 15
9 0.867 entropy 9.0 7 25

10 0.868 gini 10.0 5 15
11 0.869 entropy None 3 25
12 0.872 entropy 10.0 7 25
13 0.936 entropy 9.0 9 20
14 0.937 entropy 9.0 7 15
15 0.948 gini 6.0 5 15
16 0.948 gini 6.0 5 20
17 0.961 gini 7.0 3 15
18 0.962 entropy 7.0 5 15
19 0.967 entropy 6.0 5 15

pr eci si on = t p

t p + f p
(9)

r ec al l = t p

t p + f n
(10)

F 1− scor e = pr eci si on ∗ r ecal l

pr eci si on + r ecal l
(11)

4.1.5 Preliminary conclusions for the proposed detection strategy

The UBM and GMM are powerful techniques that can be used in many different scenar-
ios such as classification of security attacks in networking where the data to generate
the models and probe the algorithms are cheap. The GMM technique provides better
results in the classification for the two-class problem (BENIGN and DDoS), where
for 8 Gaussians the obtained accuracy is 82.8% in comparison to the UBM technique
where 6 Gaussians led to an accuracy of 77.5%. We found that with more Gaussians
the model starts to show overfitting. The accuracy result for the UBM technique can
be related to an insufficient capability to explain the phenomenon of the extracted

40

features used to generate the UBM. Is important to remark that the RF model per-
formed better in terms of accuracy compared to the GMM and UBM, however, this
work also tries to introduce techniques that work very well in other areas as speech
recognition and implements them in the networking area, and more specifically in the
cybersecurity area where the traditional techniques do not present relevant changes.
These techniques could replace an Intrusion detection System or any other type of
detection system in the future.

As future work, The GMM and UBM techniques could be implemented to classify
more than two classes, e.g. trying to classify each kind of DoS/DDoS attack or trying to
model a multi-class problem where the classes could be different kinds of cyberattacks.
Additionally, a research could be conducted to find and construct other feature extrac-
tion processes that better describe the phenomenon, to improve the performance of
the novel techniques implemented in this work.

Summarizing, this work uses the GMM technique as a attack detection strategy to
introduce this novel ML technique and verify the effectiveness of it in a real NFV
environment. This strategy consists to get the real time network traffic as input to
perform the feature extraction based on Chapter 4.1.2, then, the processed data should
pass through the GMM classifier based on Chapter 4.1.4 to determine if each flow
traffic will be labeled as attack or benign traffic.

4.2 Attack mitigation process

This subsection will describe the mitigation process, also, this work will present an
additional strategy to complement this process.

If any flow traffic is detected as attack, the mitigation strategy checks if a flow rule was
already created for this malicious flow, in case the flow rule exists, the existing flow
rules will drop the next flows that match these flow rules. But in case this flow rule
does not exist, the strategy will send a request to SDN controller with the needed pa-
rameters to create the new flow rule to drop the next incoming traffic. After installing
the new flow rule, each flow that matches with this flow rule will be dropped and this
malicious traffic won’t affect the performance of the NS.

If any flow traffic is classified as normal, the mitigation strategy focuses on determining
if a high demand for the service is occurring to deploy a load balancing strategy and to
guarantee service availability in order to ensure its optimal performance.

The load balancing strategy is implemented as a complement to tackle the availability

41

problems provoked by high volume of requests sent by the users. Here, the the strategy
checks if the normal traffic throughput exceeds a certain threshold previously defined
and also checks if the attack detection throughput is less than certain threshold previ-
ously defined to guarantee that the traffic throughput increase is not related to any
attack. If this event occurs, the strategy performs a request to the NFVI to turn the
second VNF on and makes that the LB works distributing the load in both VNFs. If
this event does not occur, the strategy does not make anything and allows the normal
traffic to reach the VNF.

42

5 Experimental settings

This section shows the experimental details of the implementation performed in this
master project. Within these details we show:

• NFV platform: This subsection will explain the selected platform and its imple-
mentation as real NFV environment.

• Experimental scenarios: This subsection will explain each experimental scenario
and their details

– DDoS/DoS strategy: This will explain the implementation of the proposed
DDoS/DoS detection and mitigation strategies.

– Load balancing test: This will show how manage an undesired behaviors
related to a web service.

5.1 NFV platform

Currently, there are different kind of NFV platforms that could be developed for
different purposes, such as: to provide end-to-end services, to manage issues related
to service placement, to focus on dynamic scaling, monitoring, among others. Also,
these platforms could concentrate in providing an efficient infrastructural packet data
path avoiding redundant processes [63]. Next, we present several categories of NFV
platforms:

• End-to-End service provisioning: Oriented to service providers or network oper-
ators in order to provide end-to-end services. Some of these platforms are UNIFY
[64], Cloud4NFV [65], CloudBand [66], GNF [67], DeepNFV [68], NetFATE [69],
SONATA [70], among others.

• VNF development: They are dedicated to ease the development of VNFs and
guarantee efficient VNF execution. Some of these platforms are xOMB [71], CoMb
[72], FlowOS [73] NetBrics [74], Scylla [75], LibNFV [76], Flick [77], ClickNF [78],
among others.

• Holistic MANO system: These kinds of platforms focused on creating completed
MANO systems (they try to tackle all facet of MANO, such as the scheduling,
monitoring, scaling, load-balancing, failover, and VNFs management). Some of
them are ETSO [79], OpenMANO [80], Open Baton [81], vConductor [82], T-NOVA
[83], among others.

• Focused on a specific feature of the MANO framework:

43

– Scaling and failover: Split/Merge [84], TFM [85], OpenNF [86], DiST [87],
LEGO [88], among others.

– Scheduling:NFVnice [89], EdgeMiner [90], ResQ [91], NetContainer [92], among
others.

– Profiling: NFV-vital [89], Gym [93], ConMon [94], Symperf [95], KOMon [96],
among others.

– Secure execution: vEPC-sec [97], SplitBox [98], Embark [99], BSec-NFVO
[100], S-NFV [101], among others.

• NFVI Acceleration: These platforms are focused on delivering services without
compromising performance. Some of these platforms are NetVM[102], Open-
NetVM, NetML, ClickOS, P4SC, P4NFV, OpenANFV, UNO, among others.

There are several platforms to implement an NFV environment with different pur-
poses, depending on the project goal is possible to use a specific platform or a general-
purpose one.

In our case, OpenMANO (also called OSM) was selected as it implements the ETSI
NFV MANO framework and also guarantees different performance levels. OSM also
allows to use different VIM platforms such as OpenVim, OpenStack, AWS, VMware’s
vCloud Director, among others. Also, it has a graphical user interface providing easier
management. OSM could be used with SDN in order to easily program paths and
traffic engineering in the network [63].

OSM is part of holistic MANO systems and is an open source project that can be used
without license restrictions. The way OSM talks with the VIMs and VNFs is shown in
Fig. 8.

In first place, OSM talks to the VIM for the deployment of VNFs and virtual links (VLs)
by connecting them. Next, OSM talks to VIM to deploy a VNF or set of VNFs.

In order for OSM to work, it is assumed that:

• Each VIM has an API endpoint reachable from OSM.

• Each VIM has a so called network management which provides IP addresses to
VNFs.

• That network management is reachable from OSM.

OSM’s user guide [103] works with OpenVim or Openstack [104] as a open source

44

Fig. 8. OSM interaction with VIM and VNF.

VIM alternatives. it was selected as VIM taking into account that OpenStack is a huge
VIM platform with many different types of components used in tons of private cloud
projects, it is OS supported by Canonical, and it counts with a large community to
provide technical support.

5.2 Experimental setup requirements

To build and configure the experimental environment, the minimum requirements on
each server or one work station are shown in Table 12. Fig. 9 shows the experimental
environment with its different components.

Table 12. Minimum devices requrements.
Device # Cores RAM Disk Net Interfaces OS

OSM 2 CPUs 8 GB 40 GB 1-LAN
1-Internet

Ubuntu18.04
(64-bit variant
required)

OpenStack 4 CPUs 8 GB 500 GB 1-LAN
1-Internet

Ubuntu18.04
(64-bit variant
required)

RYU 1 CPU 4 GB 30 GB 1-LAN
Ubuntu16.04 LTS
or later

Attacker 4 CPUs 12 GB 30 GB 1-Internet Kali 2020.1

The architecture in Fig. 9 consists of the following modules: OSM, OpenStack, SDN
controller and the attacker.

• OSM is responsible for defining and deploying the NSs or VNFs through the VIM

45

NS

LB

Port
Mirror

Web
Server

1

Web
Server

2

Rest
API Ryu Controller

Attacker

NS

Monitor

Fig. 9. Experimental environment architecture.

and to guarantee their optimal operation.

• Openstack ensures that the VM, virtual link, public IPs, policy groups, or any other
component that conforms the NS or VNF have the proper functioning according
to the policies, parameters, and resources defined by OSM.

• The SDN controller provides an easy management of network policies and it
allows to run new flow rules. It is also in charge of defining a custom network
behavior of our NS or components deployed inside OpenStack.

• The network operation defined by the SDN controller is only possible thanks
to the Open Virtual Switch (OVS) inside Openstack that allows to specify every
network action performed by each component on the NS.

• The attacker is focused on deploying the DDoS/DoS attacks towards the WEB
servers.

The experimental environment in Fig. 9 works as follows:

• The administrator creates the NS description file (YAML) and the VNF description
files (YAML) according to OSM’s documentation to define how the NS will be
created, what kind of VNFs will be deployed inside it, and how they will work
together.

• Those NSs and VNFs description files will be uploaded on the OSM platform and

46

then, they could be used to deploy the real NSs and VNFs on the VIM (Openstack).

• After deploying the NS in OSM and OpenStack, its VNFs could be reachable
through SSH or WEB interfaces if the security policies were correctly defined.

The NS implemented in this work (see Fig. 10) consists of two web servers accessible
through port 80 and one monitoring server to deploy the detection and mitigation
strategy. Moreover, it is necessary to make some additional configurations inside the
VIM in order to monitor the network traffic, and to deploy a load balancer on-demand
as an additional feature for this work. For this reason, we implement a port mirror to
the web server one to other VNF that performs the task of monitor server, and a load
balancer between the web servers one and two.

The NS was deployed using OSM and Openstack. By default, and according to the
network security policies defined inside Openstack, a set of rules were set up on the
OVS to guarantee the communication inside the NS and to make the VNFs reachable
from an external point (Internet) or the LAN. Additionally, the RYU SDN controller
sets new Openflow rules inside the OVS performing custom network management or
creating SDN applications to add new features to the network.

Fig. 10. Network service deployed through OSM and OpenStack.

The attack deployed in the experimental scenarios were performed by retransmitting
the traffic captures obtained in the testbed “Intrusion Detection Evaluation Dataset
(CICIDS2017)", so it is not possible to know the configuration parameters that were
used them and it is a similar situation to what happens in the real life.

47

5.3 Attack detection process

Fig. 11 represents the detailed explanation the attack detection process and attack
mitigation process (in the next section 5.4) as a flow chart to make easier to follow all
the strategies.

Mirror traffic

DDoS/DoS
classificator

Does the flow
already exist in the

flow rules?

Controller sets
new flow rules
to the bridge

OVS drops any
new flow that
matches with
the flow rule

Real time
traffic sniffer
and Feature
extraction

Yes

Send a request
to the controller
to set the flow

rule

YesNo

OVS drops any
new flow that
matches with
the flow rule

pass through
to the

destination

Normal
traffic exceeds the

limit

No

The second web
server will be

turned on and the
LB starts to work

for both web
servers

Features

There are new
features

Features

Yes

Do nothing

No

Start

No Yes

pass
through to

the selected
destination

Fig. 11. Flowchart for the developed strategy.

This implementation runs in two threads: The first one is focused on taking the
mirrored traffic as an input and performing the feature extraction process. This
process is performed over a window of 60 seconds and it calculates 85 features; after
eliminating features that do not provide information such as src_ip, src_port, dst_ip,
dst_port, among others, 77 out of these 85 features are used in the next steps. Table 13
shows some of those features.

The feature extraction process is implemented using a library called CICFlowMeter
[52, 53], developed by the Canadian institute for cybersecurity of the New Brunswick
university. Each entry on the feature extraction file represents a traffic flow in a win-
dow of 60 seconds, and this entry shows different statistical metrics for this detected
flow. After the feature extraction process, this extracted data will be saved to perform
the detection strategy.

48

Table 13. Features generated by the algorithm tool.

Feature Name Description
Flow Duration Duration of the flow in Microsec-

ond
Total FWwd
Packet

Total packets in the forward di-
rection

Total Bwd
packets

Total packets in the backward di-
rection

Total Length
of Fwd Packet

Total size of a packet in forward
direction

Total Length
of Bwd Packet

Total size of the packet in back-
ward direction

Fwd Packet
Length Min

Minimum size of the packet in
forward direction

... ...
std idle Standard deviation time a flow

was idle before becoming active
Init Win bytes
forward

The total number of bytes sent in
the initial window in the forward
direction

Init Win bytes
backward

The total number of bytes sent
in the initial window in the back-
ward direction

Act data pkt
forward

Count of packets with at least 1
byte of TCP data payload in the
forward direction

The second part of this algorithm consists of reading each new feature extraction file
to pass it through the classifier in order to determine if each entry inside the feature
extraction file is normal traffic or an attack.

This process is based on the trained GMM-based technique to detect a DDoS/DoS
attack explained in Chapter 4.1.

5.4 Attack mitigation process

If the detection process outputs a Yes (attack), the algorithm checks if a flow rule was
already created for this malicious flow, in case the flow rule exists, the existing flow
rules in the OpenFlow switch will drop traffic belonging to the attack. But in case this
flow rule does not exist, the algorithm will send a request to the RYU API controller
with the needed parameters (source IP, destination IP) to create the new flow rule and

49

set it to the right OpenFlow switch. After installing the new flow rule, each flow that
matches with this flow rule will be dropped and this malicious traffic won’t affect the
performance of the NS.

If the output of the detection process is No, the algorithm in this section of the
flowchart focuses on determining if a high demand for the service is occurring to
deploy a load balancing strategy and to guarantee service availability in order to
ensure its optimal performance. Here, the algorithm checks if the normal traffic
throughput exceeds a certain threshold defined in the setup parameters and also
checks if the attack detection throughput is less than certain threshold to guarantee
that this traffic throughput increase is not related to any attack. If the answer is Yes,
the algorithm performs a request to the NOVA component of OpenStack to turn the
second VNF on and makes that the LB works distributing the load in both VNFs. If the
answer is No, the algorithm does not make anything and allows the normal traffic to
reach the VNF.

The Classifier used in this algorithm was explored and detailed in Chapter 4. It imple-
ments the GMM technique with 9 Gaussians after performs a preprocessing of the
data, The database used to generate the classification model was “Intrusion Detec-
tion Evaluation Dataset (CICIDS2017)", it contains benign network traffic and up-
dated common security cyberattacks such as Hulk, Slowloris, SlowHTTPTest, among
others. The authors ensure that the dataset resembles the true real-world data, and
CICFlowMeter was used to extract data from traffic flows [59]. They added 85 statistical
features, but more can be included [60, 61].

5.5 Experimental scenarios metrics

This work uses different metrics to measure the web server performance:

• Transmitted packets.

• Received packets.

• Transmitted packets per second.

• Received packets per second.

• CPU consumption.

• Memory consumption.

For each specific scenario there are other metrics used like:

50

• Attack mitigation scenario:

– Dropped flow rules installed in the OpenFlow switch table.

– Number of packets dropped by the flow rules.

• Load balancing scenario:

– web server latency.

– web server status.

Those metrics help the comparison process on each experimental scenario and allow
us to validate the effectiveness of the proposed strategies.

5.6 Attack detection and mitigation scenario

This section explains the detection and mitigation strategies based on the experimen-
tal environment shown in Chapter 5.1 and takes into account the aforementioned
algorithm. This scenario only uses one of the web servers deployed in the NS and the
monitor server. First, we perform an experiment without using the algorithm to detect
and mitigate the DDoS/DoS attacks to use these results as a baseline to compare with
the second experiment when the detection and mitigation strategies are enabled. The
main goal with this scenario will be to perform a comparison where the effectiveness
of the proposed strategy implementing this novel detection technique in network
security is shown. Additionally, this opens the possibilities to test new ML techniques
widely used in other engineering areas.

This attack is conformed by different techniques to generate a DDoS or DoS aimed to
test the detection and mitigation strategies and their capacity to cover a wide area of
these attacks. The used variations of DoS attacks are:

• DoS Slowloris: This tool performs the DoS attack “holds connections open by
sending partial HTTP requests. It continues to send subsequent headers at regular
intervals to keep the sockets from closing" [105].

• DoS Slowhttptest: “It implements most common low-bandwidth Application
Layer DoS attacks, such as slowloris, Slow HTTP POST, Slow Read attack (based
on TCP persist timer exploit) by draining concurrent connections pool, as well as
Apache Range Header attack by causing very significant memory and CPU usage
on the server." [106].

• DoS Hulk: “It is designed to generate volumes of unique and obfuscated traffic at
a web server, bypassing caching engines and therefore hitting the server’s direct
resource pool" [107, 108].

51

• DoS GoldenEye: “It is a python script that is meant for testing HTTP denial of
service conditions leveraging HTTP Keep-Alive and NoCache" [109, 110].

The following is the workflow that will be used when the detection and mitigation
strategies are being used and when they are not used:

Performing the DDoS/DoS attacks without the detection and mitigation strategy.

1. Test the connectivity scenario to guarantee the attacker reach the web server to
make possible to deploy the attack.

2. Wait for a short time to store metrics without attack effects.

3. The attacker will start the attack to the web server.

4. The web server captures the metrics to evaluate the performance before and after
the attack.

Performing the DDoS/DoS attacks using the detection and mitigation strategy.

1. Test the connectivity scenario to guarantee that the attacker reaches the web
server to deploy the attack.

2. Start the detection and mitigation strategies as a service inside the monitor server.

3. Wait for a short time to store metrics without attack effects.

4. The attacker will start the attack to the web server.

5. The web server captures the metrics to evaluate the performance during the
attack.

5.7 Load balancing scenario

This section explains the load balancing scenario added to the algorithm mentioned
in Section 4.2 to show the way to implement strategies to figure out different situations
that could appear in the life cycle of your NS. Specifically in this case, a high demand
service not due to an external attack. To add this complementary feature to this work,
it is required to implement a load balancer to the VIM for two web servers. Also, it
is required to mirror the input/output traffic from this load balancer to the monitor
server as shown in Fig. 9.

With this implementation ready, if for any reason an increment of throughput is
experienced and it exceeds the previously defined threshold, and if there is no attack
in progress, the algorithm will start the second web server to distribute the load that

52

could affect the principal web server and guarantees the availability, performance,
and accessibility of this service.

This scenario is composed of two experiments. The first experiment will evaluate how
the performance of the principal web server can be affected without the algorithm
actions. The second experiment will have the monitor server running the algorithm
to perform the load balancing action if the throughput exceeds the threshold and
makes it possible to compare the benefits of this strategy with the first experiment.
The workflow that will be used for both experiments is:

Performing the first experiment without the load balancing strategy.

1. Test the connectivity scenario to guarantee that the clients reach the web server
to make it possible to deploy a high number of requests to it.

2. Wait for a short time to store metrics without high request effects.

3. Start the high number of requests using the tool called Apache-JMeter “designed
to load test functional behavior and measure performance" [111].

4. The web server captures the metrics to evaluate the performance before and after
the load test.

Performing the second experiment with the load balancing strategy.

1. Test the connectivity scenario to guarantee that the clients reach the web server
to make it possible to deploy a high number of requests to it.

2. Start the load balancing strategy as a service inside the monitor server.

3. Wait for a short time to store metrics without high request effects.

4. Start the high number of requests using the tool called Apache-JMeter “designed
to load test functional behavior and measure performance" [111].

5. The web server captures the metrics to evaluate the performance before and after
the load test.

The source code of this implementation can be found on GitHub [112].

53

6 Performance Evaluation

This section shows the obtained results through deploying and capturing data in the
experimental scenarios that were presented in the previous chapter for the DDoS/DoS
attack and the load balancing test.

6.1 DDoS/DoS detection and mitigation strategies using GMM ap-
proach

This subsection explains the obtained results after deploying the DDoS/DoS attack
through the first experiment and it will show what happens if we are not using the
proposed detection and mitigation strategy and the benefits when we are using it.

As a first part of this experiment, we deploy a DDoS/DoS attack conformed by dif-
ferent techniques such as "DoS Slowloris", "DoS Slowhttptest", "DoS Hulk", "DoS
GoldenEye" from the attacker to the Web server 1 in the experimental environment
shown in Fig. 9. It is very important to remark that the most critical point during the
experiment was around at 00:14 hours until 01:14 hours where the principal part of
the DDoS/DoS attack had been deployed.

Figs. 12 and 13 depict the CPU and RAM behavior (Y-axis corresponds to the percent-
age of usage and X-axis corresponds to the day and time of the test) of Web server 1
with the detection and mitigation strategy disabled and enabled respectively; these
Figures show that no anomaly is detected even knowing that this kind of attack sends
thousands or millions of requests to the Web server. There are few samples that show a
high CPU usage but they do not mean that the deployed attack is affecting the process
capability of the Web server. The reason of this behavior is because they are designed
to avoid keep opening the http session, and just obfuscate the Web server and kill the
service during the attack.

Also, Figs. 14 and 15 show the amount of Tx packets, Rx packets, Tx pkt/s, and Rx pkt/s
obtained with the detection and mitigation strategy disabled and enabled respectively.
In Fig. 14 we can see two important events in the first section. The first one is the
blue line that corresponds to the amount of Rx packets, and shows an increase of the
incoming packets at the Web server in a short time. It means that in the first part of
the experiment (around 3 hours), the Web server is being bombed by the major part of
the DDoS/DoS attack. On the other hand in the second event, the green line depicts
the Rx pkt/s in this same time interval that take high values in comparison with the

54

Fig. 12. CPU consumption of the Web server N°1 with the detection and mitigation strategy
disabled.

Fig. 13. CPU and RAM consumption of the Web server N°1 with the detection and mitigation
strategy enabled.

rest of the experiment and follows a similar behavior to the blue line. Also, In Fig. 15
we can see an important decrease in the number of packets that arrive at the Web
server. In first place, around 00:00 hours, a rise of the Rx packets was stopped, then,
normal growth of the RX packets is noticed. In second place, around 01:00 hours, a
second huge attack was stopped to allow the normal growth of the Rx packages that
arrive at the Web server.

To be more precise, Table 6 shows each flow rule triggered by the mitigation strategy
and installed by the SDN controller, a timestamp where each flow rule were installed,
its lifetime, and the number of packets dropped by each flow rule.

55

Fig. 14. Traffic statistics of the Web server N°1 with the detection and mitigation strategy
disabled.

Fig. 15. Traffic statistics of the Web server N°1 with the detection and mitigation strategy
enabled.

Table 14 depicts the flow rules installed by the proposal strategies on the OVS and
shows that each sample was taken with 30 minutes of difference, also the number
of packets dropped in this experiment implementing the detection and mitigation
strategy is 1’316.065. This result shows that our strategy is effective in cases related
to stopping an attacker that implements DDoS/DoS techniques and is important to
remark that our strategy is agnostic to the src, dst IP, and ports due to these features do
not provide information about the network phenomenon according to the the GMM
model trained in Chapter 4. Also, It is very important to notice that in Fig. 14, the
maximum amount of Rx packets received by the Web server were 1’470.443 packets
(disabled strategy) and Fig. 15 shows that the number of packets that arrived at the
Web server was 143.545 (enabled strategy) that is much lower than the ones of the

56

first test, which means that the detection and mitigation strategy is blocking around
to 89.5% of the incoming packets that arrive at the Web server with a 0.96% of error,
corresponding to the flows rules with src IPs [192.168.10.3, 192.168.10.19] and dst IP
192.168.100.112; these flow rules are false positive flows detected as attacks but they
correspond to around 1% of whole network traffic analyzed in this experiment.

As a review of the experiment, Figs. 14 and 15 show the difference that exists if
we implement the developed strategies to detect and mitigate the selected attacks
maintaining the Web service available for real requests sent by customers and also,
preventing external attacks. This experiment shows the effectiveness of the developed
strategy to detect the DDoS/DoS attacks in three relevant moments (row 8, 9, and 10
according to Table 14) where 1’301.967 packets or the 90% of the traffic sent by the
external attacker was dropped, and just allows the real request sent by the customer
to pass through to the Web servers (10% of the total traffic).

In conclusion, the developed strategy covers the malicious attacker detecting and
mitigating the selected attacks, and also, guarantee an optimal service offered by
this Web server and prove the effectiveness of the proposed detection strategy based
on GMM technique in a real NFV environment. The other way to affect the service
availability of the exposed Web server will be covered by the next strategy and it occurs
when a lot of customers send requests to the Web server.

6.2 Load balancing strategy

This subsection explains the obtained results after deploying a high throughput test
through the second experiment and it also shows what happens if we are not using
the load balancing strategy and what is the benefit of using it. This strategy is an
additional feature to cover the the other side of Denial of service where we have a huge
amount of requests that are not triggered by an external attacker and correspond to
regular traffic sent by a lot of customers that are using the Web service.

As first part of this experiment we implemented a well-known tool called Apache
Jmeter that is developed to perform a load test of our application and designed to
evaluate its performance. Additionally, to test this strategy created two profiles were
implemented, one of them to test the Web server 1 directly and the other one to test
the strategy with the load balancer as the target. With this in mind, we used a base
profile to deploy the performance test where we defined 15.000 threats simulating the
number of users for the Web server, as a ramp-up period we used 0.5 seconds and,
after that, we used a GET request to the respective dst IP according to the target. In

57

Table 14. Flow rules installed in the OVS inside of OpenStack.

N start duration
(min)

src IP dst IP # Dropped
pkts

1 2021-07-27
21:05:47

- - - -

2 2021-07-27
22:14:42

- - - -

3 2021-07-27
22:44:42

20.4 192.168.10.3 192.168.100.112 661

4 2021-07-27
22:44:42

7.4 192.168.10.19 192.168.100.112 0

5 2021-07-27
23:14:42

50.4 192.168.10.3 192.168.100.112 1679

6 2021-07-27
23:14:42

37.4 192.168.10.19 192.168.100.112 278

7 2021-07-27
23:44:42

- - - -

8 2021-07-28
00:14:42

22.3 172.16.0.1 192.168.100.112 25356

9 2021-07-28
00:44:42

52.3 172.16.0.1 192.168.100.112 1272308

10 2021-07-28
01:14:42

20.3 172.16.0.1 192.168.100.112 4303

11 2021-07-28
01:14:42

5.4 192.168.10.3 192.168.100.112 374

12 2021-07-28
01:44:42

35.4 192.168.10.3 192.168.100.112 1472

13 2021-07-28
02:14:42

4.4 192.168.10.3 192.168.100.112 254

14 2021-07-28
02:44:42

34.4 192.168.10.3 192.168.100.112 1182

15 2021-07-28
03:14:42

- - - -

16 2021-07-28
03:44:42

26.4 192.168.10.3 192.168.100.112 875

17 2021-07-28
04:14:42

56.4 192.168.10.3 192.168.100.112 2173

18 2021-07-28
04:44:42

20.4 192.168.10.3 192.168.100.112 793

19 2021-07-28
05:14:42

50.4 192.168.10.3 192.168.100.112 1785

20 2021-07-28
05:44:42

19.4 192.168.10.3 192.168.100.112 558

21 2021-07-28
06:14:42

49.4 192.168.10.3 192.168.100.112 1550

22 2021-07-28
06:44:42

18.3 192.168.10.3 192.168.100.112 464

Total - - - - 1’316.065

58

this case, the target is the Web server directly.

For the second part of this experiment, we deployed a similar experimental setting
as in the previous one, just changing the Web server IP to the load balancer IP as the
target.

Figs. 16 and 17 depict the CPU and RAM behavior (Y-axis corresponds to the percent-
age of usage and X-axis corresponds to the day and time of the test) of Web server
1 with the load balancing straategy disabled and enabled respectively; here we can
see how the CPU processes the http requests sent to the Web server by the customers
during the test and the expected measure about RAM consumption.

Fig. 16 represents what happens when the Web server processes all requests by itself
and we can see that there are moments where the Web server stopped to process
request due to its impossibility to handle them. However in Fig. 16, we can see that
the CPU usage is much less than the previous test, and also, we did not see any stop
processing the incoming request. Regarding to the RAM usage, we could not see any
relevant consumption for both tests.

Fig. 16. CPU and RAM consumption of the Web server N°1 with the load balancing strategy
disabled.

Figs. 18 and 19 show the amount of Tx packets, Rx packets, Tx pkt/s, and Rx pkt/s
(each metric in these chars has been normalized with each max value, and the X-axis
represents the test time) obtained during each experiment. In Fig. 18 we found that
the Rx ptk/s and Tx pkt/s manage a huge amount of pkt/s with values around 25.690
and 18.548 respectively, additionally, it is important to notice that the maximum

59

Fig. 17. CPU and RAM consumption of the Web server N°1 with the load balancing strategy
enabled.

amount of incoming packets is equal to 27’651.899 and in case of the transmitted
packets the maximum value of it is 16’150.320. Regarding Fig. 19, we found that the Rx
and Tx packets and the Rx ptk/s and Tx pkt/s have different behavior in comparison
with the above test where the density of Rx and Tx pkt/s is much less with 11.775 and
5.469 pkt/s respectively, and the amount of Rx and Tx packets were 7’381.435 and
2’114.592 respectively. We can see at the moment a huge difference when enabling the
LB strategy and how it benefits the NFV environment and our Web service comparing
the measures obtained in both experiments.

Fig. 18. Traffic statistics of the Web server N°1 with the load balancing strategy disabled.

On the other hand, Figs. 20 and 21 show the Web server status (it makes reference
to where the Web server is online or offline) where the load balancing strategy is
disabled and enabled respectively. Figs. 20, and 21 just have two possible values [0 -

60

Fig. 19. Traffic statistics of the Web server N°1 with the load balancing strategy enabled.

1] to represent the Web server status, related to Fig. 20 we can see here that there are
five special moments (between [17:00 - 18:00], [19:00 - 23:50], [00:00 - 02:45], [03:25
- 03:30], and [03:45 - 04:00]) during the experiment where this metric could not be
measured, but in case of Fig. 21 we could not see an interruption of service.

Fig. 20. Web server status with the load balancing strategy disabled.

Also, Figs. 22 and 23 show the Web server latency along both test. Regarding Fig.
22, it was also not possible to measure the latency for the Web server for the special
situations mentioned for the Web server status where the load balancing strategy was
disabled. It is important to remark that the latency in this test takes values near to
150.000 ms where the Web server can replay the requests, and it represents a huge
time to wait for an answer by the Web server. Fig. 23 shows the latency measure for the
Web server using the load balancing strategy, the measure for this metric is remarkable
because in this case, the Web server latency (55.000 ms on average) in this case, is

61

Fig. 21. Web server status with the load balancing strategy enabled.

three times smaller than the latency obtained in the previous test (150.000 ms). This
improve represents around 36.6% of better behavior handle the thousands of request
using the load balancing strategy.

Fig. 22. Latency measure for the Web server N°1 with the load balancing strategy disabled.

These results show the effectiveness of the load balancing strategy to cover and man-
age situations with a huge volume of traffic requests sent to a Web server and proving
that it is capable to preserve the service availability and the benefit of using it was
over 36% much efficient in contrast to not using it. To summarize, Table 15 shows
a comparison metrics capture for both experiments where we can find differences
about the amount of Rx and Tx packets processed by the Web server, the remarkable
decrease of the Web server latency, and also, that the CPU consumption is much less
due that the request sent to the load balancer was distributed through the pool of Web
servers that we configure for our service (in this case there were two).

62

Fig. 23. Latency measure for the Web server N°1 with the load balancing strategy enabled.

Table 15. Summarize the Load balancing strategy.

—– LB disabled LB enabled
Rx pkts 27’651.899 7’381.435
Tx pkts 16’150.320 2’114.592

Rx pkt/s 25.690 11.775
Tx pkt/s 18.548 5.469

Latency (ms) 150.000 55.000

The experiment where the load balancing strategy was enabled shows a huge benefit
handling millions of requests from customers that are using the Web server, also, if the
pool of web servers were larger than the ones we used in this experiment, we could be
able to handle much more customers and make our Web service more robust without
concern about the Web server performance.

To summarize, the load balancing strategy is an extension of the DDoS/DoS detection
and mitigation strategy, because it covers the other side of the denial service caused by
a lot of real customers that are using the Web service exposed in the NFV environment
and the DDoS/DoS strategies cloud not be able to cover. For this reason, the strategies
that have been shown in Sections 6.1 and 6.2 take an important role to guarantee
the service available for users even if it does not matter what is affecting the exposed
service.

63

7 Conclusions and Future work

During the literature review, we identified that the most critical point for this novel
NFV architecture is the NFVI layer where we found that major part of the attack vec-
tors used in the NFVI layer also affect the other NFV layers. Additionally, this work
has shown that there are many other ways to address common malicious vectors in
traditional networking and these malicious vectors also affect these new NFV environ-
ments such as the DDoS/DoS attack that was selected to develop this experimental
work in a real NFV environment.

This work presented two strategies to address the selected attack and to prevent situa-
tions where the selected attack is not the cause of the service availability failure or a
degradation of its performance.

Regarding to the detection and mitigation strategy that covers the selected DDoS/DoS
attack, this work proves that the novel ML technique (GMM) implemented to prevent
the attack was very powerful blocking around 1.3 million of DDoS/DoS packets (this
amount of traffic represents around 90% of the incoming traffic in this test) sent by
the attacker, allowing the Web server to continue to provide the service without any
interruption.

On the other hand, there is another case when the service could be affected due to a
huge volume of the legitimate requests sent through the web server. In this case, this
work deploys a load balancing strategy that evidenced the benefit of using it, and it
reduces the Web server CPU consumption.

Also the load balancing strategy decreases the amount of request sent to the principal
web server, distributes them through the pool of web servers available in our NS, an
additionally, it showed an important reduction of the web server latency resulting in
an improvement of around 36% less time to reply to the received requests.

Finally, it was noted that the Web server never stops to replay requests and maintain-
ing a high service availability.

To summarize, this work is an important step to continue working on improving the
reaction against cyberattacks in a NFV environment. Also, this work shows our pro-
posed GMM-based detection technique could be used on network security, opening
the opportunities to try and test other techniques that had demonstrated their effec-

64

tiveness in other engineering areas. Moreover, providing a real NFV environment to
try and test different works such as optimization models, ML models, among others,
in our research group.

7.1 Publication Results

This research work allowed a conference paper published in the AnNet workshop of
the 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM). The paper was called "Detection of DDoS/DoS attacks: the UBM and GMM
approach" and was presented in a virtual session on May 17th - 2021.

65

Bibliography

[1] M. Chiosi, S. Wright Bell Canada, J. Erfanian, B. B. Smith, B. Briscoe, A. Reid,
P. Willis CableLabs, D. Clarke, C. Donley CenturyLink, M. Bugenhagen, J. Feger,
J. Benitez, N. Fischbach, K. Martiny, U. Michel DOCOMO, T. Nakamura, J. Triay
Marques KDDI, K. Ogaki, T. Matsuzaki KPN, S. Zhang, A. K. de Boer, K. Ok,
E. Kyoung PAIK, M. Stura, J. Carapinha, A. S. Gamelas Telecom, D. Lee, J. Han
Park Softbank, R. Wakikawa, K. Nishi, S. Matsushima, M. Brunner, E. Demaria,
A. Pinnola Telenor, P. Waldemar, G. Millstein, D. López, F. Javier Ramón Salguero,
D. Kirkham, M. Ergen, M. Ahmet Karaman, A. Ulas, E. Lokman, N. Khan, R. Mor-
era Vodafone, S. Sabater, A. Neal Windstream, and A. Nichols, “Network Func-
tions Virtualisation (NFV) Network Operator Perspectives on Industry Progress
Turk Telekom Argela,” http://portal.etsi.org/NFV/NFV_White_Paper3.pdf, Tech.
Rep., 2014.

[2] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi, “Nfv security sur-
vey: From use case driven threat analysis to state-of-the-art countermeasures,”
IEEE Communications Surveys and Tutorials, 2018.

[3] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet
impasse through virtualization,” Computer, no. 4, pp. 34–41, 2005.

[5] N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art
and research challenges,” IEEE Communications magazine, vol. 47, no. 7, pp.
20–26, 2009.

[6] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV: A Comprehensive
Survey,” IEEE Transactions on Network and Service Management, vol. 13,
no. 3, pp. 518–532, sep 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7534741/

67

http://portal.etsi.org/NFV/NFV_White_Paper3.pdf
http://ieeexplore.ieee.org/document/7534741/
http://ieeexplore.ieee.org/document/7534741/

[7] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE
Communications surveys & tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[8] M. Chiosi, D. Clarke, P. Willis, A. Reid CenturyLink, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, J. Benitez, U. Michel, H. Damker KDDI, K. Ogaki, T. Mat-
suzaki NTT, M. Fukui, K. Shimano, D. Delisle, Q. Loudier, C. Kolias, I. Guardini,
E. Demaria, R. Minerva, A. Manzalini, D. López, F. Javier Ramón Salguero, F. Ruhl,
and P. Sen, “Network Functions Virtualisation,” http://portal.etsi.org/NFV/NFV_
White_Paper.pdf, Tech. Rep., 2012.

[9] M. Chiosi, S. B. Wright, D. Clarke, P. Willis CableLabs, C. Donley, L. Johnson
CenturyLink, M. Bugenhagen, J. Feger, W. Khan, C. Cui, H. Deng, and C. Chen,
“Network Functions Virtualisation (NFV) Network Operator Perspectives on
Industry Progress,” http://portal.etsi.org/NFV/NFV_White_Paper2.pdf, Tech.
Rep., 2013.

[10] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,”
Journal of Computer and System Sciences, vol. 80, no. 5, pp. 973–993, 2014.

[11] S. Lal, T. Taleb, and A. Dutta, “NFV: Security Threats and Best Practices,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 211–217, may 2017.

[12] W. Yang and C. Fung, “A survey on security in network functions virtualization,”
in 2016 IEEE NetSoft Conference and Workshops (NetSoft). IEEE, jun 2016, pp.
15–19. [Online]. Available: http://ieeexplore.ieee.org/document/7502434/

[13] M. Pattaranantakul, R. He, A. Meddahi, and Z. Zhang, “SecMANO: Towards
Network Functions Virtualization (NFV) Based Security MANagement and
Orchestration,” in 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, aug 2016, pp.
598–605. [Online]. Available: http://ieeexplore.ieee.org/document/7846998/

[14] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted
gaussian mixture models,” Digital signal processing, vol. 10, no. 1-3, pp. 19–41,
2000.

[15] T. Arias-Vergara, J. C. Vásquez-Correa, J. R. Orozco-Arroyave, and E. Nöth,
“Speaker models for monitoring parkinson’s disease progression considering
different communication channels and acoustic conditions,” Speech Communi-
cation, vol. 101, pp. 11–25, 2018.

[16] J. S. M. Osorio, J. A. V. Tejada, and J. F. B. Vega, “Detection of dos/ddos attacks:
the ubm and gmm approach,” in 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2021, pp. 866–871.

68

http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://ieeexplore.ieee.org/document/7502434/
http://ieeexplore.ieee.org/document/7846998/

[17] M. Veeraraghavan, T. Sato, M. Buchanan, R. Rahimi, S. Okamoto, and N. Ya-
manaka, “Network function virtualization: A survey,” IEICE Transactions on
Communications, p. 2016NNI0001, 2017.

[18] J. d. J. Gil Herrera and J. F. Botero Vega, “Network Functions Virtualization: A
Survey,” IEEE Latin America Transactions, vol. 14, no. 2, pp. 983–997, feb 2016.
[Online]. Available: http://ieeexplore.ieee.org/document/7437249/

[19] M. Rahman, S. Iqbal, and J. Gao, “Load balancer as a service in cloud com-
puting,” in 2014 IEEE 8th International Symposium on Service Oriented System
Engineering. IEEE, 2014, pp. 204–211.

[20] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:
Taking control of the enterprise,” ACM SIGCOMM computer communication
review, vol. 37, no. 4, pp. 1–12, 2007.

[21] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of
network management,” in 6th USENIX Symposium on Networked Systems
Design and Implementation, 2009, pp. 335–348. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1558977.1559000

[22] W. D. Sincoskie, “A Survey Of Active Network Research - IEEE Communications
Magazine,” no. January, pp. 80–86, 1997.

[23] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, and A. Shaikh, “Design and
Implementation of a Routing Control Platform,” Tech. Rep., 2005.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan,
J. Zhan, and H. Zhang, “A Clean Slate 4D Approach to Network Control and
Management,” Tech. Rep., 2005.

[25] H. Kim and N. Feamster, “Improving network management with software de-
fined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119,
2013.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, 2008.

[27] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,
“Nox: towards an operating system for networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[28] M. McCauley., “Pox,” https://github.com/noxrepo/pox, 2012, last access:
06.04.2018.

69

http://ieeexplore.ieee.org/document/7437249/
http://dl.acm.org/citation.cfm?id=1558977.1559000
http://dl.acm.org/citation.cfm?id=1558977.1559000
https://github.com/noxrepo/pox

[29] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed control
platform for large-scale production networks.” in OSDI, vol. 10, 2010, pp. 1–
6.

[30] Floodlight, “Floodlight: A java-base openflow controller,” https://floodlight.
atlassian.net/wiki/spaces/HOME/overview?mode=global, 2012, last access:
06.04.2019.

[31] OpenDayLight, “Opendaylight: A linux foundation collaborative project,” http:
//www.opendaylight.org, 2013, last access: 06.04.2019.

[32] N. Telegraph and T. Corporation., “Ryu,” https://osrg.github.io/ryu/, 2008, last
access: 06.04.2019.

[33] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards an open, distributed
sdn os,” in Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 1–6.

[34] I. O. for Standardization ISO/IEC 27000, “Information technology — security
techniques — information security management systems — overview and vo-
cabulary.” https://standards.iso.org/ittf/PubliclyAvailableStandards/c041933_
ISO_IEC_27000_2009.zip, 2009, last access: 06.04.2019.

[35] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber attacks on scada systems,”
in 2011 International conference on internet of things and 4th international
conference on cyber, physical and social computing. IEEE, 2011, pp. 380–388.

[36] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification
using gaussian mixture speaker models,” IEEE transactions on speech and audio
processing, vol. 3, no. 1, pp. 72–83, 1995.

[37] D. Yu and L. Deng, AUTOMATIC SPEECH RECOGNITION. Springer, 2016.

[38] C. Rasmussen, “The infinite gaussian mixture model,” Advances in neural infor-
mation processing systems, vol. 12, pp. 554–560, 1999.

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[40] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

70

https://floodlight.atlassian.net/wiki/spaces/HOME/overview?mode=global
https://floodlight.atlassian.net/wiki/spaces/HOME/overview?mode=global
http://www.opendaylight.org
http://www.opendaylight.org
https://osrg.github.io/ryu/
https://standards.iso.org/ittf/PubliclyAvailableStandards/c041933_ISO_IEC_27000_2009.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c041933_ISO_IEC_27000_2009.zip

[41] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for multivariate
gaussian mixture observations of markov chains,” IEEE transactions on speech
and audio processing, vol. 2, no. 2, pp. 291–298, 1994.

[42] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[43] M. Kuhn, K. Johnson et al., Applied predictive modeling. Springer, 2013, vol. 26.

[44] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging SDN and
NFV security mechanisms for IoT systems,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 1, pp. 812–837, jan 2019.

[45] M. De Benedictis and A. Lioy, “On the establishment of trust in the cloud-based
ETSI NFV framework,” in 2017 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks, NFV-SDN 2017, vol. 2017-Janua. Institute
of Electrical and Electronics Engineers Inc., dec 2017, pp. 280–285.

[46] S. Ravidas, S. Lal, I. Oliver, and L. Hippelainen, “Incorporating trust in NFV:
Addressing the challenges,” in Proceedings of the 2017 20th Conference on Inno-
vations in Clouds, Internet and Networks, ICIN 2017. Institute of Electrical and
Electronics Engineers Inc., apr 2017, pp. 87–91.

[47] M. Pattaranantakul, Y. Tseng, R. He, Z. Zhang, and A. Meddahi, “A first step
towards security extension for NFV orchestrator,” in SDN-NFVSec 2017 - Pro-
ceedings of the ACM International Workshop on Security in Software Defined
Networks and Network Function Virtualization, co-located with CODASPY 2017.
Association for Computing Machinery, Inc, mar 2017, pp. 25–30.

[48] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini, “A novel approach for
integrating security policy enforcement with dynamic network virtualization,” in
Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2015, pp. 1–5.

[49] D. Montero, M. Yannuzzi, A. Shaw, L. Jacquin, A. Pastor, R. Serral-Gracia, A. Lioy,
F. Risso, C. Basile, R. Sassu et al., “Virtualized security at the network edge: A
user-centric approach,” IEEE Communications Magazine, vol. 53, no. 4, pp.
176–186, 2015.

[50] “Datasheet: Vmware vcloud nfv,” https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/solutions/vmware-vcloud-nfv-datasheet.
pdf, accessed: 2021-08-24.

[51] L. S. Sampaio, P. H. Faustini, A. S. Silva, L. Z. Granville, and A. Schaeffer-Filho,
“Using nfv and reinforcement learning for anomalies detection and mitigation

71

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/vmware-vcloud-nfv-datasheet.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/vmware-vcloud-nfv-datasheet.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/vmware-vcloud-nfv-datasheet.pdf

in sdn,” in 2018 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2018, pp. 00 432–00 437.

[52] G. Draper-Gil., A. H. Lashkari., M. S. I. Mamun., and A. A. Ghorbani., “Character-
ization of encrypted and vpn traffic using time-related features,” in Proceedings
of the 2nd International Conference on Information Systems Security and Privacy
- ICISSP,, INSTICC. SciTePress, 2016, pp. 407–414.

[53] A. Habibi Lashkari., G. Draper Gil., M. S. I. Mamun., and A. A. Ghorbani., “Char-
acterization of tor traffic using time based features,” in Proceedings of the 3rd
International Conference on Information Systems Security and Privacy - ICISSP,,
INSTICC. SciTePress, 2017, pp. 253–262.

[54] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization.” in ICISSP,
2018, pp. 108–116.

[55] A. A. Ghorbani, W. Lu, and M. Tavallaee, Network intrusion detection and pre-
vention: concepts and techniques. Springer Science & Business Media, 2009,
vol. 47.

[56] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Detecting http-
based application layer dos attacks on web servers in the presence of sampling,”
Computer Networks, vol. 121, pp. 25–36, 2017.

[57] S.-N. Nguyen, V.-Q. Nguyen, J. Choi, and K. Kim, “Design and implementation
of intrusion detection system using convolutional neural network for dos detec-
tion,” in Proceedings of the 2nd international conference on machine learning
and soft computing, 2018, pp. 34–38.

[58] F. S. d. Lima Filho, F. A. Silveira, A. de Medeiros Brito Junior, G. Vargas-Solar,
and L. F. Silveira, “Smart detection: an online approach for dos/ddos attack
detection using machine learning,” Security and Communication Networks, vol.
2019, 2019.

[59] “Cicflowmeter,” https://www.unb.ca/cic/research/applications.html, accessed:
2021-01-04.

[60] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani, “Characteri-
zation of tor traffic using time based features.” in ICISSP, 2017, pp. 253–262.

[61] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characteri-
zation of encrypted and vpn traffic using time-related,” in Proceedings of the 2nd
international conference on information systems security and privacy (ICISSP),
2016, pp. 407–414.

72

https://www.unb.ca/cic/research/applications.html

[62] “Random forest classifiers- sklearn,” https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html, accessed: 2021-01-
04.

[63] T. Zhang, H. Qiu, L. Linguaglossa, W. Cerroni, and P. Giaccone, “Nfv platforms:
Taxonomy, design choices and future challenges,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 30–48, 2020.

[64] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz, D. Staessens, A. Takács,
and F.-J. Westphal, “Unifying cloud and carrier network: Eu fp7 project unify,” in
2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing.
IEEE, 2013, pp. 452–457.

[65] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L.
Aguiar, and S. Sargento, “Toward a telco cloud environment for service func-
tions,” IEEE Communications Magazine, vol. 53, no. 2, pp. 98–106, 2015.

[66] “Cloudband: Adopt lean operations and increase business agility,” https://www.
nokia.com/networks/solutions/cloudband/, accessed: 2021-08-24.

[67] R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv to the
network edge,” IEEE Communications Magazine, vol. 55, no. 6, pp. 24–31, 2017.

[68] L. Li, K. Ota, and M. Dong, “Deepnfv: A lightweight framework for intelligent
edge network functions virtualization,” IEEE Network, vol. 33, no. 1, pp. 136–141,
2018.

[69] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and V. Ric-
cobene, “An open framework to enable netfate (network functions at the edge),”
in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (Net-
Soft). IEEE, 2015, pp. 1–6.

[70] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Lessmann,
T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris, “Sonata: Service pro-
gramming and orchestration for virtualized software networks,” in 2017 IEEE In-
ternational Conference on Communications Workshops (ICC Workshops). IEEE,
2017, pp. 973–978.

[71] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xomb: Extensi-
ble open middleboxes with commodity servers,” in Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communications
systems, 2012, pp. 49–60.

73

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://www.nokia.com/networks/ solutions/cloudband/
https://www.nokia.com/networks/ solutions/cloudband/

[72] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and implementa-
tion of a consolidated middlebox architecture,” in 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12), 2012, pp. 323–336.

[73] M. Bezahaf, A. Alim, and L. Mathy, “Flowos: A flow-based platform for middle-
boxes,” in Proceedings of the 2013 workshop on Hot topics in middleboxes and
network function virtualization, 2013, pp. 19–24.

[74] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker, “Netbricks:
Taking the v out of {NFV},” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 2016, pp. 203–216.

[75] R. Riggio, I. G. B. Yahia, S. Latré, and T. Rasheed, “Scylla: A language for vir-
tual network functions orchestration in enterprise wlans,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016, pp.
401–409.

[76] P. Naik, A. Kanase, T. Patel, and M. Vutukuru, “libvnf: Building virtual network
functions made easy,” in Proceedings of the ACM Symposium on Cloud Comput-
ing, 2018, pp. 212–224.

[77] A. Alim, R. G. Clegg, L. Mai, L. Rupprecht, E. Seckler, P. Costa, P. Pietzuch,
A. L. Wolf, N. Sultana, J. Crowcroft et al., “{FLICK}: Developing and running
application-specific network services,” in 2016 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 16), 2016, pp. 1–14.

[78] M. Gallo and R. Laufer, “Clicknf: a modular stack for custom network functions,”
in 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), 2018, pp.
745–757.

[79] M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, “Nfv orchestration frame-
work addressing sfc challenges,” IEEE Communications Magazine, vol. 55, no. 6,
pp. 16–23, 2017.

[80] L. Diego, “Openmano: The dataplane ready open source nfv mano stack,” 2015.

[81] “Open baton: An extensible and customizable nfv mano-compliant framework,”
https://openbaton.github.io/, accessed: 2021-08-24.

[82] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An enabler
for achieving virtual network integration as a service,” IEEE Communications
Magazine, vol. 53, no. 2, pp. 116–124, 2015.

[83] G. Xilouris, M.-A. Kourtis, M. J. McGrath, V. Riccobene, G. Petralia, E. Markakis,
E. Palis, A. Georgios, G. Gardikis, J. F. Riera et al., “T-nova: Network functions as-
a-service over virtualised infrastructures,” in 2015 IEEE Conference on Network

74

https://openbaton.github.io/

Function Virtualization and Software Defined Network (NFV-SDN). IEEE, 2015,
pp. 13–14.

[84] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge: System
support for elastic execution in virtual middleboxes,” in 10th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 13), 2013, pp.
227–240.

[85] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow migration for
nfv,” in 2016 IEEE 24th International Conference on Network Protocols (ICNP).
IEEE, 2016, pp. 1–10.

[86] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “Opennf: Enabling innovation in network function control,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 163–174, 2014.

[87] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled distributed
vnf state management,” in Proceedings of the 2015 ACM SIGCOMM Workshop
on Hot Topics in Middleboxes and Network Function Virtualization, 2015, pp.
37–42.

[88] M. Zhang, J. Bai, G. Li, Z. Meng, H. Li, H. Hu, and M. Xu, “When nfv meets ann:
Rethinking elastic scaling for ann-based nfs,” in 2019 IEEE 27th International
Conference on Network Protocols (ICNP). IEEE, 2019, pp. 1–6.

[89] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood,
M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic backpressure and scheduling
for nfv service chains,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp.
639–652, 2020.

[90] L. Zhang, C. Li, P. Wang, Y. Liu, Y. Hu, Q. Chen, and M. Guo, “Characterizing and
orchestrating nfv-ready servers for efficient edge data processing,” in Proceed-
ings of the International Symposium on Quality of Service, 2019, pp. 1–10.

[91] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,
and S. Shenker, “Resq: Enabling slos in network function virtualization,” in
15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18), 2018, pp. 283–297.

[92] Y. Hu, M. Song, and T. Li, “Towards" full containerization" in containerized net-
work function virtualization,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2017, pp. 467–481.

75

[93] R. V. Rosa, C. Bertoldo, and C. E. Rothenberg, “Take your vnf to the gym: A testing
framework for automated nfv performance benchmarking,” IEEE Communica-
tions Magazine, vol. 55, no. 9, pp. 110–117, 2017.

[94] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “Conmon: An automated
container based network performance monitoring system,” in 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 2017,
pp. 54–62.

[95] F. Rath, J. Krude, J. Rüth, D. Schemmel, O. Hohlfeld, J. Á. Bitsch, and K. Wehrle,
“Symperf: Predicting network function performance,” in Proceedings of the SIG-
COMM Posters and Demos, 2017, pp. 34–36.

[96] S. Geissler, S. Lange, F. Wamser, T. Zinner, and T. Hoßfeld, “Komon—kernel-
based online monitoring of vnf packet processing times,” in 2019 International
Conference on Networked Systems (NetSys). IEEE, 2019, pp. 1–8.

[97] M. T. Raza, S. Lu, and M. Gerla, “vepc-sec: Securing lte network functions
virtualization on public cloud,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 12, pp. 3287–3297, 2019.

[98] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro, M. A. Kaafar, and L. Mathy,
“Splitbox: Toward efficient private network function virtualization,” in Proceed-
ings of the 2016 workshop on Hot topics in Middleboxes and Network Function
Virtualization, 2016, pp. 7–13.

[99] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely out-
sourcing middleboxes to the cloud,” in 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), 2016, pp. 255–273.

[100] G. A. F. Rebello, I. D. Alvarenga, I. J. Sanz, and O. C. M. Duarte, “Bsec-nfvo: A
blockchain-based security for network function virtualization orchestration,” in
ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–6.

[101] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-nfv: Securing nfv states by
using sgx,” in Proceedings of the 2016 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, 2016, pp. 45–48.

[102] A. Dhakal and K. Ramakrishnan, “Netml: An nfv platform with efficient sup-
port for machine learning applications,” in 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2019, pp. 396–404.

[103] “Osm user guide,” https://osm.etsi.org/docs/user-guide, accessed: 2021-08-24.

[104] “Openstack,” https://www.openstack.org/, accessed: 2021-08-24.

76

https://osm.etsi.org/docs/user-guide
https://www.openstack.org/

[105] “Slowloris http dos,” https://github.com/XCHADXFAQ77X/SLOWLORIS, ac-
cessed: 2021-08-24.

[106] “Slowhttptest,” https://tools.kali.org/stress-testing/slowhttptest, accessed:
2021-08-24.

[107] “Hulk dos tool,” https://github.com/grafov/hulk, accessed: 2021-08-24.

[108] “Async hulk - https unbearable load king - hulk v3,” https://github.com/
Hyperclaw79/HULK-v3, accessed: 2021-08-24.

[109] “Goldeneye,” https://github.com/jseidl/GoldenEye, accessed: 2021-08-24.

[110] “Goldeneye http denial of service tool,” https://packetstormsecurity.com/files/
120966/GoldenEye-HTTP-Denial-Of-Service-Tool.html, accessed: 2021-08-24.

[111] “Apache jmeter,” https://jmeter.apache.org/, accessed: 2021-08-24.

[112] “Ddos/dos detection and mitigation strategies in a real a nfv environ-
ment,” https://github.com/jorgestivenm/GMM_OpenStack_implementation_
real_time, accessed: 2021-08-24.

77

https://github.com/XCHADXFAQ77X/SLOWLORIS
https://tools.kali.org/stress-testing/slowhttptest
https://github.com/grafov/hulk
https://github.com/Hyperclaw79/HULK-v3
https://github.com/Hyperclaw79/HULK-v3
https://github.com/jseidl/GoldenEye
https://packetstormsecurity.com/files/120966/GoldenEye-HTTP-Denial-Of-Service-Tool.html
https://packetstormsecurity.com/files/120966/GoldenEye-HTTP-Denial-Of-Service-Tool.html
https://jmeter.apache.org/
https://github.com/jorgestivenm/GMM_OpenStack_implementation_real_time
https://github.com/jorgestivenm/GMM_OpenStack_implementation_real_time

	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Network Functions Virtualization (NFV)
	Virtual Network Function (VNF)
	Management and orchestration (MANO)
	Load Balancer (LB)
	Software Defined Networking (SDN)
	SDN and NFV
	Security on data networks
	Gaussian Mixture Model (GMM)
	Universal Background Model (UBM)
	Random Forest

	State of the Art
	Principal threats and vulnerabilities on NFV environments
	Proposals and countermeasures
	Classification and taxonomy
	DDoS/DoS in NFV environments

	DDoS/DoS attack detection and mitigation proposal in NFV/SDN Environments
	ddos/dos detection process
	Traditional ML-based detection techniques
	Data-set and Feature Extraction
	Experimental scenarios
	Performance Evaluation
	Preliminary conclusions for the proposed detection strategy

	Attack mitigation process

	Experimental settings
	NFV platform
	Experimental setup requirements
	Attack detection process
	Attack mitigation process
	Experimental scenarios metrics
	Attack detection and mitigation scenario
	Load balancing scenario

	Performance Evaluation
	DDoS/DoS detection and mitigation strategies using GMM approach
	Load balancing strategy

	Conclusions and Future work
	Publication Results

	Bibliography

