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Abbreviations
JD: Johne’s Disease
Map: Mycobecterium avium subspecies paratuberculosis
IFN-g: Interferon gamma
IL-10: Interleukin 10
TGF-b: Transforming Growth Factor type beta
Th1: Type 1 CD4+ T helper cells
Th2: Type 2 CD4+ T helper cells
CTL: Cytotoxic T cells
LAK: Lymphokine-Activated T cells
MDM: Monocyte-Derived Macrophages
LPS: Lipopolysaccharide
IS900:	 Insertion	sequence	900,	used	as	a	target	for	the	identifica-

tion of Mycobacterium avium subsp. paratuberculosis
MoAb: Monoclonal Antibody
MOI: Multiplicity of Infection
ATCC: American Type Culture Collection
PBMC: Peripheral Blood Mononuclear Cells
TNF-a: Tumor Necrosis Factor alpha
CCL3: CC Chemokine Ligand 3
IP-10: Interferon-induced Protein 10
Mycobactin-j:  Iron-chelated substance used as a growth factor for the 

isolation of Mycobactin-dependent Mycobacterium
BCG: Bacillus Calmette-Guérin (vaccine)

Introduction
 Mycobacterium avium subspecies paratuberculosis (Map) caus-
es paratuberculosis or Johne’s Disease (JD), which is a chronic 
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Abstract
Study background: The study was designed to evaluate if the addi-
tion of Dexamethasone, IFN-g, or LPS into culture media of primary 
bovine Monocyte-Derived Macrophages (MDMs), could support in 
vitro infection with Mycobacterium avium subspecies paratubercu-
losis.

Methods: Primary bovine Monocyte-Derived Macrophages (MDMs) 
were infected in vitro with a reference strain of Map at 5:1 MOI for 2h. 
Map-infected MDMs were stimulated with IFN-g, LPS, Dexametha-
sone or medium alone for 24h. At 0, 6, 72 and 120h of culture, it was 

evaluated the presence of Map by bacterial culture and amplifica-
tion of the IS900 fragment by real-time PCR. The function of Map-in-
fected MDM was evaluated by measurement of TNF-a, IL-6, IL-8, 
IL-10, IL-12, IP-10, and CCL3 in culture supernatants by Luminex. 
Data were analyzed by Kruskal-Wall is test.

Results: The IS900 segment was amplified in samples of Map-in-
fected MDM from all stimuli. The growth of Map in bacterial cul-
ture was observed at each time-point evaluated without statistically 
significant differences between groups. Map-infected-MDMs stim-
ulated with Dexamethasone significantly reduced cytokine produc-
tion compared with control, excepting for IP-10 production from 6 to 
120h (P<0.01). Overall cytokine production at 72h was significantly 
higher in Map-infected MDM treated with LPS (P<0.01) excepting 
for IP-10 and CCL3 production at 120h. IL-8 and IL-12 production 
at 72h and IP-10 production at 120h were significantly higher in 
Map-infected MDM treated with IFN-g (P<0.01).

Conclusion: Primary bovine MDM obtained from peripheral blood 
mononuclear cells could be used for growth of Map in vitro. The 
addition of LPS or IFN-gamma reduced the capability of MDM for 
sustaining the growth of Map until 120h post-infection, although 
Dexamethasone sustained the recovery of viable Map until 120h 
in culture.

Keywords: Chemokines; Cytokines; Intracellular Pathogens; 
Monocyte-Derived Macrophages
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granulomatous disease affecting the intestine of domestic and wild ru-
minants [1]. The Map is an intracellular pathogen that infects resident 
and circulating macrophages [2]. Once into cells of the phagocytic 
mononuclear system, Map reaches the lamina propria of intestinal 
mucosae, where it proliferates in a low-rate manner and causes the 
typical chronic granulomatous enteropathy found in clinical stages 
of JD [3]. In susceptible animals, two subclinical and two clinical 
phases of JD occurs [4]: In subclinical phases I and II, there are no 
clinical signs of the disease, IFN-g is the predominant cytokine in 
tissues where Map is present, and there is no evidence of Map prolif-
eration into macrophages [5,6]. Infected animals cannot be detected 
by conventional methods, although elimination of Map in feces could 
occur. In intermittent clinical (Phase III) and terminal clinical (Phase 
IV) phases, infected bovines exhibit clinical signs such as intermittent 
to chronic diarrhea and emaciation. Also, IL-10 and TGF-β are the cy-
tokines predominantly found in the lamina propria [4], and Map is ac-
tively proliferating into macrophages. During phase IV of JD Map-in-
fected circulating or resident macrophages are detected in peripheral 
blood [2], milk [7], and mesenteric and mediastinal lymph nodes, re-
spectively, and infected macrophages are detected in the spleen [2,7]. 
Under natural and experimental infections, Map persists into the in-
fected macrophages during extended periods of time, although the 
mechanisms responsible for Map proliferation after its reactivation 
and its ability to evade the host’s immune response remains unclear 
[8]. Once pathogenic Map strains are located into the macrophages’ 
phagolysosome, Map activates the transcription of genes responsible 
for blocking its destruction into the phagolysosome [9].

 Interestingly, it appears that production of Th1 cytokines is re-
quired	 for	 an	 efficient	 elimination	 of	Map	 and	Map-infected	mac-
rophages by activation of genes [10,11] mediating the interaction of 
the infected macrophage with Cytotoxic T (CTL) cells and Lympho-
kine-Activated Killer (LAK) cells. In this work, we hypothesized that 
modulating the conditions of macrophages cultured in vitro, with Th1 
or Th2 cytokines or the immunomodulatory agent Dexamethasone, 
could affect macrophages’ ability to support Map infection and pro-
liferation. Cytokine and chemokine production by the infected-MDM 
as well as Map survival and proliferation were considered as indica-
tors of MDM functionality in our system. The study was designed to 
evaluate if primary bovine MDM could be used for the intracellular 
replication and further recovery of Map under the addition of Dexa-
methasone, IFN-g, or LPS in vitro.

Materials and Methods
 The Institutional Board on Animal Experimentation from the Uni-
versity of Antioquia approved the study (Act # 37, June 7, 2007), and 
graded the project as “Minimal risk” for animals used in the study. 
Donor cows were cared and handled under responsible handling and 
respect for animal rights by the veterinarians, according to the Colom-
bian law for animal protection and the Vancouver statement on animal 
experimentation. The same veterinarian researcher sampled the cows 
always.

Selection of cows for isolation of primary Monocyte-De-
rived-Macrophages (MDM)

 Map-free lactating Holstein cows (Bos taurus) were selected as 
blood donors for MDM isolation. Holstein cows were from a dairy 
located in the Northern Region of Antioquia State (Colombia), on  

a humid subtropical forest, 2450 meters over sea level, an average 
2600 mm/year rainfall, and 85% relative humidity. The region is 
one of the most important dairy regions in Colombia [12,13]. Fecal 
samples were taken from JD-free lactating Holstein cows (n=17) and 
were	tested	for	amplification	of	the	Insertion	Sequence	900	(IS900)	
of Map, using real-time PCR [14]. Cows were checked for two years 
for detection of clinical signs compatible with JD. The clinical out-
come included evaluation of progressive weight loss, body condition 
score, and the presence of chronic or intermittent diarrhea. Seven out 
of 17 cows were discarded because of clinical problems not related 
to JD (respiratory disease, laminitis, eosinophilic enteritis, and liver 
abscesses). The remaining ten cows were negative for Map excretion 
in feces as evidenced by consecutive negative real-time PCR tests. 
Finally, one out of the 10 Map-negative cows exhibiting the best con-
ditions for in vitro culture in MDM (e.g., cell morphology, viability 
and longtime persistence in culture) was selected as a donor of MDM 
for in vitro infection. 

Collection of fecal and blood samples

 Fecal samples from 17 clinical healthy lactating cows were col-
lected from the rectal ampulla with disposable sterile obstetric gloves. 
Samples were labeled and transported at 4°C to the laboratory within 
4h after collection and later on were frozen at -80°C until processing. 
Blood samples from the donor cow were collected from the jugular 
vein with a 14 mm venous catheter after aseptically cleaning of the 
jugular area and put into a pearl-containing sterile glass 100 mL Er-
lenmeyer. Samples were transported to the laboratory at 4°C.

DNA extraction from fecal samples

 Total DNA was extracted from fecal samples using the QIAamp® 
DNA Stool Mini Kit (Qiagen, Valencia, California, USA) according 
to the manufacturer’s instructions. DNA from Map-infected MDM 
was extracted using the DNeasy® Blood and tissue kit (QIAGEN, 
Texas USA) according to the manufacturer’s instructions. DNA pu-
rity and concentration was calculated by the 280/260 nm ratiousing 
a Nanodrop®	ND1000	Spectrophotometer	(Thermo	Fisher	Scientific,	
Wilmington, DE, USA). The extracted DNA samples were stored in 
aliquots at -80°C until processing. In all cases, DNA integrity was 
evaluated using 1.8% agarose gel electrophoresis (Agarose I Amres-
co® Ohio, MI, USA). The gel was run in a Biorat Universal Hood II 
(Laboratory Segrate, Milan, Italia) at 110 V for 50min.

Isolation and culture of MDM, infection with Map in vitro 
and its functional evaluation

 In	figure	1,	we	presented	the	scheme	of	the	experimental	protocol	
used in the study. Bovine monocytes were obtained after gradient cen-
trifugation on Fycoll Histopaque®-1077 (Sigma-Aldrich, St. Louis, 
MO, USA). Peripheral Blood Mononuclear Cells (PBMC) were incu-
bated in 10% Fetal Bovine Serum (FBS) (Gibco/Invitrogen, Miami, 
FL, USA) supplemented with RPMI-1640 medium (Mediatech Inc., 
Herndon, VA, USA) added with 20000 UI/mL penicillin and 1 mg/
mL streptomycin (Gibco/Invitrogen, Miami, FL) at 37°C	in	6	well	flat	
bottom culture plates (Falcon BD Labware, Franklin Lakes, NJ) and 
cultured	under	humidified	 atmosphere	with	5%	CO2. Non-adherent 
cells were discarded by washing with cold medium. Plastic-adher-
ent	cells	were	recovered	and	evaluated	for	CD14	expression	by	flow	
cytometry using a PE-conjugated mouse anti-human CD14 moAb 
(clone 61D3) (Biosource, San Diego, CA, USA) that recognizes bo-
vine CD14 [15].
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 For evaluation of the phagocytic activity, bovine MDMs (106 cells/
mL) were incubated with PE-conjugated microbeads (CaliBRITETM 
PE beads, Becton-Dickinson, CA, USA) at 37°C/60min. The beads 
were	washed,	 and	 the	phagocytic	 cells	were	 evaluated	by	flow	cy-
tometry using a Coulter Epics XL y BD FACScanto II cytometer. As 
a positive control, we used PE-coupled microbeads alone.

 For the infection of MDM in vitro, it was used the Map 19698 
ATCC® reference strain (American Type Culture Collection. Rock-
ville, MD, USA). The strain was thawed and cultured in 50 mL 
Middlebrook 7H10 medium (Becton Dickinson, Franklin Lakes, NJ, 
U SA) supplemented with 10% OADC (Becton Dickinson, Franklin 
Lakes, NJ, USA), 0.5% Tween 80 and 0.0002% mycobactin-J (Al-
lied Monitor Inc., Fayette, USA). The strain was cultured at 37°C/six 
weeks and growth of Map was evidenced by checking of the turbidity 
in	culture	media	 followed	by	 identification	of	 the	growing	bacteria	
using Ziehl-Neelsen (Sigma-Aldrich, St. Louis, MO, USA) staining. 
The concentration of Map was calculated using a Spectronic® 20 
Genesys Spectrophotometer (Sigma-Aldrich, St. Louis, MO, USA) 
which resulted in 8.3 × 106 mycobacteria/mL. Cultures of Mapwere 
centrifuged at 1,075 g/10min, the supernatant was discarded, and the 
mycobacteria-containing sediment was washed in sterile 1x Dulbec-
co’s Phosphate-Buffered Saline (DPBS) (Gibco/Invitrogen, Miami, 
FL) at 1,075 g/10min. The mycobacteria were resuspended in glyc-
erol and Tween 80-containing 1x DPBS (Sigma-Aldrich, St. Louis, 
MO, USA). Then they were subjected to four cycles of sonication at 
140 Watts/10 secs/4°C	with	2	min	pause	between	cycles.	After	final	
washing at 67 g/5min, the supernatant was stored in 400 µL aliquots 
and was frozen at -80°C until processing.

 Bovine MDMs were infected with the MAP 19698 ATCC® strain 
in a 5:1 Multiplicity of Infection (MOI) in the presence of 10% inac-
tivated autologous serum. The MDM concentration was adjusted to  
1 × 106	cells/mL,	whereas	Map	was	added	to	meet	a	final	concentra-
tion of 5 × 106 bacteria/mL, meeting the criteria for 5:1 DOI. Map-in-
fected MDMs were incubated in RPMI-1640 medium (Mediatech 
Inc., Herndon, VA, USA) at 37°C and 5% CO2/2h	 in	 a	 humidified	
atmosphere. After completing the time of infection, non-phagocytized 
mycobacteria were washed three times using the cold-RPMI-1640 
medium at 151 g/10min. Then the pellet containing Map-infected 
MDM was reconstituted at 1 × 106 cells/mL (Figure 1).

 After infection with the reference strain of Map, MDMs 
werepre-incubated with 10 ng/mL LPS (Sigma, St. Louis, MO, USA), 

3 × 106 IU/500μL	human	recombinant	(hr)-IFN-g,	or	1	µg/mL Dexa-
methasone (Merck, Bogota, Colombia). Map-infected MDMs were 
added with each independent stimulus diluted in 10% FBS (Gibco/In-
vitrogen, Miami, FL, USA) containing RPMI-1640 (Mediatech Inc., 
Herndon, VA, USA) at 37°C/2h. As a control, MDMs were cultured 
in complete RPMI-1640 media alone. After 24 h of culture, cells were 
washed for eliminating the stimulus. After washing, Map-infected 
MDM (1 × 106/mL)	were	cultured	in	12	well	plates	in	a	humidified	at-
mosphere at 37°C for 6, 72, or 120h. At each time-point, supernatants 
were recovered and stored at -196°C until processing for cytokine 
measurements by Luminex®. Also, Map-infected MDM and control 
MDM, were lysed by sonication, and cell lysates were processed for 
DNA	extraction	and	amplification	of	IS900	sequence	of	Map	by	re-
al-time PCR (Figure 1). 

Quantification of cytokines and chemokines in the super-
natants of MAP-infected MDM by Luminex

 The cytokines TNF-a, IL-6, IL-8, IL-10 and IL-12 (p40/p70), and 
the chemokines IP-10 and CCL3, were measured in culture superna-
tants of Map-infected MDM or control MDM collected at 0, 6, 72 and 
120h after culture, following the manufacturer’s instructions (Human 
Cytokine/Chemokine Magnetic Bead Panel, Milliplex® Map Kit, Bil-
lerica USA). The detection limit for each cytokine and chemokine 
were: TNF-a, 90 pg/mL; IL-6, 104 pg/mL; IL-8, 93 pg/mL; IL-10, 
103 pg/mL; IL-12, 110 pg/mL; IP-10 (also known as CXCL10), 95 
pg/mL; and CCL3, 148 pg/mL. Samples were evaluated by dupli-
cates. The manufacturer provided negative and positive controls for 
each cytokine and chemokine. This kit because of the lack of reagents 
for measuring bovine cytokines and chemokines at the time we per-
formed the study.

The amplification of the IS900 sequence of Map by re-
al-time PCR

 Real-time	PCR	 test	was	 carried	out	 in	 a	final	 volume	of	 25	µL 
containing 200nM dNTP each (Invitrogen, Miami, FL, USA),  
12.5 µL of 1x SYBR Green I PCR Master mix (Invitrogen, Miami, 
FL, USA), 6.5 µL H2O DEPC, 0.5 µL of forward (62.5 nM) and re-
verse (62.5 nM) primers, and 5 µL of sample DNA (5-25 µg/µL). 
The sequences of forward and reverse primers for the IS900 of Map 
were obtained from GenBank (National Center for Biotechnology In-
formation, USA) as follows: Forward (FW) 5’CGACGTGTCCTTA-
CACAGC3’ and reverse (RW) 5G’GTATGGTTTCATGTGGTT3’. 
Melting temperatures and molecular weight of the primers were 
55.8°C and 5,748.8 g/mol, and 50.1°C and 5,895.9 g/mol, respective-
ly.	The	thermal	profile	of	the	real-time	PCR	for	the	IS900	sequence	
was as follows: Denaturation at 95°C/15min,	amplification	phase	of	
50 cycles at 95°C/30 sec, 60°C/30 sec, 72°C/30	sec,	and	a	final	elon-
gation step at 72°C/3min. The range of temperature for the melting 
curve was 65 to 85°C. The expression of GAPDH gene was used as 
housekeeping gene using the following forward and reverse primers: 
FW 5’TGCTGGTGCTGAGTATGTGGT3’ and RW 5’AGTCTTCT-
GGGTGGCAGTGAT3’. The melting temperature was 58.7 and 
58.4°C,	respectively.	The	thermal	profile	of	the	real-time	PCR	for	the	
GAPDH gene was as follows: Denaturation at 95°C/15min, an am-
plification	phase	of	45	cycles	at	95°C/8sec, 60°C/5sec, 72°C/10sec, 
and	a	final	elongation	step	at	72°C/10min. The range of temperature 
for the melting curve was 65 to 95°C. All real-time PCR reactions 
were performed in a Rotor-Genet 6000 real-time rotary analyzer 

Figure 1: Experimental design for infection of MDM with Map and its culture in the 
presence of three different stimuli (Dexamethasone, IFN-g, and LPS).
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(Corbett Research, Mortlake, Australia) and results were analyzed 
using	the	Rotor-Gene	6000	series	1.7	software.	PCR	curves	and	fluo-
rescence normalization were established by the Threshold value (Ct), 
which resulted in 0.003 for the IS900 sequence of Map and 0.001 
for the GAPDH gene. The LinRegPCR® software was used for cal-
culation	 of	 amplification	 efficiency.	All	 samples	were	 processed	 in	
triplicate, and data were analyzed by the -(ΔΔct) method [16]. The 
GAPDH gene was used as a control for calculating ΔCt, whereas 
cultures added with Dexamethasone, IFN-g and LPS were used for 
calculation of ΔΔct. 

Recovery of Map from lysates of Map-infected MDM for 
bacterial culture

 At time 0 (after 24h incubation with each stimulus) and at 6, 72 
and 120h after culture and elimination of excess of stimulus, Map-in-
fected MDM and control MDM were collected and lysed using the 
CV33 sonicator (Sonics Vibra Cell, Newtown, CT, USA) and lysates 
were frozen until processing. After thawing, six serial dilutions of 
the	supernatant	were	performed,	and	the	final	dilution	was	seeded	in	
OADC-supplemented Middlebrook 7H10 medium (Becton Dickin-
son, Franklin Lakes, NJ, USA) without mycobactin-j [17]. Cultures 
were incubated at 37°C/3weeks. Finally, the number of Colony Form-
ing Units (CFU) was measured by direct observation of the plates.

Statistical Analysis

 All quantitative variables including the Relative Concentration 
of the Gen (RCG) for the IS900 sequence, cytokine concentration in 
culture supernatants, and Map CFU were evaluated for normality by 
the method of Levene’s homogeneity of variances. The Kruskal-Wal-
lis test evaluated differences between medians. With the Ling-PCR® 

software	it	was	obtained	the	relative	quantification	units	for	each	gene	
by	calculating	the	mean	amplification	difference	of	ΔΔct between the 
IS900 sequence and the GADPH gene. Differences between means 
from data that did not meet the assumption of normality were evalu-
ated	by	the	Kruskal-Wallis	test	and	were	confirmed	by	Dunns	posthoc	
test. P-value was established as P<0.05.

Results
The ability of primary bovine MDMs to become infected 
by and sustain the growth of Map

 Results	of	real-time	PCR	evidenced	the	amplification	of	IS900	se-
quence of Map in samples of primary bovine MDMs that were previ-
ously incubated in vitro with a reference strain of Map (Map-infected 
MDM), were further incubated with Dexamethasone, IFN-g or LPS 
for	two	hours,	and	finally	culture	during	6,	72	and	120h.	As	shown	in	
figure	2,	the	IS900	fragment	of	Map	was	amplificated	in	all	samples	
harvested	from	Map-infected	MDM,	with	no	statistically	significant	
differences between groups (P>0.05). Also, it was found a high level 
of variability in results, particularly in Map-infected MDM stimulated 
with	Dexamethasone.	In	none	of	the	control	wells,	it	was	amplified	
the IS900 fragment of Map.

 Furthermore, the growth of Map present in samples harvested of 
lysed Map-infected MDM was evaluated in bacterial culture using 
Middlebrook 7H10 medium without mycobactin-j. Map growth was 
evidenced in all cultures of samples taken from Map-infected MDM. 
Only in samples of Map-infected MDM stimulated with Dexameth- 
asone	and	cultured	for	120h,	the	number	of	CFU	of	Map	was	signifi-
cantly higher compared to control MDM (Figure 3). The amount of  

CFU was higher in Map-infected MDM at time zero and after 6h of 
culture, then decreased at 72h and was negligible at 120h (Figure 3). 
In samples harvested of control MDMs, there was no growth of Map 
in bacterial culture.

Figure 2: Amplification	of	 the	 IS900	segment	of	Mycobacterium avium subspecies 
paratuberculosis, after samples obtained from Map-infected bovine MDMs cultured 
in vitro during 0 to 120h. MDMs were infected with the ATCC 19698 Map strain at an 
MOI of 5:1 (Mycobacteria: Macrophage) during 2h, as it was indicated in material and 
methods. Then they were added with: 1 µg/mL Dexamethasone (A), 3 × 106 UI/500µL 
 IFN-g (B), 10 ng/mL LPS (C). Control wells were incubated with medium alone. 
Values	are	expressed	as	Relative	quantification	of	the	gene	(RCG)	(median	±	SE).	The	
RCG	was	calculated	by	using	the	formula	2-(ΔΔct)	(P>	0.05).

Figure 3: Colony Forming Units (CFU) of Mycobacterium avium subspecies para
tuberculosis after culture of samples recovered from lysed bovine MDM previously 
infected with a reference Strain of Map, and cultured in vitro during 0 to 120h. MDMs 
were infected with the ATCC 19698 Map strain at an MOI of 5:1 (Mycobacteria: Mac-
rophage) during 2h, as it was indicated in material and methods. Then they were added 
with 1 µg/mL Dexamethasone, 3 × 106 UI/500µL IFN-g, or 10 ng/mL LPS. Control 
wells	were	incubated	in	culture	medium	alone.	Values	are	expressed	as	median	±	SE.	
The	asterisk	indicated	a	statistically	significant	difference	between	groups	(P>0.05).
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Cytokine and chemokine production by Map-infected 
MDM

 Map-infected MDM previously stimulated with Dexamethasone, 
IFN-gamma or LPS for 24h and then cultured until 120h, presented 
a	variable	profile	of	cytokine	production	at	 all	 time-points	evaluat-
ed, suggesting Map-infected MDM still functional until 120h in our 
system. Values of cytokine production by Map-infected MDM are 
presented in table 1. Values of Map-infected cytokine production pre-
sented	in	figures	4-8	are	weighted	to	cytokine	production	of	control	
MDM at each time-point of evaluation, and represents variation over 
and under control values.

TNF-a production

 TNF-a	 production	was	 significantly	 reduced	 from	 6	 to	 120h	 of	
incubation in Map-infected primary bovine MDMs stimulated with 
Dexamethasone compared to control (Table 1 and Figure 4). On the 
contrary,	TNF-a	production	was	significantly	increased	at	6,	and	72h	
in Map-infected MDM incubated with IFN-g or LPS. 

IL-6 production

 Interleukin-6	 production	 significantly	 decreased	 from	6	 to	 120h	
in Map-infected MDM incubated with Dexamethasone compared to 

control. No effect of IFN-g or LPS was observed on IL-6 production 
by Map-infected MDMs compared to control MDMs (Table 1 and 
Figure 5). 

Cytokine (Units) Time (Hours) Control Dexamethasone IFN-gamma LPS

TNF-alpha (pg/mL)

0 14,7	±	0,4 9,7	±	0,2 18,0	±	0,5 16,0	±	0,5

6 382,4	±	11,3 193,7	±	1,1 668,6	±	19,8 951,2	±	28,1

72 1224	±	36,2 619,8	±	1,9 2.139,6	±	63,3 3.043,9	±	90,1

120 5000	±	0 1.913,4	±	3,3 5.000,0	±	0 5.000,0	±	0

IL-6 (pg/mL)

0 52,7	±	5,5 58,4	±	6,1 56,8	±	6,0 52,7	±	5,5

6 366,8	±	38,4 123,9	±	13,0 365,4	±	38,3 366,8	±	38,4

72 1.137,1	±	119,2 384,0	±	40,3 1.132,9	±	118,8 1.137,1	±	119,2

120 3.638,6	±	381,4 1.228,9	±	128,8 3.625,3	±	380,0 3.638,6	±	381,4

IL-10 (pg/mL)

0 14,2	±	2,0 16	±	1,7 2,7	±	1,6 14,2	±	2,0

6 274,1	±	38,3 150	±	15,7 44,3	±	25,6 274,1	±	38,3

72 724,4	±	210,0 464	±	48,7 137,4	±	79,3 724,4	±	210,0

120 724,4	±	210,0 1.485	±	155,7 439,7	±	253,9 724,4	±	210,0

IP-10 (pg/mL)

0 37,7	±	2,1 22,2	±	1,2 41,5	±	1,1 39,2	±	2,2

6 112,9	±	6,2 258,7	±	14,2 920,7	±	5,4 444,9	±	24,5

72 327,3	±	18,0 750,4	±	41,2 2.670,2	±	9,2 1.290,1	±	70,9

120 1.014,7	±	55,8 2.326,0	±	127,8 8.277,4	±	16,2 3.999,3	±	219,8

CCL3 (pg/mL)

0 10,6	±	0,3 11,7	±	0,3 13,9	±	0,4 12,6	±	0,4

6 180,0	±	5,3 107,0	±	3,2 191,5	±	5,7 286,5	±	8,5

72 576,0	±	17,1 342,3	±	10,1 612,8	±	18,2 916,8	±	27,1

120 1.670,3	±	49,5 992,7	±	29,4 1777,1	±	52,6 2.658,6	±	78,7

IL-8 (pg/mL)

0 334,7	±	18,4 340,8	±	18,7 338,5	±	18,6 337,1	±	18,5

6 1.141,3	±	62,7 1.126,7	±	61,9 1215,1	±	66,8 1.344,2	±	73,9

72 3.309,7	±	181,9 3.267,5	±	179,6 3523,8	±	193,7 3.898,2	±	214,2

120 5.000,0	±	0 5.000,0	±	0 5000	±	0 5.000,0	±	0

IL-12 (pg/mL)

0 15	±	0,8 11,2	±	0,6 12	±	0,7 14	±	0,8

6 16	±	0,9 12,4	±	0,7 16	±	0,9 14	±	0,8

72 14	±	0,8 20,2	±	1,9 23	±	1,3 20	±	1,1

120 39	±	2,2 58,6	±	3,	1,12 68	±	3,7 59	±	3,2

Table 1: Cytokine production in supernatants of Map-infected MDM incubated with Dexamethasone, Interferon gamma or Lipopolysaccharide 
for 24h and then cultured until 120h.

*Values	are	expressed	as	the	mean	±	standard	error.

Figure 4: Production of TNF-a by Map-infected bovine MDM stimulated with Dexa-
methasone (DEX), IFN-g (IFN-g) or LPS (LPS) during 24h and then culture from 6 to 
120h.	Columns	with	a	different	letter	within	each	cytokine	mean	statistically	signifi-
cant difference (P<0.01, Kruskal-Wallis Test). Values are weighted to control and are 
expressed	as	mean	±	SE.
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IL-10 production

 Interleukin-10	production	by	Map-infected	bovine	MDM	signifi-
cantly	increased	from	6	to	72h	and	then	significantly	decreased	from	
72 to 120h in Map-infected MDMs added with Dexamethasone, com-
pared with control MDM (P>0.05). On the contrary, its production 
significantly	increased	from	6	to	120h	in	Map-infected	MDM	added	
with	LPS	(P<0.01),	with	no	statistically	significant	effect	(P>0.05)	of	
IFN-g (Table 1 and Figure 6) compared to control MDM. 

IP-10 production

 Production	 of	 the	 IP-10	 factor	 by	Map-infected	MDMs	 signifi-
cantly increased in cultures added with Dexamethasone, IFN-g or 
LPS, compared to control. The highest IP-10 production was ob-
served in Map-infected MDM incubated with IFN-g, in comparison 
to LPS, Dexamethasone or control, respectively. Regarding the time 
of culture, the highest level of IP-10 production was observed at 120h 
of culture (Table 1 and Figure 7).

CCL3 production

 CCL3	 production	 significantly	 increased	 from	 6	 to	 120h	 in	
Map-infected MDMs incubated with LPS compared to control MDM. 
On	the	contrary,	 its	production	was	significantly	 reduced	from	6	 to	
120h in Map-infected MDMs stimulated with Dexamethasone (Table 
1).

IL-8 production

 IL-8	production	by	Map-infected	MDMs	did	significantly	increase	
from 6 to 72h in Map-infected MDMs added with IFN-g or LPS, and 
then	its	values	did	significantly	decrease	from	72	to	120h	compared	
with control MDM (Table 1 and Figure 8). 

IL-12 production

 Although with negligible levels, IL-12 production by Map-infect-
ed	MDM	significantly	increased	from	72	to	120h	in	MDM	streated	
with Dexamethasone, IFN-g or LPS (Table 1). 

Figure 5: Production of IL-6 at 0, 6, 72 and 120h post-infection, by Map-infected 
bovine MDM stimulated with Dexamethasone (DEX), IFN-g (IFN-g) or LPS (LPS) 
during 24h. CN, Control MDM. Columns with a different letter within each cytokine 
mean	 statistically	 significant	 difference	 (P<0.01,	 Kruskal-Wallis	 Test).	 Values	 are	
weighted	to	control	and	are	expressed	as	mean	±	SE.

Figure 6: Production of IL-10 by Map-infected bovine MDM stimulated with Dexa-
methasone (DEX), IFN-g (IFN-g) or LPS (LPS) during 24h and then cultured for 0, 6, 
72 and 120h post-infection. Columns with a different letter within each cytokine mean 
statistically	significant	difference	(P<0.01,	Kruskal-Wallis	Test).	Values	are	weighted	
to	control	and	are	expressed	as	mean	±	SE.

Figure 7: Production of IP-10 by Map-infected bovine MDM stimulated with Dexa-
methasone (DEX), IFN-g (IFN-g) or LPS (LPS) during 24h and then cultured for 0, 
6, 72 and 120h post-infection. Groups of columns with different letter mean statisti-
cally	significant	difference	within	each	cytokine	compared	to	control	MDM	(P<0.01,	
Kruskal-Wallis	Test).	Values	are	weighted	to	control	and	are	expressed	as	mean	±	SE.

Figure 8: Production of IL-8 by Map-infected bovine MDM stimulated with Dexa-
methasone (DEX), IFN-g (IFN-g) or LPS (LPS) during 24h and then cultured for 0, 
6, 72 and 120h post-infection. Groups of columns with different letter mean statisti-
cally	significant	difference	within	each	cytokine	compared	to	control	MDM	(P<0.01,	
Kruskal-Wallis	Test).	Values	are	weighted	to	control	and	are	expressed	as	mean	±	SE.
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Discussion
 In this study, we provide evidence on the effect of Dexametha-
sone, IFN-g, and LPS on the ability of MDM for allowing survival of 
Map	and	modify	their	profile	of	cytokine	production	when	cultured	in 
vitro. This system showed that bovine MDM infected with Map at 5:1 
MOI, added with Dexamethasone, IFN-gamma or LPS for 24h and 
further culture for 2 to 120h, remains functional during all time-points 
of culture evaluated. We propose this model could be used for study-
ing the interaction of Map with primary bovine MDM, mimicking 
stressful conditions of the macrophages characterized by high circu-
lating levels of cortisol and LPS, such as those found when bovines 
suffering JD are under stress caused by endogenous glucocorticoids 
or LPS-related conditions. With the working hypothesis that Dexa-
methasone, IFN-g or LPS, could affect the ability of primary bovine 
MDM for supporting the survival of Map in vitro, we selected a cow 
free of JD as a donor of primary MDM to be infected with a reference 
strain of Map from a group of 17 potential donors. 

 Interestingly, Map growth in bacterial culture after recovering 
Map-infected MDM decreased from 6 to 72h regardless of the stimu-
lus,	although	the	statistically	significant	growth	of	Map	was	observed	
in samples recovered from Map-infected MDM added with Dexa-
methasone from 72 to 120h of culture, compared to control MDM. 

 Glucocorticoids exert their effects on macrophages in a dose-de-
pendent manner: At nanomolar doses, glucocorticoids increases adhe-
sion, chemotaxis, phagocytosis and cytokine production, whereas at 
micromolardoses glucocorticoids can exert immunosuppression [18] 
and induce monocytes to differentiate toward macrophages [19,20]. 
In our study, we used 1 µg/mL Dexamethasone a value considered in 
the micromolar range. Although we do not evaluate the precise mech-
anism of Dexamethasone in our study, the dose used resulted in the 
ability of MDM to support the growth of Map from 72 to 120h of cul-
ture. In that context, Nozawa et al. [21], found that Dexamethasone 
at the above-indicated concentration impaired the ability of mouse 
macrophages to destroy Candida parapsilosis when compared with 
untreated	macrophages	[21].	This	finding	was	further	corroborated	in	
a rabbit model using BCG [22] and in mouse macrophages and human 
monocytes [23,24] and Microglia cells [25] infected with Mycobacte
rium tuberculosis. We found no reports in the literature on the effect 
of Dexamethasone on the response of bovine macrophages against 
Map.

 Regarding cytokine production by Map-infected MDM, the addi-
tion	of	Dexamethasone	resulted	in	a	statistically	significant	reduction	
of TNF-a and IL-6 production, compared to control MDM in agree-
ment with previous reports on cytokine production by Th1 and Th2 
lymphocytes	 [26,27].	TNF-a	 is	one	of	 the	most	 critical	pro-inflam-
matory cytokines produced by macrophages infected with pathogenic 
strains of Map [28]. TNF-a production is also induced during pro-
tective immune responses elicited against mycobacterial infections in 
mouse [5,28] and humans [29,30]. For example, the addition of TNF-a 
to macrophages in vitro potentiates the death of M. tuberculosis (Mtb) 
by increasing Nitric Oxide (NO) production [28,31]. Similarly, high 
production of TNF-a was related with the elimination of mycobac-
teria by Map-infected murine macrophages, whereas a low produc-
tion was related to Map survival into the macrophages [5]. In our 
study, Map-infected MDM incubated with Dexamethasone produced 
lower TNF-a compared with control MDM (Table 1 and Figure 4). 

On	 the	contrary,	 its	production	 significantly	 increased	 in	MDM	in-
cubated	with	LPS	or	IFN-g	at	72h	of	culture,	a	finding	reflecting	the	
physiological response of macrophages to these cytokines. In that 
context	it	was	reported	that	IFN-g	promotes	phagosome	acidification	
and its maturation, resulting in lysis of the intracellular pathogen [32]. 

 Interleukin-6	 was	 significantly	 reduced	 in	 Map-infected	 MDM	
stimulated with Dexamethasone, whereas IFN-gamma and LPS did 
not	affect	 its	production	 (Figure	5).	 IL-6	 is	a	pro-inflammatory	cy-
tokine produced by macrophages stimulated including mycobacteria 
cell wall extracts [24]. Macrophages collected from cows infected by 
Map	significantly	produced	more	IL-6	in vitro, compared to healthy 
cows [33] as it was reported for human and bovine macrophages [34]. 
In our study, control MDM did produce IL-6. Although no reports 
were	found	in	the	scientific	literature	related	to	cytokine	production	
by non-stimulated bovine macrophages, in a study published by Lee 
et al. [33], reported higher levels of IL-6 gene expression (evaluated 
by in situ hybridization) and protein expression (evaluated by immu-
nohistochemistry) in cows infected with Map compared to healthy 
cows, in samples of ileal tissue [33]. No other reports were found, 
suggesting	that	to	our	knowledge,	this	is	the	first	report	on	IL-6	pro-
duction by non-stimulated bovine MDM. 

 The immunomodulatory cytokine IL-10 acts suppressing the an-
timicrobial activity of macrophages; e.g., it promotes Th2 respons-
es and impairs Th1 responses [35] as it was corroborated in studies 
performed with Map-infected macrophages [36]. Also, IL-10 inhib-
its cytokine production and antigen presentation by macrophages 
and	dendritic	cells	[37].	In	our	study,	IL-10	production	significantly	
increased at 120h of culture in Map-infected MDM incubated with 
LPS, compared to Map-infected MDM incubated with Dexametha-
sone,	IFN-g	or	control	MDM.	These	finding	would	probably	reflect	
the impairment of macrophage function induced by LPS in agreement 
with the report by Langelaar et al. [38]. 

 Regarding	our	findings	on	chemokine	production	by	Map-infect-
ed MDM, few studies were available in the literature on the effect 
of chemokines on MDM infection in vitro [39,40]. IP-10 was shown 
to	 induce	 inflammatory	 responses	 at	 the	 site	 of	 infection	 in	Myco-
bacteria-induced	colitis.	Our	finding	on	the	effect	of	IFN-gamma	on	
IP-10 production by Map-infected MDM, suggests that bovine MDM 
reacts against intracellular bacteria by producing its provision of cyto-
kines	and	chemokines	and	probably	reflects	the	in vivo situation when 
infected macrophages are preparing for encountering CD4+ T cells. 
Conversely,	IP-10	production	was	significantly	lower	in	Map-infect-
ed MDM incubated with Dexamethasone, in comparison with MDM 
incubated with IFN-g or LPS (P<0.01) (Figure 7 and Table 1). It 
suggests that the immunoregulatory role of glucocorticoids in MDM 
function should be exerted through inhibition of chemokine produc-
tion.

 IL-12 is an effect or cytokine protecting the cells [41]. Its produc-
tion by macrophage and dendritic cells is required for inducing the 
Th1 responses necessary for controlling mycobacterial infection [9]. 
Our data on the low production of IL-12 (Both 12 p40 and IL-12 p70) 
by Map-infected bovine MDM are in agreement with previous reports 
[9,41]. Altogether, cytokine and chemokine production in our system 
indicates that MDM still viable and functional at all time-points of 
evaluation, with variations in cytokine production related to the effect 
of the stimulus added.
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 Taking into consideration that Map-infected MDMs and control 
MDMs did support growth and survival of Map and did produce sev-
eral cytokines during the time points evaluated, we propose this mod-
el could serve for testing several hypotheses on the effect of physio-
logical conditions of cows on their immune response against Map. 
For example, it could be tested the capability of macrophages recov-
ered under stress conditions such as parturition and lactation peak, or 
the effect of infection (postpartum uterine disease, mastitis, laminitis) 
for eliminating Map, comparing the response between cows suffering 
Johne’s disease and healthy cows. This model would be particularly 
useful	because	of	the	difficult	to	achieve	growth	of	Map	under	con-
ventional	microbiological	culture,	and	the	difficult	for	isolating	Map	
of	cowshaving	stages	I	and	II	of	the	disease.	The	finding	that	Map-in-
fected MDM added with Dexamethasone allowed the highest growth 
of Map in bacterial culture suggest this compound was able to render 
macrophages more susceptible to maintain Map infection in vitro.

 Finally,	the	model	must	be	tested	under	field	conditions	to	evaluate	
if circulating macrophages isolated from cows suffering the phase I or 
phase II of JD, could be used for detecting Map-infected circulating 
macrophages. In that sense, in a case report, it was found that circulat-
ing and resident Map-infected macrophages were isolated from milk, 
peripheral blood and lymph nodes of a cow suffering the terminal 
phase IV of Johne’s disease [7].

Study limitations

 One of the key limiting factors of this study is the use of a single 
donor of primary MDM. We wonder whether use primary macro-
phages or a macrophage cell line because of the functional differences 
and most intense response against Mycobacterium challenge exerted 
by	primary	macrophages	compared	 to	macrophage	cell	 lines,	 so	fi-
nally we choose the primary source [42]. Then because primary mac-
rophages could present a high level of variability under the culture 
conditions [43] and strain of intracellular pathogens [44] compared to 
cell lines of macrophages, we decide to use a single donor of cells for 
avoiding variability due to donor source. 

 The second limiting factor was the off-label use of a kit for mea-
surement of human cytokines. At the time we performed this study 
there was not a commercial kit available for measurement of bovine 
cytokines using the Luminex principle. Based on the high conserva-
tion of sequence homology between human and bovine genes [45] 
particularly cytokines and chemokines [46], this option was chosen.
Nowadays there are kits available for measurement of bovine cyto-
kines for further experiments on this subject.

 Finally, Map growth in bacterial culture of samples obtained from 
Map-infected primary bovine MDMs was cultured without mycobac-
tin-j. In a report by Aduriz et al. [17], in an ovine model of infection 
with Map, the authors reported the capability of Middlebrook 7H10 
medium to support the growth of Map without mycobactin [17]. Au-
thors argued that primary cultures of Map cultured with mycobactin-j 
exhibits the capability of growing in the absence of mycobactin-j in 
further bacterial culture, by a carry-over effect of mycobactin taken 
from the primary culture. Although this fact was not tested in our 
experiment, it was the basis for culture Map without mycobactin. 

 In summary, our results showed that primary bovine MDM that 
were infected in vitro with a reference strain of Map, still functional 
up to 120h of culture as evidenced by its cytokine and chemokine 

production. The addition of Dexamethasone to Map-infected MDM 
resulted in the higher growth of Map in bacterial cultures of samples 
harvested at 120h, suggesting this glucocorticoid could be used as 
for favoring Map survival and proliferation into MDM for research 
purposes and early diagnosis of cows with Johne’s disease.
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