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Abstract objective To categorise and map, at high resolution, the risk of malaria incidence in the Pacific

region, the main malaria-endemic region of Colombia.

methods The relationship between the environmental variables Normalized Difference Vegetation

Index Normalized Difference Water Index, Topographic Wetness Index, precipitation and

temperature with the observed Annual Parasitic Index was evaluated using a generalised linear model.

An incidence risk map at a resolution of 1 km2 was constructed and projected to the entire endemic

region. Associations of malaria risk categories with both presence records and co-occurrence of the

three main malaria vectors were determined.

results A significant correlation was found for the incidence of malaria with precipitation and

Normalized Difference Vegetation Index (R2 = 0.98, P < 0.05), whereas there was no significant

correlation with the remaining environmental and topographic variables. Moderate- to high-risk areas

were located mainly in central Choc�o Department along the San Juan and Atrato rivers and in areas

west of the Cauca River and Pacific lowlands of the Andes Mountains. There was a statistically

significant relationship for the presence of the two main vectors Anopheles darlingi and Anopheles

nuneztovari with the high malaria risk category. Furthermore, malaria risk was directly proportional

to the number of co-occurring vector species.

conclusions The map obtained provides useful information on the risk of malaria in particular

places of the Colombian Pacific region. The data can be used by public entities to optimise the

allocation of economic resources for vector control interventions and surveillance.

keywords malaria, incidence, risk, Anopheles, environmental variables, Colombia

Sustainable Development Goals (SDGs): SDG 3 (good health and well-being), SDG 15 (life on land)

Introduction

In Colombia, malaria is an important problem of public

health and the country ranks third in the number of cases

in Latin America with 61,339 cases reported in 2018 [1].

Currently, the Pacific (PAC) region is the most important

endemic area of the country registering more than 52% of

the total cases in 2018 [2]. Historically in Colombia, Plas-

modium vivax has been the main circulating species in

humans, except during the period 2015-2018 when Plas-

modium falciparum predominated [1]; although in PAC

both parasite species exist, P. falciparum has always pre-

vailed [2]. Furthermore, in this region the three main

Colombian malaria vectors have been found naturally

infected with Plasmodium spp.; Anopheles (Nys-

sorhynchus) albimanus Wiedemann 1820 was detected

with P. falciparum and P. vivax [3]; Anopheles (Nys.)

nuneztovari Gabaldon 1940 with Plasmodium sp. [4]; and

P. vivax [5] and Anopheles (Nys.) darlingi Root 1923 with

P. falciparum [6]. Information on vector parasite infection

is relevant as an indicator of transmission risk [3,7].

In Colombia, in 2018, the estimated malaria risk was

7.49 cases per 1,000 population based on the number of

cases diagnosed by thick blood smear (90.1%) and rapid

tests (9.4%) [2]. However, cases are vastly underreported

[8–10]. Considering that factors related to the triad host,

parasite and vector play an important role in the risk of

infection [11], an ecoepidemiological characterisation of

malaria using malaria risk maps is proposed. Generating

such maps involves variables strongly associated with the

disease, including environmental, topographic and

anthropic [12]. Among the variables showing a stronger

correlation with malaria risk are precipitation and tem-

perature [13], vegetation [14], humidity [15],
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deforestation [16], land use and cover [17], altitude [18]

and human population density, terrain elevations and

proximity to Anopheles habitats [19]. The construction

of risk maps is achieved by the use of geographic infor-

mation systems – GIS, satellite images at different spatio-

temporal scales and the application of statistical models

that may include the generalised linear model-GLM

[19,20], multicriteria decision analysis [21,22] and Baye-

sian logistic regression [23,24].

In Latin America, few studies have attempted to cate-

gorise and map malaria risk. One of them used environ-

mental and anthropic variables to design a malaria risk

map for Buenaventura municipality in the Colombian

Pacific region and showed that 89% of the cases corre-

sponded to areas with moderate/high malaria risk [25].

Later, risk maps for Colombia and surrounding areas

[26], and for northern South America [22] were produced

based on expert opinion of key environmental and popu-

lation risk factors. These maps provided spatial represen-

tation of potential vector exposure and the areas of

relative moderate to high risk, including those in the

Colombian Pacific [22,26]. Although previous works doc-

ument the efforts to map malaria risk/vector exposure in

the Colombian Pacific, they were constructed at the

municipality level, but the high topographic and environ-

mental complexities of this region [27] suggest the need

to develop risk maps at a finer spatial scale. Therefore,

this work was conducted to categorise and map, at a fine

spatial scale, the risk of malaria incidence in the currently

main malaria-endemic region of Colombia, the Pacific

region. In addition, the associations of risk categories

with both, presence records and co-occurrence of the

three main malaria vectors, were determined. The identi-

fication of specific areas under malaria risk in this ende-

mic region will provide useful information for public

health entities to efficiently direct surveillance and vector

control interventions, and it will allow the optimisation

of resources allocated for malaria control.

Materials and methods

Study area

The Colombian Pacific region is located in the west of

the country and includes the departments of Choc�o,

Valle del Cauca, Cauca and Nari~no, which comprise

179 municipalities (Figure 1). This region is one of the

most biodiverse and rainiest areas of the planet with

an annual precipitation above 9000 mm [27]. The cli-

matic and environmental conditions, active parasite cir-

culation and a population mostly composed of people

of African descent [2], are aspects contributing to the

high risk of malaria incidence in this region. Further-

more, the negative Duffy blood group frequently pre-

sent in this ethnic group confers resistance to infection

by P. vivax, increasing the risk of P. falciparum

malaria [28].

Epidemiological data

Data on the number of malaria cases by the predominant

parasite species P. falciparum and P. vivax, per munici-

pality and for the years 2013-2015 were obtained from

the national public notification system [29]. The annual

parasitic index (API) was calculated per municipality con-

sidering the number of malaria cases (observed

API = No. of cases 9 1000/population at risk per year),

and the three-year data were averaged using ArcGIS soft-

ware (ESRI Corporation, Redlands, CA) [30]. The output

was a raster layer with a 1 km2 resolution, and the

observed API value per pixel corresponded to the average

of the municipality.

Environmental variables

Environmental and topographic variables were chosen

after performing a literature review that indicated their

relevance for the occurrence of both malaria and vectors

[12,17,31]. These included the Normalized Difference

Vegetation Index (NDVI), which determines how much

near-infrared light is reflected compared to visible red

and helps to evaluate vegetation conditions or to differen-

tiate bare soil from grass or forest [32]; the Normalized

Difference Water Index (NDWI) used for assessing the

presence of moisture in vegetation cover; changes in

NDWI values reflect either sufficient vegetation water

content or water stress [33], and the Topographic Wet-

ness Index (TWI), which predicts relative surface wetness;

it is an indicator of places where water will tend to accu-

mulate [34]. The variables were obtained from various

databases (Table 1), processed in raster format of 1 km2

resolution and filtered with a mask for the Pacific region.

Boundary shapefiles (polygons of urban areas) were used,

and a buffer of 400-metre radius from each urban centre

was generated [35]. In addition, information on environ-

mental layers was extracted from the mask of urban

areas. A database was created that contained the infor-

mation of an urban centre per municipality, based on the

criterion of greater nocturnal luminosity [20].

Model risk map and data analysis

The analyses performed to obtain the risk map and vali-

date the model were as previously described [20]. Briefly,
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the association between observed API and environmental

variables was evaluated using the GLM; then, an esti-

mated API map with a 1 km2 resolution was constructed

using the most explicative variables, precipitation and

NDVI, in ENVI Software v.5.3. Based on the model pre-

viously proposed by Altamiranda et al. [20], the values

for the variables in the GLM were included in the follow-

ing function:

Log APIð Þ ¼ interceptþ coef:Var1þ coef:Var2

where Var1 and Var2 are the environmental variables

that most influenced the model.

The model was validated with a linear regression anal-

ysis that assessed the relationship between observed and

estimated API. The obtained map was reclassified into

four risk categories (very low, low, moderate and high)

by dividing the estimated API values into four classes

using quartiles of incidence data. Finally, the associations

of risk categories with both presence records and co-oc-

currence of the three main malaria vectors An. darlingi,

An. nuneztovari and An. albimanus were determined.

Records on malaria vectors were from the collections for

this study and obtained from the literature [3,6,7,36,37].

Results

Malaria epidemiological data for the Pacific region or the

observed API showed that Novita municipality in Choc�o

department presented the highest number of new cases

during the period 2013-2015 with an average API of

142.8, whereas Pasto in Nari~no department showed the

lowest API, 0.003. Based on GLM results, the following

model was defined as follows: Log (API) = 5.7502 –
37.3362 (NDVI raster data) + 0.008 (precipitation raster

data). Then, the inverse equation was applied to all pixels

of the area of interest to generate a malaria risk map:

API = exp (5.7502) x exp [(37.3362) (NDVI raster data)]

x exp [(0.008) (precipitation raster data)]. The GLM

revealed that the environmental variables related to

malaria incidence (observed API) were precipitation and

the NDVI (with a statistically significant correlation

R2 = 0.98, P < 0.05) (Table 2). The linear regression

analysis showed a statistically significant relationship

Figure 1 The malaria-endemic Pacific region (left) in relation to the Colombian map (right). The rectangle in the right upper corner

shows the location of Colombia in South America.
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between the observed and estimated API (R2 = 0.86588,

P < 0.05) (Figure 2).

The map constructed with the observed API showed

that the departments Choc�o and Nari~no had the highest

malaria incidence values (Figure 3a). However, the model

for the estimated API, based on the incidence explanatory

variables precipitation and NDVI, allowed to categorise

malaria risk at a finer spatial resolution. In the Pacific

region, 69 of all 179 municipalities had areas at moder-

ate to high malaria risk (Figure 3b). They encompassed

the banks of the San Juan and Atrato Rivers in Choc�o

department and municipalities west of the Cauca River

along the lowlands of the western and central branches

of the Andean Mountains, in Valle del Cauca depart-

ment. The areas of low risk were located mainly north-

east of Valle del Cauca and in the middle of Cauca and

Nari~no departments (Figure 3b).

Regarding the association between vector presence and

malaria risk categories, a significant statistical

relationship was found for the presence of An. darlingi

(X 2 = 21.022, P = 0.0002) and An. nuneztovari

(X2 = 12.932, P = 0.0059) with the high-risk category;

and for An. albimanus with the low malaria risk category

(X2 = 13.62, P = 0.004) (Figure 4). Furthermore, analysis

of the number of co-occurring species and risk category

revealed that the presence of a single species is related to

low risk, while co-occurrence of two or more species

increases the risk from moderate to high (X2 = 88.008,

P < 0.005) (Figure 5).

Discussion

We constructed a malaria risk map for the Pacific

region that allows the definition of areas at moderate

to high risk and established relationships between the

presence and co-occurrence of the Colombian main vec-

tors with the high malaria risk category. Among the

few studies conducted in the Pacific region to map

malaria risk, this is the first to produce a high-resolu-

tion risk map for the entire region. Our main findings

are, statistically significant environmental variables for

malaria risk are NDVI and precipitation; high to mod-

erate-risk areas are primarily distributed along impor-

tant rivers and low lands of the Andean mountains, the

main Colombian malaria vectors An. darlingi and An.

nuneztovari are positively related to high-risk areas; and

that the co-occurrence of two or more vector species

increases malaria risk.

The environmental variables precipitation and NDVI

explained malaria risk in Pacific region; these variables

were also important predictors of malaria risk in Nigeria,

Africa, Mozambique and India [23,38–40]. It is well

known that these conditions directly affect the presence

and abundance of malaria vectors [23]. The NDVI index

estimates the quantity and quality of vegetation [41];

thus, the finding that NDVI influenced the presence of

high-risk areas in the Pacific region may be explained by

the nature of its territory, with 80% of rural areas

Table 1 Environmental and topographic variables used to deter-
mine the risk of malaria in the endemic Pacific region of

Colombia

Environmental/

Topographic variable Source

Spatial

resolution

Annual precipitation WorldClim 1 km

Annual mean

temperature

WorldClim 1 km

Normalized difference
vegetation index

(NDVI)

Moderate Resolution
Imaging Spectroradiometer

(MODIS)

1 km

Normalized difference
water index (NDWI)

Moderate Resolution
Imaging Spectroradiometer

(MODIS)

1 km

Topographic wetness

index (TWI)

Calculated from Shuttle

Radar Topography
Mission Digital Elevation

Data

1 km

Table 2 Relationship between the observed API with environmental and topographic variables, as defined by a generalised linear
model

Estimate SE z value P value

Intercept 1.001e + 01 1.002e + 01 0.999 0.31782

NDVI -5.051e + 01 1.919e + 01 �2.632 0.00848**
NDWI 6.638e + 00 4.520e + 00 1.469 0.14190

TWI 2.587e-04 5.05e-04 0.470 0.63844

Precipitation 1.002e-02 3.971e-03 2.523 0.01164*
Temperature 1.610e-01 3.999e-01 0.403 0.68718

SE, standard error.

* P < 0.05; **P < 0.01.
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characterised by natural forest of hygrophilic type

[27,42]. Similarly, in a previous study conducted in a

rural settlement of the Brazilian Amazon, malaria risk

was associated with open areas having high NDVI [43].

Regarding the variable precipitation, the Colombian Paci-

fic is a region with one of the highest rainfall levels in the

world [27]. It is known that intense rains generate water

bodies that having the appropriate conditions may serve

as larval habitats for Anopheles species to propagate

[44]. In this regard, in the Pacific region, the presence of

An. nuneztovari has been related to transition periods

from the dry to rainy season [6], and vector presence and

abundance are risk factors for malaria transmission [45].

In this study, high-risk areas were primarily distributed

along important rivers and low lands of the Andes

Mountains. This may be related to the formation of
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Figure 2 Linear regression analysis between the observed and

estimated API. A statistically significant relationship was found

(R2 = 0.86588, P < 0.05).

Figure 3 (a) Annual Parasitic Index (observed API) by municipality of the Pacific Region of Colombia. (b) Risk map of malaria inci-

dence derived from a general linear model (estimated API); the coloured squares represent risk categories. [Colour figure can be viewed

at wileyonlinelibrary.com]
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larval habitats generated by river overflow and the ability

of the soil to retain water [44,46]. Similarly, high-risk

areas along stretches of rivers in the Amazon basin in

Brazil and Peru [22] and in northern Colombia [26] were

related to wetlands and riverine areas. Furthermore, in a

malaria risk map produced for northwestern Colombia,

high-risk areas were located southeast of the epidemic

region and the low-risk areas were mapped in zones dis-

tant from wetlands of the main rivers, which is consistent

with the lower probability of larval habitat formation

and mosquito development in these areas [20]. These

data agree with a pattern of disease dynamics where

humans conducting activities by the rivers, such as open

pit mining, are at greater risk of infection [17,46]; an

increasing phenomenon in endemic localities of the Paci-

fic region [47].

We hypothesise that the positive relationship between

An. darlingi and An. nuneztovari with the category of

high malaria risk is related to the ability of these vector

species to adapt to disturbed environments; particularly,

those caused by land use changes and socio-economic

activities that generate larval habitats favourable to the

proliferation of mosquito populations [6,48]. In the Paci-

fic region, presence and abundance of An. nuneztovari

and An. darlingi have been related to forest cover transi-

tions [48], small-scale cultivated areas, livestock [5,7]

and fishing [45,49]. All of these are the result of activities

of inhabitants of this region [42]. Other well-known

causes of altered environments that increase malaria risk

are deforestation [6,50] and mining [7], which take place

in various malaria-endemic areas of Colombia, including

the Pacific region. It is documented that the Colombian

armed conflict increased illegal open pit mining [51,52]

and deforestation for the establishment of illicit crops

[53].

Co-occurrence of two or more vector species increases

malaria risk in the Colombian Pacific region. This con-

firms the findings of previous studies in northwestern

Colombia, where the presence of two of the three main

malaria vector species was positively related to moderate

and high-risk categories of malaria incidence [20]; also,

in northwestern and west Colombia, the number of

malaria vector species was positively associated with the

API [54]. Considering that An. nuneztovari, An. darlingi

and An. albimanus are major malaria vectors and have

been detected naturally infected with Plasmodium spp. in

the Pacific region [3,6,37], their co-occurrence may

increase human-vector contact, and as a consequence,

there is a higher risk of contracting malaria.

Overall, our results indicate that at municipality level,

malaria risk is heterogeneous and various categories of

disease risk may be present. This observation is relevant

for the implementation of directed vector control inter-

ventions specifically focused on high to moderate-risk

areas as it will allow optimising outcomes and use of

resources for vector monitoring and control. Our model

could be used as a foundation for the design of an early

alert system for disease prevention and surveillance.
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