Aplicación de métodos indirectos para la detección de grandes variaciones de áreas construidas utilizando ortoimágenes y cartografía catastral

Daniel Chaverría López

Informe de práctica para optar por el título de Ingeniero Civil

Asesores

Derly Estefanny Gómez García, Magíster (MSc)
William Avendaño Castrillón, Ingeniero Topográfico, Especialista en Gestión de Proyectos de Ingeniería, Especialista en Gestión Pública, Magíster (MSc) en Tecnologías de Información Geográfica

Universidad de Antioquia
Facultad de Ingeniería
Ingeniería Civil
Medellín, Antioquia, Colombia
2022

Centro de Documentación Ingeniería (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.

Decano: Jesús Francisco Vargas Bonilla.

Jefe departamento: Diana Catalina Rodríguez Loaiza

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.
Tabla de contenido

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>7</td>
</tr>
<tr>
<td>Introducción</td>
<td>8</td>
</tr>
<tr>
<td>1 Objetivos</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Objetivo general</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Objetivos específicos</td>
<td>9</td>
</tr>
<tr>
<td>2 Marco teórico</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Ortoimágenes</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Cartografía base y catastral</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Análisis multitemporal</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Análisis Visual</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Métodos Indirectos</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Georeferenciación</td>
<td>11</td>
</tr>
<tr>
<td>2.7 Archivo tipo Ráster</td>
<td>12</td>
</tr>
<tr>
<td>2.8 Identificación de los predios en el Departamento de Antioquia</td>
<td>12</td>
</tr>
<tr>
<td>3 Metodología</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Etapa 1: Elección del municipio y la zona a estudiar</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Etapa 2: Recolección y organización de las herramientas cartográficas</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Etapa 3: Análisis visual y multitemporal de cambios en áreas construidas</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Etapa 4: Aplicación de métodos indirectos para análisis de datos</td>
<td>15</td>
</tr>
<tr>
<td>3.5 Etapa 5: Organizar el producto final (cartografía y listado de PK)</td>
<td>17</td>
</tr>
<tr>
<td>4 Resultados y Análisis</td>
<td>18</td>
</tr>
<tr>
<td>4.1 Etapa 1: Elección del municipio y la zona a estudiar</td>
<td>18</td>
</tr>
<tr>
<td>4.2 Etapa 2: Recolección y organización de las herramientas cartográficas</td>
<td>19</td>
</tr>
<tr>
<td>4.3 Etapa 3: Análisis visual y multitemporal de cambios en áreas construidas</td>
<td>20</td>
</tr>
</tbody>
</table>
4.4 Etapa 4: Aplicación de métodos indirectos para análisis de datos. ... 22

4.5 Etapa 5: Organizar el producto final (cartografía y listado de PK) .. 25

5 Conclusiones .. 28

Referencias ... 29
Lista de tablas

Tabla 1 Números indicativos de las manzanas estudiadas y su respectiva cantidad de Predios con cambios en construcciones. ...25

Tabla 2 PK de los predios que tienen cambios en áreas de construcción. ...26
Lista de figuras

Figura 1 PK de un predio ..13
Figura 2 Diagrama de flujo de la metodología..14
Figura 3 Aplicación del geoprocreso “Spatial Join” ...16
Figura 4 Nueva capa “Predios_SpatialJoin1” ..16
Figura 5 Proceso de selección de predios con cambios ...17
Figura 6 Localización del área de estudio ..18
Figura 7 Material cartográfico debidamente recortado ...19
Figura 8 Comparación entre ortoimágenes de los cambios relevantes20
Figura 9 Tabla de atributos con la nueva columna “Join_Count” ...22
Figura 10 Capa “P_Cambiados” en contraste con la capa de Predios y Cambios23
Figura 11 Caso puntual luego de la inspección ..24
Figura 12 Cartografía de predios con cambios en áreas construidas27
Resumen

Desde la Gerencia de Catastro de la Gobernación de Antioquia se ha venido implementando en gran medida el Catastro Multipropósito ya que, en los últimos años en Colombia, se ha impulsado esta nueva forma de trabajo gracias a sus grandes beneficios en los diferentes sectores. Es por esta razón que cada vez se deben optimizar los procesos en dicho campo y de allí surge la necesidad de encontrar una forma eficiente para detectar las variaciones masivas de áreas construidas en todo el territorio Nacional. Esto, evaluando un municipio para ver su efectividad para luego implementarlo en el Departamento y en el país. Este trabajo desarrolló mediante análisis visuales, multitemporales y métodos indirectos, un procedimiento sencillo y eficaz para obtener cartografía que contenga únicamente los predios que han sufrido variaciones en áreas construidas. Además, se obtiene la lista de los PK (número que identifica a cada predio a nivel departamental) de dichos predios, algo que puede ser muy útil al momento de realizar trámites catastrales de manera física o virtual, para avanzar con procesos de actualización y conservación catastral.

Palabras clave: Análisis multitemporal, Catastro, Ortoimágenes, Construcciones.
Introducción

Para catastro departamental, es muy importante hacer constantemente procesos de actualización y conservación catastral, para que la población antioqueña pueda tener acceso a información que tenga validez en el momento que se requiera. Es por eso que, como parte del grupo de actualización en calidad de practicante, se piensa en desarrollar un procedimiento que sea rápido, eficaz y permita tener información a priori de variaciones masivas en áreas construidas durante un determinado lapso de tiempo y en un lugar en específico. Dicho procedimiento se va creando desde cero, con cartografía base como lo son las ortoimágenes y la cartografía catastral.

El alcance que se espera luego de crear este proceso es poderlo aplicar a cualquier lugar en los municipios de Antioquia. Así como también, para expandirlo en todo el territorio colombiano. En cuanto al material de trabajo, la Gobernación de Antioquia se ha propuesto a tener material de Sistemas de Información Geográfica (SIG) muy actualizado y robusto, para así, tener mayor facilidad para realizar trámites de actualización y conservación catastral.

Se espera que el procedimiento presentado en este proyecto, sea de gran apoyo para el catastro departamental, para agilizar temas como las visitas de campo y trámites catastrales, y finalmente que sea una ventaja para poder recorrer con mayor facilidad todo el territorio antioqueño.
1 Objetivos

1.1 Objetivo general

Aplicar métodos indirectos para la detección de grandes variaciones de áreas construidas mediante el análisis multitemporal de ortoimágenes de los años 2010 y 2020, en contraste con la cartografía catastral actual.

2.2 Objetivos específicos

- Identificar la zona dentro del Departamento de Antioquia que cumpla con las condiciones para el análisis multitemporal a través de ortoimágenes y la cartografía catastral.
- Efectuar el análisis espacial teniendo en cuenta la georeferenciación de la ortoimagen antigua y la ortoimagen reciente.
- Realizar la aplicación de métodos indirectos sobre las ortoimágenes en conjunto con la cartografía catastral, para así, detectar los cambios de las áreas construidas.
- Elaborar una cartografía donde se evidencien los cambios que se detectaron en construcciones nuevas y existentes.
2 Marco teórico

A continuación, se presentarán conceptos básicos que serán necesarios para la realización y el entendimiento del proyecto:

2.1 Ortoimágenes

La ortoimagen o ortofotografía, es un mapa que se realiza a partir de un conjunto de imágenes, allí se encuentra cada tipo de detalle sea natural o artificial que está sobre el terreno de estudio con una posición perfecta planimétrica con arreglos a la proyección que se emplea en la representación. (Trujillo & Rivera, 2019).

En el Departamento de Antioquia, las ortoimágenes se encuentran distribuidas en una grilla de planchas para un acceso mucho más fácil de la zona a estudiar. Es importante tener en cuenta que una ortoimagen es un archivo tipo Ráster.

2.2 Cartografía base y catastral

La cartografía base se compone de Ortoimágenes, Modelos Digitales de Terreno (MDT) y Base de datos cartográfica, las dos primeras son archivos tipo Ráster y la tercera es tipo Vector. Esta cartografía se obtiene mediante procesos directos como lo son la observación y la medición de las superficies de la Tierra. (IGAC, 1998). Dentro de la base de datos cartográfica se encuentra la cartografía catastral que se compone de planos que tienen información catastral como lo son: barrios, manzanas, predios, construcciones, entre otras. La cartografía catastral se divide en dos tipos de suelo: Urbano y rural, y cada uno tiene especificaciones diferentes. (IGAC, 2020).

2.3 Análisis multitemporal

El análisis multitemporal es una técnica por la cual se obtiene comparaciones, en este caso, en cuanto a los cambiosespaciales sufritos de una zona en un determinado tiempo. Al realizar dicho procesamiento multitemporal de ortoimágenes, se puede obtener una serie de datos que están...
debidamente referenciados de acuerdo a la fecha de su origen, y que se conviertan en un conjunto de datos único. (Mehl & Peinado, 1997).

El objetivo principal de los estudios multitemporales es la detección de cambios en la cobertura del suelo y su uso, en un lapso de tiempo determinado, para así, evidenciar la repercusión de las acciones humanas sobre los recursos naturales y artificiales (Trejos, 2004). En este caso, se van a tener en cuenta los cambios relacionados con áreas construidas, teniendo en cuenta que los cambios sean significativos.

2.4 Análisis Visual

El análisis visual es un método indirecto que se utiliza en este caso para hacer una inspección de los cambios en determinada zona, basándose en datos multitemporales (en este caso las ortoimágenes de 2010 y 2020), para así digitalizar las zonas donde se perciben cambios significativos. (Moya, 2012).

2.5 Métodos Indirectos

Los métodos indirectos no requieren tener salidas a campo para observación o mediciones, pero se basan en material, por lo general digital, que se recolectan con métodos directos. Dicho material puede ser imágenes de sensores o satélites, modelos estadísticos, análisis de Big Data, entre otros. Los métodos indirectos sirven para hacer identificación física, económica y jurídica de los bienes inmuebles, para después de los análisis correspondientes, se agreguen en la base catastral. (DANE, 2020).

2.6 Georeferenciación

Es el proceso por el cual se define el posicionamiento de un cualquier objeto, sea natural o artificial, sobre la superficie de la tierra, esto se hace con respecto a su localización en un sistema de referencia. Para el caso de Colombia, el sistema de referencia se llama MAGNA-SIRGAS. Las coordenadas de dicha posición son sistemas de medición compuesto por Latitud y longitud. (Sastre, 2008).
La georreferenciación normalmente relaciona una información vectorial (puntos de control) con las imágenes ráster (ortoimágenes o modelos digitales de elevación DEM) de la cual se desconoce su proyección cartográfica en un sistema de información geográfica. (Quiroga & Torres, 2021). De acuerdo con lo anterior, en este trabajo se hace un proceso de georreferenciación ya que se relacionan información multitemporal como lo son las ortoimágenes del 2010 y 2020 (archivos tipo ráster) con la base de datos cartográfica, más específicamente con la cartografía catastral (archivos con información vectorial).

2.7 Archivo tipo Ráster

El formato ráster se basa en divisiones del área de estudio en una matriz de celdillas o en una grilla, generalmente cuadradas. Cada celdilla recibe un valor único que se considera representativo para toda la superficie que abarca la celdilla. Este formato cubre la totalidad del espacio, este hecho supone una ventaja fundamental ya que pueden obtenerse valores de forma inmediata para cualquier punto del mismo. (Sarría, 2006). Las ortoimágenes que utilizamos para el análisis multitemporal aportan al trabajo la información necesaria en forma de archivo tipo Ráster.

2.8 Identificación de los predios en el Departamento de Antioquia

Para la identificación de los predios en el territorio antioqueño se utiliza un número denominado “PK”. Esto es una identificación a nivel departamental de cada predio y está compuesto por 19 dígitos distribuidos de la siguiente manera. 3 dígitos que representan el Código del municipio, 1 dígito que representa el sector (1 si es Urbano y 2 si es Rural), 3 dígitos que corresponden al número del Corregimiento, 3 dígitos que representan el Barrio, 4 dígitos que representan la Manzana (esto es para zona Urbana, para zona Rural sería Vereda, pero igual sería la misma cantidad de dígitos), y 5 dígitos que identifica el número del Predio. En la Figura 1, se muestra la composición del PK de un Predio.
Figura 1

PK de un predio
3 Metodología

Para cumplir con los objetivos que propone el proyecto, fue necesario realizar una serie de pasos que, al unirse, crearon un procedimiento que tuvo como producto final dos herramientas muy importantes al momento de hacer visitas a campo, y posteriormente para hacer los trámites correspondientes para los cambios en construcciones de los predios. Esto es, la cartografía que muestra la ubicación de los predios que tuvieron cambios en áreas construidas y el listado de PK de los predios mencionados.

En la Figura 2, se muestra un Diagrama de flujo con las etapas desarrolladas en el procedimiento.

Figura 2

Diagrama de flujo de la metodología.

A continuación, se describe la metodología que se emplea en cada una de las etapas mencionadas:
3.1 Etapa 1: Elección del municipio y la zona a estudiar

En primer lugar, se escogió un municipio que tuviera las dos ortoimágenes con diferencia de 10 años y se trabajó en algunas manzanas de la cabecera municipal que se ubica en la zona urbana. También es importante que el municipio haya tenido una actualización catastral para que su cartografía esté al orden del día. Para realizar los procedimientos necesarios se utilizaron los softwares ArcMap 10.8 y Microsoft Excel.

3.2 Etapa 2: Recolección y organización de las herramientas cartográficas

Para la realización del proyecto se utilizaron las ortoimágenes del 2010 y 2020, y la cartografía catastral necesaria para ver las grandes variaciones en áreas construidas, realizando un análisis visual y aplicando algunos métodos indirectos que se describen más adelante. Es importante tener todo este material debidamente georreferenciado para evitar problemas de incongruencia espacial.

3.3 Etapa 3: Análisis visual y multitemporal de cambios en áreas construidas

El análisis visual consistió en sobreponer las ortoimágenes de 2010 y 2020 junto con la delimitación de los predios Urbanos, y empezar a identificar los predios que sufren grandes variaciones en áreas construidas. Los predios en los que se detectan grandes cambios en construcción, se señalan con puntos en una nueva capa.

3.4 Etapa 4: Aplicación de métodos indirectos para análisis de datos

Los métodos indirectos que se utilizaron en el proyecto fueron los geoprocessos, exportación de información a nuevas capas y análisis de datos en Excel. Lo primero fue aplicar el geoprocesso “Spatial Join”, en el que se involucran las capas de predios Urbanos y la capa de cambios (que es la capa de puntos resultante del análisis visual). La Figura 3, muestra cómo se aplica el geoprocreso “Spatial Join”.
Figura 3
Aplicación del geoprocso “Spatial Join”.

Lo que hace este geoprocso es contar la cantidad de puntos que hay en cada predio representado por un polígono, y como resultado se genera una nueva capa de polígonos y en su tabla de atributos aparece una nueva columna donde se encuentra el conteo de puntos de cada predio. La Figura 4 muestra la nueva “Predios_SpatialJoin1”, que tendrá en su tabla de atributos el conteo de puntos de cada predio.

Figura 4
Nueva capa “Predios_SpatialJoin1”.
Se aplicó selección por atributos como lo indica la Figura 5(a), quedan señalados los predios en la tabla de atributos como se ve en la Figura 5(b) y en el mapa como se ve en la Figura 5(c).

Figura 5
Proceso de selección de predios con cambios.

Posteriormente se realizó una inspección, y se exportó la tabla de atributos de la capa de los predios con cambios a Excel para un análisis con respecto a las manzanas.

3.5 Etapa 5: Organizar el producto final (cartografía y listado de PK)

Se construyó un mapa con la capa que contiene los predios que tuvieron cambios en áreas construidas y finalmente, se realizó una tabla con los PK de los predios que tienen cambios en áreas construidas. Ambos fueron el producto final para ser entregado a los funcionarios de catastro para las futuras visitas de campo y para los diferentes trámites necesarios.
4 Resultados y Análisis

A continuación, se muestran los resultados obtenidos y los análisis correspondientes a cada etapa mencionada en la metodología:

4.1 Etapa 1: Elección del municipio y la zona a estudiar

El municipio que cumplió con los requerimientos de tener las dos ortoimágenes con diferencia de 10 años y que haya tenido un proceso de actualización reciente fue San Jerónimo, es por eso que este proyecto está basado en algunas manzanas de la zona urbana del municipio seleccionado. San Jerónimo es un municipio situado en el occidente del departamento de Antioquia. Se escogió una zona en el casco urbano del municipio, por lo cual se eligieron 15 manzanas que rodean el parque sin incluir su manzana. La Figura 6 muestra la localización detallada del área de estudio; a) en el país, b) en el departamento, c) en el municipio y d) en la zona Urbana.

Figura 6
Localización del área de estudio.
4.2 Etapa 2: Recolección y organización de las herramientas cartográficas

Se recolectó el material necesario mencionado anteriormente en la metodología y se revisó que esté georreferenciado en el mismo sistema de coordenadas. En catastro departamental se utiliza el sistema de coordenadas MAGNA COLOMBIA BOGOTA. Se recortaron tanto las ortoimágenes como la capa de predios Urbanos y Manzanas para que queden solamente las 15 manzanas que se van a utilizar para el procedimiento. En la Figura 7 se muestra el material con el que se va a trabajar previamente recortado; a) Ortoimagen del 2010, b) Ortoimagen del 2020, c) Las 15 manzanas y d) Los predios que se encuentran dentro de las 15 manzanas.

Figura 7
Material cartográfico debidamente recortado.
Se cargó en el ArcMap las ortoimágenes del 2010, del 2020 y la cartografía catastral; capa de predios Urbanos y Manzanas. Con esto, se empieza a hacer el análisis visual para identificar los predios con cambios en construcciones.

4.3 Etapa 3: Análisis visual y multitemporal de cambios en áreas construidas.

En la Figura 8 se muestran algunas comparaciones relevantes al momento de realizar el análisis visual. Los puntos verdes son los predios que tuvieron cambios en construcciones. Es importante mencionar que el enfoque es en áreas que tengan cambios en las construcciones, es decir, que en el 2010 no haya ningún tipo de construcción y en 2020 si, o viceversa, también se tienen en cuenta cambios importantes que tenga una construcción. No se tienen en cuenta tratamientos del terreno, por ejemplo, que en 2010 haya árboles y en 2020 ya no estén, tampoco se tiene en cuenta si un terreno está árido para el 2010 y para el 2020 tenga capa vegetal.

Figura 8
Comparación entre ortoimágenes de los cambios relevantes.
En las primeras tres comparaciones, se muestra cómo se visualizan los cambios en las ortoimágenes, en el primero se muestra una remodelación de la construcción existente, en los dos siguientes se muestran construcciones nuevas. En la última comparación se observa un predio que en el 2010 era árido y en 2020 tiene una capa vegetal uniforme, estos predios como se mencionó anteriormente no se tienen en cuenta ya que no tienen cambios en áreas construidas. Del análisis visual queda como resultado una capa de puntos que identifica los predios que tienen cambios en áreas construidas, en este caso la llamaremos “Cambios”.
4.4 Etapa 4: Aplicación de métodos indirectos para análisis de datos.

Como resultado del geoproceso “Spatial Join”, se obtiene una capa de polígonos denominada “Predios_SpatialJoin1”, cuya tabla de atributos, mostrada en la Figura 9, contiene una columna muy importante y es la “Join_Count”, que es el conteo de los puntos que hay en cada predio. Es fundamental, ya que si el valor para cada predio es mayor que cero, indica que hubo un cambio y permitirá depurar, en una sola capa los predios que se ven afectados por cambios en áreas construidas.

Figura 9
Tabla de atributos con la nueva columna “Join_Count”.

<table>
<thead>
<tr>
<th>FID</th>
<th>Etapa</th>
<th>Join_Count</th>
<th>TARGET_FID</th>
<th>OBJECT_ID</th>
<th>PREDIOS</th>
<th>PW_PREDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000000000000002500</td>
</tr>
</tbody>
</table>
En la Figura 9 se observaron los PK de los predios, también se observó que en las 15 manzanas hay un total de 448 predios. Después de hacer la selección de los que tienen cambios en construcciones, se concluyó que son 116 de 448 los predios que tuvieron cambios en áreas construidas, esto corresponde aproximadamente al 26% del área de estudio. Esto nos demuestra la importancia de realizar de una manera constante procesos de actualización, ya que, en un tiempo relativamente corto, se producen muchos cambios en un porcentaje significativo de la zona Urbana.

La Figura 10 muestra la nueva capa denominada “P_Cambiados”, este archivo fue fundamental para la cartografía del producto final ya que, allí se encuentran únicamente los predios que, por el análisis visual con los criterios descritos y algunos métodos indirectos, tienen cambios en áreas construidas.

Figura 10
Capa “P_Cambiados” en contrastc con la capa de Predios y Cambios.

Después de la inspección solo se encontró un caso, mostrado en la Figura 11(a), donde un predio que no tiene punto, es decir, que no presentó cambios (encerrado en un círculo rojo), aparece en la nueva capa “P_Cambiados”. Al momento de analizar ese caso en particular, se encontró que dicho predio pertenece a otro que está ubicado en la misma manzana y que si presentó cambios (encerrado en un círculo verde). Esto se confirmó porque al momento de seleccionar los dos
predios, aparece solo un polígono seleccionado como se observa en la Figura 11(b), lo anterior traduce que, para catastro departamental, estos predios comparten un solo PK, lo que quiere decir que son un solo predio.

Figura 11
Caso puntual luego de la inspección.

Por último, en esta cadena de métodos indirectos, se identificaron las manzanas que se estudiaron y la cantidad de predios con cambios en cada una de ellas. La Tabla 1 sintetiza dicha información. Las manzanas que se analizaron en este proyecto fueron: 0001, 0007, 0008, 0009, 0010, 0011, 0012, 0013, 0014, 0016, 0017, 0018, 0019, 0040, 0041. Para un total de 15 manzana y en conjunto 116 predios con cambios en dichas manzanas.
Tabla 1
Números indicativos de las manzanas estudiadas y su respectiva cantidad de Predios con cambios en construcciones.

<table>
<thead>
<tr>
<th>Manzana</th>
<th>Nº Predios</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>4</td>
</tr>
<tr>
<td>0007</td>
<td>7</td>
</tr>
<tr>
<td>0008</td>
<td>5</td>
</tr>
<tr>
<td>0009</td>
<td>10</td>
</tr>
<tr>
<td>0010</td>
<td>4</td>
</tr>
<tr>
<td>0011</td>
<td>9</td>
</tr>
<tr>
<td>0012</td>
<td>3</td>
</tr>
<tr>
<td>0013</td>
<td>11</td>
</tr>
<tr>
<td>0014</td>
<td>10</td>
</tr>
<tr>
<td>0016</td>
<td>2</td>
</tr>
<tr>
<td>0017</td>
<td>8</td>
</tr>
<tr>
<td>0018</td>
<td>20</td>
</tr>
<tr>
<td>0019</td>
<td>9</td>
</tr>
<tr>
<td>0040</td>
<td>8</td>
</tr>
<tr>
<td>0041</td>
<td>6</td>
</tr>
</tbody>
</table>

15 manzanas 116

4.5 Etapa 5: Organizar el producto final (cartografía y listado de PK)

Como resultado principal de todo el proyecto, se obtuvo una cartografía donde se muestran los predios que tienen cambios en áreas construidas y el listado de PK, que en conjunto con la cartografía agilan procesos de actualización y conservación catastral. La Tabla 3 corresponde al listado de PK y la Figura 12 corresponde a la cartografía final y juntos forman el producto final que da cumplimiento al último objetivo del proyecto.
<table>
<thead>
<tr>
<th>PK de los predios con cambios en áreas de construcción</th>
<th>PK de los predios que tienen cambios en áreas de construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>6561001001000100034</td>
<td>6561001001001200011</td>
</tr>
<tr>
<td>6561001001000100020</td>
<td>6561001001001200022</td>
</tr>
<tr>
<td>6561001001000100036</td>
<td>6561001001001200008</td>
</tr>
<tr>
<td>6561001001000100038</td>
<td>6561001001001300048</td>
</tr>
<tr>
<td>6561001001000700006</td>
<td>6561001001001300013</td>
</tr>
<tr>
<td>6561001001000700002</td>
<td>6561001001001300006</td>
</tr>
<tr>
<td>6561001001000700009</td>
<td>6561001001001300050</td>
</tr>
<tr>
<td>6561001001000700008</td>
<td>6561001001001300005</td>
</tr>
<tr>
<td>6561001001000700007</td>
<td>6561001001001300014</td>
</tr>
<tr>
<td>6561001001000700003</td>
<td>6561001001001300011</td>
</tr>
<tr>
<td>6561001001000800003</td>
<td>6561001001001300025</td>
</tr>
<tr>
<td>6561001001000800002</td>
<td>6561001001001300052</td>
</tr>
<tr>
<td>6561001001000800001</td>
<td>6561001001001300029</td>
</tr>
<tr>
<td>6561001001000800018</td>
<td>6561001001001400001</td>
</tr>
<tr>
<td>6561001001000800016</td>
<td>6561001001001400033</td>
</tr>
<tr>
<td>6561001001000900040</td>
<td>6561001001001400004</td>
</tr>
<tr>
<td>6561001001000900006</td>
<td>6561001001001400026</td>
</tr>
<tr>
<td>6561001001000900020</td>
<td>6561001001001400003</td>
</tr>
<tr>
<td>6561001001000900042</td>
<td>6561001001001400007</td>
</tr>
<tr>
<td>6561001001000900024</td>
<td>6561001001001400031</td>
</tr>
<tr>
<td>6561001001000900008</td>
<td>6561001001001400011</td>
</tr>
<tr>
<td>6561001001000900016</td>
<td>6561001001001400036</td>
</tr>
<tr>
<td>6561001001000900037</td>
<td>6561001001001400035</td>
</tr>
<tr>
<td>6561001001000900023</td>
<td>6561001001001600016</td>
</tr>
<tr>
<td>6561001001000900004</td>
<td>6561001001001600003</td>
</tr>
<tr>
<td>6561001001001000007</td>
<td>6561001001001700010</td>
</tr>
<tr>
<td>65610010010010000017</td>
<td>6561001001001700019</td>
</tr>
<tr>
<td>65610010010010000005</td>
<td>6561001001001700021</td>
</tr>
<tr>
<td>65610010010010000025</td>
<td>6561001001001700026</td>
</tr>
<tr>
<td>6561001001001100001</td>
<td>6561001001001700024</td>
</tr>
<tr>
<td>65610010010011000030</td>
<td>6561001001001700033</td>
</tr>
<tr>
<td>65610010010011000028</td>
<td>6561001001001700012</td>
</tr>
<tr>
<td>65610010010011000015</td>
<td>6561001001001700007</td>
</tr>
<tr>
<td>65610010010011000019</td>
<td>6561001001001800026</td>
</tr>
<tr>
<td>65610010010011000033</td>
<td>6561001001001800045</td>
</tr>
<tr>
<td>65610010010011000002</td>
<td>6561001001001800020</td>
</tr>
<tr>
<td>65610010010011000022</td>
<td>6561001001001800027</td>
</tr>
<tr>
<td>65610010010011000035</td>
<td>6561001001001800010</td>
</tr>
</tbody>
</table>
Figura 12
Cartografía de predios con cambios en áreas construidas.

Los PK mostrados en la Tabla 2, particularizan cada predio y su cambio en la construcción. Con dicho número, se puede investigar el historial de cambios sufridos en el predio, y ver las características actuales de sus construcciones. Para así, con la Figura 12 que presenta la ubicación de cada predio, se pueda realizar la visita a los predios, comparar la información que hay de los cambios, y en caso de no encontrar concordancia, empezar con el proceso de actualización correspondiente.
5 Conclusiones

Gracias a la aplicación de análisis visual, multitemporal y métodos indirectos para el análisis de los datos, se logró hacer una buena identificación de cambios en áreas construidas teniendo en cuenta que hay que tener un buen criterio para poder analizar las ortoimágenes y saber que cambios en verdad están relacionados con construcciones.

Con la realización de este proyecto se evidenció que el catastro del departamento de Antioquia es uno de los pioneros en Colombia en cuanto a avances tecnológicos, debido a que tienen material muy actualizado como lo son las ortoimágenes y constantemente están haciendo procesos de actualización catastral para tener toda la cartografía lo mas reciente posible, plasmado en ella los cambios que se realicen en lo que tiene que ver con temas catastrales.

El análisis visual es un método que está muy olvidado ya que tiene muchas desventajas como lo son la poca precisión, el consumo de tiempo que este implica, sin embargo, para este tipo de procesos es muy conveniente ya que, junto con buenos criterios del analista, el resultado puede ser muy útil para acelerar procesos catastrales.

Los métodos indirectos son muy efectivos en estos casos y más con una herramienta tan completa como lo es ArcMap, debido a que tiene muchos geoprocessos que se pueden aplicar para realizar diferentes análisis y poder extraer información muy valiosa.

Finalmente, se logró tener una cartografía que informa los predios que en los últimos 10 años han tenido cambios significativos en sus construcciones, esto es una herramienta que aporta efecividad al momento de hacer visitas de campo para tratar temas catastrales. En cuanto a la lista de los PK, es fundamental para identificar los predios que tienen cambios, no tanto en el lugar, sino, al momento de hacer un trámite de manera electrónica de dichos predios.

Se recomienda a la Gobernación de Antioquia, tener presente este procedimiento, ya que puede resultar muy útil y ser muy efectiva para ahorrar tiempo en el momento de hacer visitas técnicas para algún proceso de Actualización catastral.
Referencias

Decreto N° 148 de 2020 [Departamento Administrativo Nacional de Estadística]. Por el cual se reglamentan parcialmente los artículos 79, 80, 81 Y 82 de la Ley 1955 de 2019 y se modifica parcialmente el Título 2 de la Parte 2 del Libro 2 del Decreto 1170 de 2015, Por medio del cual se expide el Decreto Reglamentario Único del Sector Administrativo de Información Estadística. 04 de Febrero de 2020.

Resolución 388 de 2020 [Instituto Geográfico Agustín Codazzi]. Por la cual se establecen las especificaciones técnicas para los productos de información generados por los procesos de formación y actualización catastral con enfoque multipropósito. 13 de Abril de 2020.

https://repository.udistrital.edu.co/handle/11349/16321