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Abstract. Triatoma dimidiata (Hemiptera: Reduviidae) is a secondary vector of Trypanosoma cruzi in Colombia
and represents an important epidemiological risk mainly in the central and oriental regions of the country where it
occupies sylvatic, peridomestic, and intradomestic ecotopes, and because of this complex distribution, its distribution
and abundance could be conditioned by environmental factors. In this work, we explored the relationship between
T. dimidiata distribution and environmental factors in the northwest, northeast, and central zones of Colombia and
developed predictive models of infestation in the country. The associations between the presence of T. dimidiata and
environmental variables were studied using logistic regression models and ecological niche modeling for a sample of
villages in Colombia. The analysis was based on the information collected in field about the presence of T. dimidiata
and the environmental data for each village extracted from remote sensing images. The presence of Triatoma dimidiata
(Latreille, 1811) was found to be significantly associated with the maximum vegetation index, minimum land surface
temperature (LST), and the digital elevation for the statistical model. Temperature seasonality, annual precipitation,
and vegetation index were the variables that most influenced the ecological niche model of T. dimidiata distribution.
The logistic regression model showed a good fit and predicted suitable habitats in the Andean and Caribbean regions,
which agrees with the known distribution of the species, but predicted suitable habitats in the Pacific and Orinoco
regions proposing new areas of research. Improved models to predict suitable habitats for T. dimidiata hold promise
for spatial targeting of integrated vector management.

INTRODUCTION

In Colombia, there are 26 recorded triatomine species, of
which Rhodnius prolixus and T. dimidiata are considered the
most important vectors of Trypanosoma cruzi because of their
infestation indexes and vectorial capacity.1–3 Trypanosoma
cruzi is the causative agent of Chagas disease, a condition that
according to the last estimation made by WHO in Colombia
affected nearly 437,960 habitants by 2010, and there were at
risk nearly 4,813,543 people, 131,388 persons with Chagasic
cardiopathy, 5,274 annual cases due to vectorial transmission,
1,046 new cases due to congenital transmission each year, and
116,221 women with ages ranging between 15 and 44 years
were infected.4

Triatoma dimidiata is a highly variable species with a high
genetic diversity and is in fact a species complex; this diver-
sity may indeed explain the ecological diversity of habitats
and behavior encountered by this complex.5 This triatominae
species have a wide geographical range from Mexico through
Central America into Venezuela, Colombia, Ecuador, and
northern Peru.6 It is currently the main vector of Chagas
disease in Guatemala, El Salvador, Nicaragua, and Costa
Rica, and the second most important vector in Honduras
and Colombia.7–9

According to the Colombian Chagas Disease Control Pro-
gram (CDCP), T. dimidiata is widespread in 13 departments,
79 municipalities, and 205 villages located in the northwest
(Caribbean region), northeast, and central (Andean region)
parts of the country (Figure 1). Through its distribution,
T. dimidiata is not a strictly domiciliated species, presenting a
complex epidemiological distribution including sylvatic, peri-

domestic, and domestic ecotopes. Non-domiciliated populations
can act as reinfestation sources and may be engaged in the
transmission of the parasite to humans.1

In Colombia, T. dimidiata occupies different ecological
zones in a wide range of altitude between 0 and 2,400 m
above sea level (masl).10 The domestic and peridomestic
populations are found in the northeast and central zones
of Colombia (Boyaca, Casanare, Cundinamarca, Huila, and
Santander departments); the sylvatic populations are found in
the northwest of Colombia (Antioquia, Guajira, Magdalena,
and Sucre departments) where these insects are mainly found
on palm trees (Attalea butyracea).11,12

Habitat preferences influenced by climatic factors deter-
mine the distribution of triatomines. These insects are able
to move between microclimates within their habitats while
seeking the most favorable conditions. The local environ-
mental determinants for the presence of triatomines include
altitude, climate, vegetation type, and land use.13 Analytical
tools such as geographic information systems (GIS), remote
sensing, and niche modeling have greatly enhanced our abil-
ity to evaluate the relationships between environmental fac-
tors and vector ecology or disease transmission.14

Remote sensing data are increasingly being used to mea-
sure environmental and topographic variables on the ground,
and GIS are being used to model these data both spatially
and temporally.15 Remote sensing has the advantages that
numerous sensors has a wide range of spectral, spatial, and
temporal resolutions16,17 and global coverage is at low or
no cost. These properties allows GIS functions to be used
to investigate environmental relationships and generate
predictive maps throughout wide areas and thus focus con-
trol measures.18,19

Further evidence for the feasibility of mapping triatomine
bug distributions comes from published maps for Triatoma
infestans20 based on discriminant analysis using Fourier-
processed satellite-derived descriptors of air temperature (AT),
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medium infrared radiation, and vegetation index. Potential
distribution maps generated by ecological niche modeling
(ENM) has also been applied broadly to understanding
triatomine distribution in the last decade.21–29

Targeting and surveillance of T. dimidiata populations
could potentially be improved by the generation of a dis-
tribution map, that is, by developing a quantitative predic-
tion of infestation in each village on the basis of a GIS
incorporating comprehensively available environmental vari-
ables such as altitude,30 vegetation and climate,14 or socio-
economic status.31 For example, T. dimidiata abundance in the
Yucatan peninsula of Mexico was positively associated with
agriculture and pasture, as opposed to less disturbed habi-
tats such as forest or mangrove,14 and was also influenced
by wind speed, rainfall, relative humidity (RH), and maxi-
mum temperature.
In fact, several studies have shown that bioclimatic factors

can greatly influence triatomine geographic distribution.9,29,30

As with other vector-borne diseases, the knowledge of vector
geographic distribution, vector competence, and overall areas
of high risk of disease transmission can allow the develop-
ment of sensitive tools for disease prediction and the optimi-
zation of planning and implementation of effective control
strategies. Detailed risk maps for T. dimidiata have been
developed in Santander Department (M. Florez, unpublished
data), but not yet for the whole country.
In this work, we explored the relationship between

T. dimidiata distribution and environmental factors in the

northwest, northeast, and central zones of Colombia and
developed predictive models of T. dimidiata infestation in
the country.

MATERIALS AND METHODS

Study area. The study area was located at latitudes 5–11°N
and longitudes 72–76°W and included nine departments.
Following the CDCP protocols, entomologic field data from
340 houses belonging to 30 villages were obtained by direct
inspection between 2006 and 2009. This included T. dimidiata
infestation and infection rates by T. cruzi for each village
(Figure 2).
Imaging. Images of the LST, middle infrared (MIR), nor-

malized difference vegetation index (NDVI), and digital ele-
vation model (DEM) were obtained from the Advanced Very
High Resolution Radiometer (AVHRR) sensor onboard the
meteorological satellites of the National Oceanic and Atmo-
spheric Administration. The images were obtained for the
years 2006–2009. Averages for each variable was obtained
and imported into a raster–vector based GIS (ArcGIS 9.3®;
Esri, Redlands, CA, USA) to build a comprehensive database
of entomologic and environmental factors for the study area.
Statistical model. Data matching each 340 T. dimidiata

collection sites were then extracted from the database for
statistical analysis and modeling. The data set was divided
randomly in two subsets, one for modeling (70%) and
another for testing the models (30%). One subset was used
to build a logistic regression model of the probability of pres-
ence of T. dimidiata through a forward stepwise procedure
to select significantly associated variables with the response
variable, and to reduce potential colinearity problems, reten-
tion of factors was relied in Wald test and the percentage
of variance explained was valued taking into account the
R-square of Nagelkerke. Goodness of fit of the models was
assessed with Hosmer–Lemeshow test. The response variable
was defined as presence of T. dimidiata, and the independent
variables were a set of 12 environmental variables that include
NDVI, LST, MIR (these three having account their maxi-
mum, minimum, and mean), DEM, RH, and AT. The coeffi-
cients from this model were then applied to the values of the
predictor variables to generate a predicted probability of
occurrence between 0 and 1; the threshold value used to
determine between presence and absence was 0.5. Statistical
analysis was performed in Stata 10.0 software (Stata Corp.,
College Station, TX). Maps of predicted probabilities of pres-
ence were created using the regression model equations and
the map calculator of the “Spatial Analyst” extensions of
ArcGIS, version 9.3.
Predictions of presence or absence were reached by com-

paring predictions and observations to measure sensitivity
(ability to correctly predict “true” positives), specificity (abil-
ity to predict true negatives), and κ statistics (the proportion
of observations that we would have expected to be incorrectly
predicted on the basis of chance, but which were correctly
predicted, i.e., a measure of the additional “skill” of the model
over chance).32

As described by King and others,33 we used a proce-
dure previously used in ecologic and veterinary mapping
studies,34,35 and more recently applied in human disease
mapping,36 of plotting sensitivity against specificity for all

FIGURE 1. Ecoregions of Colombia. Eastern Plains region also
called Orinoco region.
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thresholds between 0 and 1 to generate a receiver–operator
curve (ROC). The area under the ROC (AUC) gives a sin-
gle comparable measure of overall model performance.
AUC values from 0.5 to 0.7 indicate a poor discriminative
capacity, 0.7–0.9 reasonable capacity, and > 0.9 a very
good capacity; K values < 0.4 can be considered to show
poor agreement, 0.4–0.75 good agreement, and > 0.75 excel-
lent agreement.37

Ecological niche model. We used 340 georeferenced
records of T. dimidiata in Colombia to produce ecological
niche models. Distributional data of T. dimidiata were sepa-
rated randomly into two sets: one for model calibration (75%
of points) and the other for model evaluation (25% of points).
To characterize environmental variation across Colombia, we
used nine climatic variables: annual mean temperature, diur-
nal temperature range, temperature seasonality, maximum
temperature in the warmest month, maximum temperature
in the warmest quarter, minimum temperature in the coldest
month, annual precipitation, precipitation in the wettest
month, and precipitation in the driest month. We obtained
these variables from the WorldClim project (worldclim.org),
which were developed via the interpolation of mean monthly
climatic data from meteorological stations over 30–50 (1950–
2000) years, depending on their availability at the stations.38

To summarize aspects of vegetation and land cover, we used
the multitemporal (monthly) NDVI (a “greenness” index)
drawn from the AVHRR satellite (http://daac.gsfc.nasa.gov/
avhrr/). The environmental databases used in our analysis
covered the areas at a spatial resolution of 2.5″ (5 × 5 km
per pixel).

Models were produced using Maxent version 3.2.1 (Florham
Park, NJ). Maxent assumes a priori uniform distribution and
performs a series of iterations in which weights are adjusted
to maximize the average probability of the point localities,
expressed as the training gain.39 Within the processing of the
Maxent, these weights are used to compute the maximum
entropy probability distribution over the entire geographic space,
with values expressing the environmental suitability of each grid
cell as a function of the environmental conditions presented
there. A high value of the function in a particular grid cell indi-
cates suitable conditions.
We assessed model accuracy by examining omission rates

associated with test points.40 To test model significance, we
compared predictive success of models against null expecta-
tions using a cumulative binomial test. In particular, we
assessed whether each test point fell in areas identified by
the model as suitable and compared this success rate with
overall proportions of pixels identified as suitable or unsuit-
able for that species. Statistical significance was assessed via
a cumulative binomial probability calculation in Excel (Micro-
soft Corp., Redmond, WA). We also used Maxent’s jackknife
test to identify variables that most influence model predic-
tions; this approach drop out each variable in turn. Variables
are considered important if they cause low training when
removed from the model.41 The quality of the predictions
generated by the models was also evaluated using the ROC.
In Table 1, the entomological indices of T. dimidiata in the
biogeographic regions of Colombia are shown.
Ethical considerations. The ethical committee of the

Colombian Institute of Tropical Medicine approved the

FIGURE 2. Collection sites of Triatoma dimidiata in Colombia. Green = presence; blue = absence.
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research protocol through the resolution 31. Informed con-
sent was obtained from each head of household.

RESULTS

Statistical model. The variables that did not have a signifi-
cant association with the presence of T. dimidiata were excluded
from the logistic regression model by a forward stepwise
procedure. Table 2 summarizes the performance of logistic
regression model in predicting the geographic distribution
of T. dimidiata. P value of Hosmer–Lemeshow test was 0.58.
The first variable included in the model, maximum vege-

tation index (MaxNDVI), explains 78.5% of the presence of
T. dimidiata in the predicted area; when the second variable,
minimum LST (MinLST), was added to the model the per-

centage of explain achieved 80.1%. The last variable added,
elevation (DEM Digital Elevation Model), increased that
explanation until 81.0%. So, the most important variable to
explain the presence of T. dimidiata was MaxNDVI.
The variables obtained with the third model (DEM,

MaxNDVI, and MinLST) were used to construct the equa-
tion for the predictive model. The equation was as follows:
Exp ((−0.051MaxNDVI) + (−0.052MinLST) + (−0.002DEM) +
242.499)/1 + Exp ((−0.051MaxNDVI) + (−0.052MinLST) +
(−0.002DEM) + 242.499). This equation was introduced in the
map calculator, and after an iteration process developed by
the spatial analyst extension of ArcGIS 9.3, we obtained the
risk map for T. dimidiata (Figure 3). Odds ratio (OR) for
each variable was set with the exponential of regression of
their coefficient, DEM: OR = 0.99, MaxNDVI: OR = 0.95,
and MinLST: OR = 0.95, showing these variables as char-
acteristics that decrease the odds of T. dimidiata presence.
The overall model performance is as follows: AUC = 0.87;

κ value = 0.87; sensitivity = 93.6%; and specificity = 92.1%.
Our model shows a reasonable discriminative capacity and
an excellent agreement. The values for the predictive poten-
tial of the model on the rest of the data set were κ value =
0.91; sensitivity = 91.2%; and specificity = 91.9%.
Ecological niche model. Triatoma dimidiata showed a wide

potential distribution in the Andean region and northwest of
Colombia. Temperature seasonality, annual precipitation, and
NDVI were the variables that most influenced the model of

TABLE 1
Entomological indices of Triatoma dimidiata in the biogeographic regions of Colombia

Biogeographic zone Department Municipality Village Sample size (%) DII (%) CI (%) NII (%) DI (%)

Santander mountains Santander Capitanejo Chorreras 15 (2.9) 68.7 12.5 20.6 100
Macaravita Buraga 4 (0.8) 9.8 9.8 50 100

Boyacá mountains Boyacá Soatá El Espinal 5 (1.0) 60 20 10 75
El Hatillo 4 (0.8) 22 22 0
La Costa 8 (1.5) 12.5 12.5 15.4
Jabonera 6 (1.2) 0 0 0

Tipacoque El Palmar 9 (1.7) 0 0 0 75
Nogal–Carrera 2 (0.4) 33 0 0
Bavatá 3 (0.6) 25 25 20
Ovachía 3 (0.6) 33 100 0

Upper Magdalena Huila El Agrado Remolinos 1 (0.2) 10 0 0 100
Pital San Joaquín 12 (2.3) 9.09 0 0 100

Arrayán 6 (1.2) 54.5 0 0
Gigante Veracruz 8 (1.5) 0 0 0 50

Río Loro 14 (2.7) 40 0 0
Depresión Momposina Bolívar Mompox San Fernando 1 (0.2) 0 0 0 0

Sucre San Onofre Las Brisas 1 (0.2) 0 0 0 0
Galeras Baraya 1 (0.2) 0 0 0 0

Sierra Nevada of Santa Marta Magdalena Santa Marta Guachaca 18 (3.4) 0 0 0 0
Santa Marta Cacahualito 16 (3.0) 0 0 0 0
Santa Marta Palomino–Gumake 3 (0.6) 0 0 0 0

Cesar Valledupar Seynimen 104 (19.8) 11.3 7.5 4 100
Gulf of Uraba Antioquia Apartadó La Victoria 8 (1.5) 0 0 0 0

Chigorodó Barranquillita 11 (2.1) 0 0 0 0
Necoclí Caña Flechal 16 (3.0) 0 0 0 0
Turbo Aguas Frías 6 (1.1) 0 0 0 0

Los Enamorados 8 (1.5) 0 0 0 0
Middle Magdalena Santander San Vicente El Peltrecho 47 (9.0) 4.4 0 0 75

Granada 35 (6.7) 13.5 0 25
Santa Rosa 49 (9.3) 0 0 –
Pradera 2 (0.4) 33 0 0

El Carmen Cirales 21 (4.0) 7.7 0 100 16
El Diviso 16 (3.0) 0 0 –
Honduras 24 (4.8) 0 0 –
Delia–Victoria–Belleza 11 (2.1) 0 0 –

CI = colonization index (proportion of houses with T. dimidiata nymph or eggs); DI = Dispersion Index (proportion of villages within municipality with triatomines); DII = Domestic Infesta-
tion Index (proportion of infested houses with T. dimidiata; NII = Natural Infection Index (proportion of Trypanosoma cruzi-infected triatomines).

TABLE 2
Logistic regression model for Triatoma dimidiata in Colombia

B SE Wald df Sig Exp(B)

DEM −0.002 0.001 4.171 1 0.041 0.998
MaxNDVI −0.051 0.008 37.465 1 0.000 0.950
MinLST −0.052 0.018 8.439 1 0.004 0.949
Constant 242.499 64.143 14.293 1 0.000 2.07

B = regression coefficient; DEM = digital elevation model; df = degrees of freedom;
Exp(B) = exponential of regression coefficient; MaxNDVI = maximum vegetation index;
MinLST = minimum land surface temperature; SE = standard error; Wald = significance
statistical Wald test; Sig = significance. Variables with statistical significance in final model:
DEM, MaxNDVI, and MinLST.
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T. dimidiata distribution (Figures 4 and 5) All test points
were included in the predicted occurrence (0% omission),
and AUC was 0.989. The binomial tests indicated high statis-
tical significance (P < 0.01). These results indicated a good
model performance.

DISCUSSION

Similar to other vector insects, triatomines are influenced
by bioclimatic variables, and numerous studies have investi-
gated the effect of climatic factors on several aspects of
triatomine life cycle.14,15 During the past few years, a grow-
ing number of studies have attempted to establish inte-
grated relationships between environmental variables and
triatominae distribution.13,14,21,22,24–29,42

In this study, environmental variables that showed associa-
tion with the presence of T. dimidiata were MaxNDVI,
MinLST, and the DEM in the statistical model that we
developed using variables extracted from remote sensors
and NDVI and temperature seasonality and annual precipi-
tation (both from WorldClim database) in ENM. Both models
were in agreement with the importance of the vegetation
index associated with T. dimidiata infestation. The models
also shows the need to include data from different sources
as annual precipitation, seasonal temperatures in ENM and
MinLST and DEM in remote sensing associated with the

presence of T. dimidiata. Those variables plus another vari-
ables have been used to model the distribution of other
triatominae species.13,20,25,27,42,43 According to the values of
the variables that better explain the presence of T. dimidiata
in the predicted areas, we found variability in the values of
MaxNDVI and MinLST and a high variability in the value
of DEM.
With respect to MinLST, for the populations of the north-

west region of the country, the high values of this variable
can be explained because these populations mainly inhabit
in palm trees where microclimate that favors the presence of
the populations is present. In the eastern region of the coun-
try, the low values of MinLST are consistent with the values
given in a study (M. Florez, unpublished data) for Santander
Department where T. dimidiata appear more abundant in
milder temperatures with low vegetation index. This seems
to contrast with T. dimidiata populations from the northwest
region of the country, which are more abundant in warmer
and drier climate with high vegetation indexes. This may
suggest important differences in the ecologic niches between
these distinct populations and may confirm the ecological
differences observed between them.44

According to the description of M. Florez (unpublished
data), although the relation of the arthropod vectors with

FIGURE 3. Predictive model (logistic regression) for Triatoma
dimidiata distribution in Colombia. Scale in probabilities from 0 =
absence to 1 = presence.

FIGURE 4. Ecological niche model for Triatoma dimidiata in
Colombia. Blank areas represent triatomine absence predicted by
the model. Areas identified as suitable based on environmental vari-
ables are shown in monochromatic scale: light gray (low suitability)
to black (high suitability). Squares represent known occurrences of
T. dimidiata. Lines represent political limits (gray = departments,
black = country).
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the temperature is recognized in Santander Department,
T. dimidiata is found in zones with less temperature; our
results for the east region of the country are according with
these results, but contrast with the work of Bustamante and
others,13 where they found correlation between the presence
of T. dimidiata in Guatemala and the maximum absolute
temperature, results that are more close to our results for
the populations of the Caribbean plains of Colombia. The
maximum and minimum temperatures might not be critical
factors for the distribution of T. dimidiata but those variables
reflect a pattern of habitat partitioning between the popula-
tion of the east and northwest regions of Colombia.
In relation to the vegetation index, as discussed by other

authors,20 although it is a synthetic variable, could reflect
changes in temperature, water availability, and humidity that
affect arthropod vectors. In the work of Dumonteil and
Gourbiéri,14 vegetation type appears as an important predic-
tor of abundance and infection of T. dimidiata. Our results
show strong negative relation of high values of NDVI with
the distribution of T. dimidiata in Colombia, this variable is a
general proxy for environmental characterization because it
integrates a wide number of climatic, geologic, zoologic, and
anthropologic factors and is indeed one of the variables most
often associated with vector geographic distribution.14,20,45,46

In the Yucatan peninsula, higher bug abundance appeared to
be associated with perturbed vegetation (agriculture and pas-
ture), suggesting that deforestation and habitat degradation
are important factors contributing to the domiciliation of

T. dimidiata, and conversely higher bug infection coincided
with high forests, in agreement with the zoonotic origin of
T. cruzi.14 These findings are according with the sites of col-
lections because the search was made inside of the houses
and its peridomicile, the latter which was mainly composed
by chicken coops, ban, and bushes, the search was limited
to these areas and no searches were realized in forest areas.
Our results are in accordance with the results of Dumonteil
and Gourbiéri for the Yucatan peninsula; we found higher
T. dimidiata abundance and infestation of houses in the
departments of Boyacá and Santander where deforestation
and habitat degradation are conspicuous and conversely less
abundance and in the Sierra Nevada of Santa Marta and
Uraba regions where high forests are present with high
numbers of palm trees. Although in the Caribbean plains
(Bolivar and Sucre) agriculture- and pasture-driven ecological
changes and perturbation of the vegetation occur, we found
a high number of palm trees between the pastures, where bug
population could survive.
The topographic variable (DEM) is also a synthetic vari-

able that influences temperature, rainfall, and humidity and
has been widely used in the mapping of infectious diseases,47

because of which the interpretation of this variable should
be referenced in relation with any other mentioned. It would
have been interesting to test the covariance between the topo-
graphic variable and others. Some works have demonstrated
that mosquitoes and malaria transmission are sensitive to alti-
tude.48 In relation to geographical factors linked to climatic
conditions of triatominae vector species, several articles have
been published in which latitude and altitude were corre-
lated.49–53 Most of the species are found in tropical and sub-
tropical areas and altitudes ranging from 100 to 1,800 masl.
However, the most important vector species, T. infestans, is
found at higher altitudes (4,100 masl in Bolivia).
In Colombia, Rhodnius pallescens were found in alti-

tudes below 500 masl; R. prolixus in an altitudinal range
from 0 to 2,800 masl; Panstrongylus geniculatus from 0 to
1,700 masl and T. dimidiata from 0 to 2,700 masl (V. Angulo,
unpublished data).
The results suggest that northwest Andean montane for-

est, Cordillera Oriental montane forests, Magdalena valley
montane forests, and Santa Marta montane forests are
most favorable areas for the occurrence of T. dimidiata.
The Choco-Darien moist forests (in the west) and the Ori-
ental plains are less suitable for T. dimidiata presence.
These results are different than that obtained by the sta-
tistical model, which predicted those areas, the Choco-
Darien and the Oriental plains, as having high probability
of T. dimidiata presence.
Triatoma dimidiata was predicted to be widely present

in the pacific coast of Colombia (region without previous
reports of this species), oriental plains/Orinoco region, Andean
region, Guajira Department, and insular areas such as San
Andres with high predicted probabilities of presence (Fig-
ure 1). Active surveillance for triatominae must be made
in these regions, particularly Orinoco region, which shows
the association of odds of T. dimidiata presence with the
most recently reported oral Chagas outbreak in Paz de
Ariporo (Casanare) where 31 people linked to mining activi-
ties were infected, although the most recent review of the
species in that area does not report the presence of the spe-
cies in Orinoco region.54 However, it would be useful to

FIGURE 5. Potential distribution of Triatoma dimidiata by ecologi-
cal niche modeling and ecoregions of Colombia.

772 PARRA-HENAO AND OTHERS



develop a more sensitive model that further stratifies the dis-
tribution of T. dimidiata to support control and surveillance
activities.14 In this work, we explored the relationship between
T. dimidiata and bioclimatic factors in Colombia and devel-
oped a distribution predictive model for this vector species in
the country.
This is the first potential distribution model of T. dimidiata

in Colombian territory and should be valuable for the design
and implementation of effective targeting of vector control
programs in the country.
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