

RECENT MÖSSBAUER STUDIES ON NiFe₂O₄ AND Ni(Zn)Fe₂O₄ FERRITES

Barrero-Meneses, César A.^{1*}; Salazar-Tamayo, Harrison¹, García-Tellez, Karen E.¹; Palacio-Gómez, Carlos A.²; Jaén, Juan A.³

¹Group of Solid State Physics, Institute of Physics, University of Antioquia, A.A. 1226, Medellín, Colombia;

²Department of Physics and Astronomy, University of Ghent, B-9000 Gent, Belgium;

³Departamento de Química, Universidad de Panamá, Panama.

* Corresponding Author: cesar.barrero@udea.edu.co;

KEYWORDS: *NiFe*₂*O*₄, *NiZnFe*₂*O*₄, *solid state synthesis, mechanical milling* **Topic Conference**: T01 Magnetism and Solid State Physics

We present recent results on the Mössbauer studies of NiFe₂O₄ and of Ni_{1-x}Zn_xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites, which were synthesized by high-energy mechanical milling and by solid-state reaction methods. This work is mainly motivated by the accurate determination of the cation distribution in Ni and in Ni-Zn ferrites using the simple roomtemperature Mössbauer spectrometry. This calculation is known to be very important, because it determines the physicochemical properties of the ferrites. For the cation distribution, we determined the room-temperature recoilless *f*-factors ratio of the Fe^{3+} cations at octahedral [B] and tetrahedral (A) sites for NiFe₂O₄ by using formulas proposed by us. For that purpose, we first explore different procedures of synthesis based on the high-energy mechanical milling [1] and on the solid-state reaction [2] methods of stoichiometric mixtures of nickel oxide and hematite. The most pure, crystalline and with large grain-size sample was then used for the determination of the f_B/f_A ratio, which was found to be equal to 1.09 ± 0.01 [3]. This value differed from the normally used value of 0.94. Afterwards, we used it to calculate the cation distribution in Ni_{1-x}Zn_xFe₂O₄ ferrites [4]. The Zn content at tetrahedral sites were also calculated from the intensities of the A1g Raman bands and from the intensity ratio of certain Bragg peaks (I($2\ 2\ 0$)/I($4\ 4\ 0$) and I($4\ 0\ 0$)/I($2\ 2\ 0$)) in the XRD patterns [5]. The values were compared considering the different approximations required by each technique.

References

[1] H. Salazar-Tamayo, M.A. Márquez, and C.A. Barrero, Powder Technology 289 (2016) 126-134.

[2] H. Salazar-Tamayo, K.E. García, and C.A. Barrero. Materials Research 22(5) (2019) e20190298.

[3] H. Salazar-Tamayo, K.E. García, and C.A. Barrero. Journal of Magnetism and Magnetic Materials 471 (2019) 242-249.

[4] C.A. Palacio-Gómez, C.A. Barrero, J.A. Jaén, Journal of Magnetism and Magnetic Materials 505 (2020) 166710.

[5] C.A. Palacio-Gómez, C.A. Barrero-Meneses, A.J. Matute-Clavier. Materials Science & Engineering B 236-237 (2018) 48-55.