
“NEUTRINO-NUCLEON SCATTERING IN THE SECOND

RESONANCE REGION”

Thesis submitted to qualify for the doctorate degree in the Universidad de Antioquia

David F. Tamayo Agudelo

Supervised by:

Dr. Alejandro Mariano (UNLP)

Dr. Daniel E. Jaramillo A. (UdeA)

Physics Institute

UNIVERSIDAD DE ANTIOQUIA
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INTRODUCTION

The standard model of elemental particles is the theory that describes the non-gravitational interactions between

elementary particles, which make up matter and mediated their interactions [1]. The particles that make up

matter are fermions, which have a half-integer spin and are classified into leptons (e, µ, τ, νe, νµ, ντ ), and

quarks (u, d, s, c, b, t). Each fermion also has its antiparticle. However for neutrinos, that are electrically

neutral there are two options: that they are their own antiparticle (Majorana fermions), or that differ from their

antiparticle (antineutrino ν̄). The particles Interaction mediators are bosons. In the standard model these are:

the photon (γ), the bosons W+, W− and Z responsible for mediating the electroweak interaction and the eight

gluons that are mediators in strong interaction. Additionally, the Higgs boson (Φ) is included in the scalar sector

of the standard model providing the particles mass.

In the standard model, neutrinos lack mass, but experimental evidence shows that although small, they do

not vanish. This increases interest in their study as it leads to flavor oscillations, mixtures of angles between

mass states, violations of quantum numbers, among others. The detection of neutrino masses is the first

evidence of physics beyond the standard model. Neutrino physics has been one of the most studied topics

in recent years for particle physics. Now it is known that neutrinos are massive particles that can oscillate

(changing flavor), so it is essential to know precisely the cross section and the final state in the interactions of

the neutrino with nucleons or with a nuclei. The interactions of the neutrinos are described with a high degree of

precision by the standard model, no incompatibilities between it and the experimental data of the measurements

of the interactions of the neutrinos with matter have yet been found. The interactions of neutrinos with nuclei

and nucleons have received considerable attention in recent years stimulated by the need in the analysis of

neutrino experiments that give information about the probability of oscillation.

There are several processes or reactions for the study of the interaction of neutrinos with nucleons. The

dispersions of neutrinos by nucleons can be quasi-elastic, elastic or inelastic producing additional pions together

the nucleon in charged current (CC) and neutral current (NC) interactions. Quasi-elastic interactions of neutrino

and antineutrino charged currents with nucleons are described by the processes [3]:
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ν`+n→ p+ `−,

ν̄`+ p→ n+ `+,

where ` = e, µ, τ. In the laboratory only beam of electronic and muonic neutrinos are available, tauonic

neutrinos are only available at high energies with cosmic rays interacting with the earth’s atmosphere. The

elastic interaction of neutrinos and antineutrinos with nucleons with neutral current is described by means of

the process [4, 5]:

ν`+N→ ν′`+N′.

In order to have pion production (the process analyzed in this ph.d thesis work) we need that Eν > m` +mπ,

and these processes are schematized as:

ν`+N→ `−+N′π,

ν̄`+N→ `++N′π,

where N,N′ = p, n .

Neutrino-nucleus scattering is a multi-scale problem, especially in the energetic region of interest for neu-

trino oscillation experiments in long-baseline experiments, that are hundreds to thousands of MeV, where the

source of the neutrino beam and the distant detectors are separated by hundreds of km. On these scales of

energy, it is convenient to describe neutrino interactions as the scattering of neutrinos from nucleons that are

bound within nuclei. We should also mention the CP violation measurement in a long baseline experiment, or in

a search for sterile neutrinos on short baselines. Finally there are experiments devoted to measure exclusively

ν-nucleon or nuclei cross sections.

The basic phenomenology of any oscillation experiment can be understood from the limit of two flavors.

For two families of leptons in vacuum, the probability that a neutrino of flavor α will oscillate into flavor β, after

propagating through a distance L can be written as

P(να→ νβ)≈ sin2(2θ)sin2
(

∆m2L
4E

)
, (1)

where ∆m2 is the quadratic mass separation between the two mass eigenstates (mi, i = 1,2,3) of the system,

θ is the mixing angle that changes between the flavor basis and the mass basis , and E is the energy of the
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neutrinos. As can be seen from the equation, the oscillation probability is maximized for values of L and E such

that ∆m2L/4E ∼ (n+ 1)/2π, where n is an integer. The energy of the neutrino in which the maximum of the

oscillation occurs, tells us the value of the mass separation (that is, the frequency of the oscillation), while the

amplitude of the oscillation tells us the value of sin2 2θ.

CP violation searches can be performed by combining measures from P(νµ→ νe) y P(ν̄µ→ ν̄e) , trying

to observe a different behavior for particles and antiparticles. The information collected at different energies

of neutrinos also generally help to reduce the size of the regions of trust allowed, which in general results in a

better determination of the value of δCP.

Apart from the fundamental importance in researching neutrino oscillation and CP violation, neutrino interac-

tion analysis complements electron and photon scattering studies of hadronic physics by including axial-vector

interactions in resonance excitations.

The basic setup of a neutrino-nucleus scattering experiment is that a neutrino of unknown energy that

should be reconstructed (because the beams are not monochromatic) enters the detector made of heavier

nuclei and interacts. In neutrino scattering in CC, the final state lepton is the charged partner of the incoming

flavor (νe,µ ,τ, l ≡ e,µ,τ), while in NC dispersion, the lepton in the final state is a neutrino of the same flavor

as the incoming neutrino (νe,µ ,τ,ν
′
e,µ,τ) that is not directly detectable. Usually, the exchanged momentum

W (charged) or Z (neutral) boson interacts with a bound nucleon (one-body current), which is moving with a

distribution of impulses p around the moment of Fermi pF inside the nucleus, producing an outgoing nucleon of

momentum p′ and, if the neutrino energy is high enough and additional hadrons, mostly pions.

It is the initial neutrino energy spectrum as well as the available information about the particles in the final

(detected) state, which must be used in the extraction of oscillation parameters. The strong dependence of the

extraction of neutrino oscillation parameters with the neutrino interaction physics, can be best summarized by

noting that the energy and configuration of the interactions observed in the experimental detectors (in addition

to the effects of the detector) is the energy-dependent neutrino flux convolution with the energy-dependent

neutrino-nucleon cross-section and the energy-dependent nuclear effects. In practice, experiments combine

information about the energy dependence of all exclusive cross sections (referring to a given output channel),

as well as nuclear effects, in a nuclear model. This model, together with the best estimate of the spectrum of

incoming neutrino energies, then enters the Monte Carlo predictions of the target nucleus response and the

topology of the final states, and is a critical component of the oscillation analysis. One of these channels is the

pion production. Oscillation experiments measure event rates at their far detectors after the oscillation, which

they use to extract the oscillation probabilities. For oscillations να→ νβ, event rates with a given observable
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topology can be calculated in principle as

Nα→β(preco) = ∑
i

ϕα(Etrue)Pαβ(Etrue)σ
i
β(ptrue)εβ(ptrue)Ri(ptrue; preco),

where NFD(preco) represents the event rate as a function of of the reconstructed kinematic variables preco≡
(Ereco, pppreco), and Pαβ(Etrue) is the oscillation probability in true neutrino energy function Etrue. Here, ϕα is the

neutrino flux of the flavor α, σi
β is the cross section of the neutrino for interaction i and the flavor β, and εβ

is the efficiency of the detector for the flavor β as a function of its four-moment true ptrue. Finally, the function

Ri(ptrue ;preco) indicates the probability that the kinematic variables ptrue are reconstructed as preco due to

detector diffusion and nuclear effects and depends of the neutrino interaction type i. As can be seen from the

equation, the sample of events for a given topology contains a sum of various interactions. This is the first way

that the model of cross section affects oscillation analyses, and this model could be tested with experiments

devotes to measure these cross sections.

From the experimental side, the Booster Neutrino Experiment (MiniBooNE) was designed to examine the

indication of an oscillation signal ν̄µ→ ν̄e in the Liquid Scintillator Neutrino Detector (LSND) [6]. The MiniBooNE

looks for data for νe appearing in a beam of νµ when it is restricted to the range of 475−1250 MeV, rebuilding

the energy of the neutrino and refuting the interpretation of the LSND signal of the oscillation within a two

neutrinos [7]. However, the results indicated an excess of event-type signals that persisted at a level of three

standard deviations after several refinements of the analysis. The results obtained were of vital importance for

the study of the oscillation of neutrinos that have great experimental interest, for physics beyond the Standard

Model.

On the other hand several actual experiments have been designed to measure the cross section in the

dispersion of neutrinos with nucleons such as MINERνA [8, 9] in the FERMILAB, where a beam of neutrinos

is prepared to collide against a far detector and measure with high precision and statistics the cross section of

the interaction Neutrino-nucleon and analyze the nuclear effects. These enable to analyze the models for the

neutrino-nucleon and neutrino-nucleus cross sections, independently of the oscillation issue, giving the possibil-

ity of fixing resonances parameters and check nuclear dynamics. As normally, in these kind of experiments the

FSI are treated through an event simulation code, we need the most free-less uncertainties model to introduce

the primary interaction, in particular for the pion production process that both, contributes to backgrounds in the

oscillation experiments and to knowledge of the resonances axial parameters.
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For current and future neutrino oscillation experiments we need to understand single pion production by

neutrinos with few-GeV energies. The pion production is either a signal process when scattering cross sections

are analyzed, or a large background for analyses which select quasi-elastic events. At these energies the

dominant production mechanism is via the excitation and subsequent decay of hadronic resonances.

By one side there are additional contributions and fake events different from de quasi-elastics signal coming

from:

• Multinucleon emission that comes from pion absorptions, and not detected by a Cherenkov detector.

• π0 emission where the pion could decay in two gammas, only one detected and confused with a muon.

• π emission when it is absorbed through final state interactions (FSI) and thus does not emerge from the

target.

On the othe side, experimental data on nuclear targets present a confusing picture, shown from the MINERνA

[8, 9] and MiniBooNE [10] experiments in poor agreement with each other in the framework of current theoretical

models [11, 12].

Complete models of neutrino–nucleus single pion production interactions are usually factorized into three

parts:

• the neutrino–nucleon cross section

• additional nuclear effects which affect the initial interaction,as the two body currents

• and the “FSI” of hadrons exiting the nucleus.

The axial form factor of resonances cannot be constrained by electron scattering data, used normally to get

the vector form factors (FF), so it relies upon data from Argonne National Laboratory’s 12 ft bubble chamber

(ANL) and Brookhaven National Laboratory’s 7 ft bubble chamber (BNL), we will give the references in the

results section, pion production experiments on free nucleons. The ANL neutrino beam was produced by

focusing 12.4 GeV protons onto a beryllium target. Two magnetic horns were used to focus the positive pions

produced by the primary beam in the direction of the bubble chamber, these secondary particles decayed to

produce a predominantly νµ peaked at ∼ 0.5 GeV. The BNL neutrino beam was produced by focusing 29 GeV

protons on a sapphire target, with a similar two horn design to focus the secondary particles. The BNL νµ

beam had a higher peak energy of ∼ 1.2 GeV, and was broader then the ANL beam. These datasets differed

in normalization by 30–40% for the leading pion production process νµp→ µ−pπ+, which conduced to large
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uncertainties in the predictions for oscillation experiments [13, 14, 15, 16], as well as in the interpretation of

data taken on nuclear targets[17].

It has long been suspected that the discrepancy between ANL and BNL was due to an issue with the nor-

malization of the flux prediction from one or both experiments. Nevertheless, in Ref. [18], was presented a

method for removing flux normalization uncertainties from the ANL and BNL for the mentioned leading channel

measurements by taking ratios with charged-current quasi-elastic (CCQE) event rates in which the normaliza-

tion cancels. Then, we obtained a measurement of νµp→ µ−pπ+ multiplying the ratio by an independent

measurement of CCQE (which is well known for nucleon targets). Using this technique, good agreement was

found between the ANL and BNL data sets. Later in other work[19], was extend that method to include the

subdominant νµn→ µ−pπ0 and νµn→ µ−nπ+ channels, and we will use the resulting data. We find that

the reanalyzed data, where the normalization discrepancy has been resolved, is able to significantly reduce

the uncertainties on the pion production parameters. This is one of the reasons that encourage us to return to

the calculation of neutrino-nucleon cross sections with pion production. The other one is that there are many

models to describe this process that do not not fulfill several important theoretical aspects

• There are problems from the formal point of view. Since the emission source of the pions is the excitation

and decay of resonances, many of them spin 3/2, we must maintain the amplitudes fulfilling the invari-

ance by contact transformations. These transformations change the amount of the spin 1/2 spurious

contribution in the field that are present by construction. Many works keep the simpler forms of the free

and interaction Lagrangians, and amplitudes lacks the mentioned invariance.

• In addition to the resonances pole contribution (normally referred as resonant terms) to the amplitude

we have background terms coming from cross resonance contributions and non-resonance origin (called

usually non resonant terms). Many works do not consider the interference between these both contribu-

tions and really, it is very important to describe the data.

• Another models detach the decay process of the resonance out of the whole weak production amplitude.

However, resonances are non-perturbative phenomena associated to the pole of the S-matrix amplitude

and one can not detach them from its production or decay mechanisms.

Between the contributions from another authors in this issue, we have an inconsistent model, from the point of

view of spin 3/2 contact transformations, that also include the second resonance region [20]. In addition, in that

reference it seems that the cross resonance graphs contributions are omitted for the νp→ µ−pπ+ channel. It
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is true that the direct or pole contribution of isospin- 1
2 resonances cannot contribute to a isospin-3

2 amplitude,

but the cross terms do. A last shortcoming to mention is that for non resonant backgrounds contributions, an

arbitrary cutoff of MπN < 1.2 GeV is applied changing artificially the behavior of these contributions indepen-

dently from the rest of terms. This is done for all the regimes MπN < 1.4,1.6 GeV. As consequence the ANL and

antineutrino results are poorly reproduced. A similar model was adopted in Ref. [21] but only with the N∗(1520)

resonance included, and the same inconsistency problems mentioned above are present.

On the other hand, the model adopted in Ref. [22] where the propagation of the resonances are described

by a Breit-Wigner distribution separating production and decay, does not include a background amplitude and to

get accordance in the data for the νn→ µ−nπ+, νn→ µ−pπ0 processes they needed to add incoherently a

spin 1
2 background. The model adopted in Ref. [23] is similar to that in Ref. [22] but they adjust the background

cross section contribution through a parameter bπN different for each channel. These two last works were

improved in Ref. [24], where the Resonance (R) and Background (B) contributions were added coherently and

the weak ∆ production is treated within the parity conserving parametrization of the WN → ∆ vertex that is

an approximation of the more general Sachs one. Nevertheless, there more energetic resonances were not

included.

Finally in GENIE simulation [25] to describe the mentioned data [19], single pion production is separated

into resonant and non-resonant terms, with interference between them neglected and interferences between

resonances neglected too in the calculation. The resonant component is a modified version of the Rein and

Seagal (RS) model [26], where the production and subsequent decay of 18 nucleon resonances with invariant

masses W ≤ 2 GeV are considered. In GENIE, only 16 resonances are included, based on the recommenda-

tion of the Particle Data Group (PDG) [27]. In this work they make the assumption that interactions on deuterium

can be treated as interactions on quasi-free nucleons which are only loosely bound together, and so neglect

FSI effects. In GENIE, there are a number of systematic parameters which can be varied to change the sin-

gle pion production model. Resonant axial mass (MRES
A ), Resonant normalization (RES norm), Non-resonant

normalization (DIS norm), and normalization of the axial form factor (FA(0)). The total GENIE prediction is

the incoherent sum of the RES and DIS contributions, where interference terms have been neglected. GENIE

cannot describe all of the pion production channels well for the reanalyzed datasets. For example, the data

of the νµn→ µ−pπ0,νµn→ µ−nπ+ channels are very similar, but there are large differences between the

nominal GENIE predictions for these channels. The non-resonant component of the GENIE prediction, which

contributes strongly to these channels, appears to be too large. Finally, it can be seen from Fig.(3) of Ref. [19],

where neutrino energy distribution is shown, that the nominal GENIE prediction fails to describe the low-Q2 data
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well for some channels.We also note that the GENIE uncertainties are larger than the data suggests, and they

may be reduced by tuning the GENIE model to the ANL and BNL data.

In this Ph.d thesis work we calculate the cross section of the inelastic dispersion of neutrinos on nucleons

with the production of one pion, where we use a consistent formalism for the intermediate resonance states of

spin 3/2. We will consider only CC currents since they are the main contribution to the resonant pion production

being the NC one small in this channel [28].

In addition, we incorporate states in the second resonance region up to 1.6 GeV, we include N∗(1440),

N∗(1520) and N∗(1535) resonances. Also we compare different levels for dressing for the resonance propa-

gators, and the consistency when do it in getting results. This work is organized as follows: In Chapter 1, we

introduced the formalism of Rarita-Schwinger field for spin particles−3/2 . In the chapter 2 a didactic brief

introduction for form factors is introduced, and the frame in which we will use them. The formalism of a dressed

propagator for spin particles−3/2 ∆ (1232) (P33) and a the consistent use of the vertexes and the propagator

is introduce in the chapter 3. In the chapter 4 we introduce a special discussion on the the resonances of the

second region (N∗(1440), N∗(1520), and N∗(1535)). In chapter 5 we show the results obtained with our model

in the different regimes of the final MπN invariant mass for the total and differential cross sections comparing

with another results. Finally in chapter 6 we summarize our conclusions.
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Chapter 1

EQUATION FOR SPIN−3
2 PARTICLES

In the present section we will describe the formal background to build the spin−3/2 fields, and a novel form

to introduce the relativistic spin projectors that enable to separate the field in its differents components. In

addition, we show how to treat the unavoidable effects of having a spurious 1/2 field, dragged by construction

into the propagator and vertexes in order to avoid model dependences. We will introduce the concept of contact

transformations and the way of fixing free parameters in the interaction Lagrangians.

Spin−3/2 particles are represented by Rarita-Schwinger fields, which result from the tensor product be-

tween a tensor of order 1 and a Dirac bispinor, which can be denoted by a irreducible representation SU(2)⊕
SU(2) in the usual form:

ψ :
(

1
2
,0
)
⊕
(

0,
1
2

)
. (1.1)

The field of spin 1 or Lorentz vector Aµ can be built by direct product as:

Aµ :
(

1
2
,0
)
⊗
(

0,
1
2

)
=

(
1
2
,
1
2

)
, (1.2)

then 3/2 spinor-vector ψµ, according to Rarita and Schwinger, comes from the direct product of a vector and a

spinor such as:

ψµ ∼ Aµ⊗ψ :
(

1
2
,
1
2

)
⊗
((

1
2
,0
)
⊕
(

0,
1
2

))
=

(
1,

1
2

)
⊕
(

0,
1
2

)
⊕
(

1
2
,1
)
⊕
(

1
2
,0
)
. (1.3)

where the proper representation for the 3/2−spin particle is contained in the direct sum
(1

2 ,1
)

and
(
1, 1

2

)
. The

direct sum
(
0, 1

2

)
⊕
(1

2 ,0
)

in Eq. 1.3 is an irreducible representation of spin−1
2 and we have another contained
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in the direct sum
(
1, 1

2

)
⊕
(1

2 ,1
)

(distinct), so that we can write the Rarita-Schwinger spinor as:

ψµ =ψµ3/2⊕ψ
µ
1/2⊕ ψ̃

µ
1/2. (1.4)

where, the free Rarita-Schwinger spinor must also satisfy the Dirac equation (we will see below how to arrive

this equation):

(i/∂−m)ψν(x) = 0, (1.5)

with the on-shell constraints:

γµψµ = 0, (1.6)

pµψµ = 0, (1.7)

which eliminate spin contributions 1/2, and will be discussed below. We follows the conventions of Bjorken and

Drell [30] and the convention }= c = 1 will be used throughout [31].

The spinor ψµ has 16 particle states distributed as (we have two 1/2 different sectors):

spin
3
2
=

 4 particles

4 anti-particles
(1.8)

spin
1
2
=

 2 particles

2 anti-particles
(1.9)

spin
1
2
=

 2 particles

2 anti-particles
(1.10)

and in order to separate the components associated with the 1/2 spin degrees of freedom from the proper

Rarita-Schwinger, are introduced the constraints through a Gram-Schmidt procedure. This also enable us to

find the projectors in the different space sectors. It is important to mention, that this is a novel form to get these

projectors.

1.1 GRAM-SCHMIDT PROCESS

The Gram-Schmidt process is an algorithm to construct, from a set of linearly independent vectors forming a

subspace, another orthonormal set of vectors that generates the same vector subspace.
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Calling the projection of v on u as Puv (Fig. 1.1), we have:

Puv = û(û ·v), (1.11)

where, û≡ u
u , with u≡ |u|. Given the set of vectors v1, · · · ,vn, can be constructed the set of orthogonal vectors

u1, · · · ,un as follows,

u1 = v1, (1.12)

u2 = (1−Pu1)v2, (1.13)

u3 = (1−Pu1)(1−Pu2)v3, (1.14)

un =
n−1

∏
j=1

(1−Pu j)vn (1.15)

Figure 1.1: Parallel and orthogonal components of v on u.

1.2 RARITA-SCHWINGER FIELD

With the Gram-Schmidt process described above we can find the components of 3/2−spinor of Rarita-Schwinger

field (ψµ), doing the following correspondences (Fig. 1.2):

v1→ pµ,

v2→ γµ,

v3→ψµ.
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Figure 1.2: Geometric representation of the 1/2-spin components and 3/2 Rarita-Schwinger field.

and defining the vectors:

û1→ p̂µ =
pµ

|pµ| , û2→ γµ−γν pνpµ

|p|2 , (1.16)

and with this,

|û2|2 =

(
γµ−γν pνpµ

|p|2
)(

γµ−γν
pνpµ
|p|2

)
= γµγµ−

/p/p
|p|2 −

/p/p
|p|2 +

/p/ppµpµ
|p|4

|û2|2 = 4− p2

|p|2 −
p2

|p|2 +
p4

|p|4 = 4−1−1+1 = 3,

|û2|=
√

3, (1.17)

û2 =
u2

|u2|
→ 1√

3

(
γµ−γν

pνpµ

|p|2
)
=

1√
3

(
γµ− /ppµ

|p|2
)
≡Π

µ, (1.18)

where we have introduced the vector Πµ

Π
µ =

1√
3

(
γµ− /ppµ

|p|2
)
. (1.19)
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Taking now, v3 =ψ
µ

u3→ψ
µ
3/2 =ψ

µ−
[

pµpν
|p|2

]
ψν−Π

µ
Πνψ

ν, (1.20)

renaming the projectors as (|p|2 = pµpµ = p2):

P1/2
22 ≡

[
pµpν

p2

]
P1/2

11 ≡Π
µ

Πν,

and the Rarita-Schwinger spinor can be written in terms of the projectors as:

ψ
µ
3/2 =

[
gµν−

(
P1/2

11

)µ
ν
−
(

P1/2
22

)µ
ν

]
ψν , (1.21)

from where

P3/2 ≡
[
gµν−

(
P1/2

11

)µ
ν
−
(

P1/2
22

)µ
ν

]
. (1.22)

1.3 RARITA-SCHWINGER LAGRANGIAN

In this subsection we analyze the Rarita-Schwinger Lagrangian and the contact transformations to get infinite

equivalent forms for it all giving the same amplitude. The Lagrangian of the Rarita-Schwinger field can be

written as [29]:

L =ψµΛ
µρψρ, (1.23)

where,

Λ
µρ = i∂νγµνρ+mγµρ (1.24)

being

γνµρ =
1
2
(γµγνγρ−γργνγµ) (1.25)

γµν =
1
2
(γµγν−γνγµ) , (1.26)
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and after working a little bit we get

Λ
µρ =

(
i/∂−m

)
gµρ+ iγµ/∂γρ− i(∂µγρ+γµ∂

ρ)+mγµγρ. (1.27)

Now, using the Euler-Lagrange equation one can get for the Rarita-Schwinger equation ,

i∂νγµνρψρ−mγµρψρ = 0 . (1.28)

or the equivalent form (see Appendix A):

γ5εµνσρ∂νγσψρ−2imσµνψν = 0, (1.29)

with σµν =− i
2 [γ

µ,γν] =− i
2(γ

µγν−γνγµ). Since in Eq. 1.23 only it is fixed the 3/2 component of the states

through the constraints Eq. 1.6 (obtained in the Appendix A), being certainly arbitrary as regards the 1/2 ones,

it should be invariant under the contact transformation:

ψ
′ρ = Rρσ(a)ψ

ρ, (1.30)

where, Rρσ(a) = δ
ρ
σ+ aγσγρ, since ψ3/2γν = 0 does not affect the 3/2 sector. Usually it is used to write a

in terms of a parameter A, a =
(1+3A

2

)
, with A 6= −1/2. Applying this transformation on Eq. 1.23, we get the

most general one-parameter Lagrangian

L(A) =ψµΛ
µρ(A)ψρ, (1.31)

where

Λ
µρ(A) = Rµσ

(
1+3A

2

)
Λ
σδRρδ

(
1+3A

2

)
, (1.32)

being Λσδ(−1/3)≡Λσδ in Eq. 1.27. Finally, using the properties of R(a) , it is easy to show that the Lagrangian

Eq. 1.31 is also invariant under the change

A→ A′ =
A−2a
1+4a

, a 6=−1/4, A 6=−1/2, (1.33)
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when the transformation Eq. 1.30 is done. The spin−3/2 propagator G(p,A)βν should satisfy (in momentum

space, we replace i∂→ p),

Λ(p,A)βµG(p,A)βν = gµν, (1.34)

for any value of A and to keep consistence, it should be transformed as

G(p,A)µν = R−1(A)µαGαβ(p)R−1(A)βν. (1.35)

where G(p) is the Rarita-Schwinger propagator (omitting indexes)

G(p) =−
[

/p+m
p2−m2 P3/2 +2/m2(/p+m)P1/2

11 +
√

3/m(P1/2
12 +P1/2

21 )

]
. (1.36)

Alternatively, Eq. 1.35 can be expressed as

G
αβ

(p,A) = − 1
p2−m2

{(
/p+m

)[
−g

αβ
+

1
3
γαγβ+

1
3m

(γα p
β
−γ

β
pα)+

2
3m2 pα p

β

]

− 2(p2−m2)b(A)
3m2

[
γα p

β
− (b(A)−1)γ

β
pα− (

b(A)
2 /p+(b(A)−1)m)γαγβ

]}
, (1.37)

where b(A) = A+1
2A+1 .

The invariance of the free Lagrangian Eq. 1.23 under the contact transformations means that the physical

quantities (and thus the amplitudes) should be independent of A. Consequently, we demand the interaction

Lagrangian for the 3/2 field coupled to a nucleon (ψ) and a pseudoscalar meson (φ) or boson (W ), as usu-

ally appear in a resonance production-decay, be invariant under Eq. 1.30 and Eq. 1.33. The most general

interaction Lagrangian satisfying such requirement is

Lint(A,Z) = gΨ̄µR(
1
2
(2Z +(1+4Z)A))µνFν(ψ,φ,W, ...)+h.c., (1.38)

where Fν is a function of the fields and its derivatives, and g is the coupling constant and Z a new arbitrary

parameter. Using the property R(a)µνR(b)νλ = R(a+b+4ab)µλ it is posible to demonstrate

R(1/2(2Z +(1+4Z)A)αβ = R(A)αµR−1(1/2(1−6Z/(1+4Z))µβ (1.39)

that would be replaced in Eq. 1.38 . Note that the A−dependence introduced by the propagator Eq. 1.35 in the
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Wψ→ φψ amplitude is canceled by the R(A)µν in the vertex generated from Eq. 1.38. That is, for any value

of Z we get an A-independent amplitude and could introduce reduced A-independent Feynman rules. Then, the

value for Z must be chosen for each interaction and fixed by a criteria independent from contact transformations.

The specific reduced Feynman rules to be used in our calculations will be explained in the Chapter 4 and 5 for

each 3/2−resonance.
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Chapter 2

FORM FACTORS

We are going to built our amplitudes from effective Lagrangians that consider to the involved hadrons as el-

ementary particles, and also the strong interactions vertexes do not consider particles with structure. This

description would be appropriate for certain energy range, but surely will lost its validity for higher energies,

being necessary form factors (FF) that take into account the particles sizes or simulating the inclusion of more

energetic resonances not included explicitly in the model. Due to this, we find constructive to make a short

review on the concept of FF. At the end of the chapter we will resume the use of them to introduce rescattering

in the amplitude and contributions of more energetic resonances, not included explicitly in the model.

Hadron spectroscopy makes possible to build the quark model (the quark model should not be confused

with QCD, which is the fundamental theory of strong interactions), which can give us information about the static

nature of the hadron, for example, its mass, electric charge, spin, isospin and strangeness. But the quark model

cannot be solved (perturbative methods are not applicable) to give us information on the internal structure of the

hadron or to generate the wave functions for the resonances. To obtain information, we need a test object that

can go inside the hadron and shows us its structure. For the test object enter and give us the information of the

internal structure of the hadron, we need that: (1) its own properties are well known, (2) it has small size and (3)

it can penetrate deeply inside the hadron. From this point of view, the entities that best qualify are the leptons.

It can be compared to the situation at the beginning of the 20th century, when there were several models for

the atomic structure, where, particle α were used as the test object to reveal the structure of the atom, and the

investigation of the scattering patterns in a golden white led for the Rutherford model to be established.

In the 1960’s, particle physics theory was in tension. In the field of strong interactions, confidence in field

theory was weak and the idea of particle democracy based on the analyticity of the scattering amplitudes was at

its peak. Above all the bootstrap theory told us that all particle are equal, no elementary particle exist and that

9



they themselves are building blocks of other particles, namely they are their own fundamental constituents. Part

of the reasoning came from an experimental observation of the nucleon form factor. Experiments showed that,

unlike the atom, the nucleon has no nucleus and the entire structure is soft like jelly. There was no reason to

believe in the existence of an internal structure within the nucleon. The situation changed when deep inelastic

scattering data were presented in 1969. This was the updated Rutherford experiment, in the sense that it

clarified the structure of the nucleon, that is, that the nucleon is composed of point-like particles. A series of

deep inelastic scattering data, beginning with those from the MIT-SLAC group, clarified that the nucleon is a

quark compound and that the quark has fractional charge, which paved the way for quantum chromodynamics

(QCD) to appear as the strong interaction theory. To clarify the internal structure of the nucleon so that it is a

compound of point-like particles that are generically called partons, the role of the deep inelastic dispersion of

leptons such as: electrons (muons) and neutrinos are the best test for the identification of partons as quarks

and gluons.

The electron is the best-known and easiest-to-obtain test object of all time. To use the electron, we need to

know the formula for its reaction with other particles. The basic equation is the Rutherford dispersion formula is

the matrix element:

〈 f |HIS|i〉=
∫

d3xψ∗f (x)HISψi(x), (2.1)

where the wave functions are given by

ψi = Neipi·x, ψ f = Neip f ·x, (2.2)

being N = 1/
√

V is a normalization factor, normalized the wave function to one particle per unit volume. The

electrostatic Hamiltonian is given by:

HIS =
Ze2

4π
1
r
. (2.3)

Inserting the Eqs. 2.2 and 2.3 in the Eq. 2.1

〈 f |H|i〉= Ze2

4πV

∫
d3x

ei(pi−p f )·x

r
; r = |x|, (2.4)

putting q = pi−p f and carrying out the integration we find,
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I ≡
∫

d3x
eiq·x

r
= 2π

∫
∞

0
dr

∫ 1

−1
dz

eiqrz

r
r2

=
2π
iq

∫
∞

0
dr(eiqr− e−iqr), (2.5)

This integral diverges formally, but we may consider that the potential has a damping factor e−µr due to the

screening effect of the surrounding repulsive charge. Then

I =
2π
iq

∫
∞

0
(eµr+iqr− e−µr−iqr) =

2π
iq

(
1

µ− iq
− 1
µ+ iq

)
=

4π
q2 +µ2 →

4π
q2

, (2.6)

and inserting this equation in Eq. 2.4 we have

〈 f |H|i〉=
(

Ze2

4πV

)
4π
q2 =

Zα4π
V q2 , α=

e2

4π
' 1

137
(2.7)

q2 = |pi−p f |2 = 4p2 sin2 θ

2
, (2.8)

where θ is the angle between pi and p f , and |pi|= |p f |= p by the energy conservation. The final state density

is calculated to be

ρ= δ(Ei−E)
V d3 p
(2π)3 =V

[
mdE

p

]
p2dΩ

8π3 =
V mpdΩ

8π3 , (2.9)

where we used E = p2

2m → dE = p
md p and integrated over E. Inserting Eq. 2.7 and Eq. 2.8 in the Fermi Golden

rule Wf i = 2π|〈 f |T |i〉|2ρ we have the transition probability:

Wf i = 2π
(

Zα
V

)2(4π
q2

)2

V
mpdΩ

8π3 =
p
V

4Z2α2m
q4 dΩ. (2.10)

To convert the transition probability to cross section, it must be divided by the incoming flow. The flux is the

number of particles passing through unit area in unit time. When the wave function is normalized to one particle

per unit volume, the incoming flux can be given as ν/V , where ν= p/m is the velocity of the particle,
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∴
dσ
dΩ

=
4Z2α2m2

q4 =
Z2α2m2

4p4 sin4θ/2
., (2.11)

which is the useful Rutheford formula. Let’s rewrite the Eq. 2.11 as:

dσ
dΩ

=

∣∣∣∣∣ m
2π

∫
drV (r)eiQ·r

∣∣∣∣∣
2

=
4Z2α2m2

Q4 , (2.12)

and

dσ=
2π
v
|H f i |2δ(E−Ei)

d3p
(2π)2

mp
v
|Vf i|2dΩ (2.13)

where m, Z is the mass and electric charge of the target

V (r) =
Ze2

4π
1
r
=

Zα
r

(2.14)

Q2 = |Q|2 = |ki−k f |2 = 4k2 sin2 θ

2
(2.15)

being k, θ is the momentum and scattering angle of the electron. Q is the momentum that the electron transfers

to the target, and is called the momentum transfer. The equation Eq. 2.12 holds when the the target is a point

particle. If the target is spreaded and has a charge distribution ρ(r), the potential is modified to

V (r)→V ′(r) =
∫

dr′V (r− r′)ρ(r′) (2.16)

and the matrix element to

Vf i →V ′
f i
=

∫
drV ′(r)eiQ.r =

[∫
d(r− r′)V (r− r′)eiQ.(r−r′)

]∫
dr′ρ(r′)eiQ.r′

= Vf iF(Q2) (2.17)

F(Q2) =
∫

drρ(r)eiQ.r (2.18)

where, for simplicity, the distribution was assumed to be spherically symmetric. F(Q2) is called the form factor

12



and is a measure of the target spreading. Normalizing the charge distribution by

∫
drρ(r) = 1, (2.19)

we have

F(0) = 1. (2.20)

From this discussion, we know that the cross-section formula for an extended target is obtained from the

point target by multiplying by the form factor (squared)

dσ(θ) = dσpt |F(Q2)|2, (2.21)

where the above equation says that if we know the cross-section formula of a point target, we can obtain

information about the target spread by measuring the scattering pattern. As it is clear from the Eq. 2.18, the

part of ρ(r) where Q.r>> 1 does not contribute to the integral because of the rapid oscillation due to the phase

eiQ.r. This means that the form factor is a measure of total charge integrated over the region r < 1/Q. In other

words, the electron has penetrated to the distance given by r ' 1/Q. The maximum value of the momentum

transfered Q gives the limit to which we can probe the inner structure of target.

2.1 TARGET SIZE

When Q.r << 1, the form factor can be expanded as

F(Q2) =
∫

drρ(r)
[
1+(iQ.r)+

1
2
(iQ.r)2 . . .

]
,

=
∫

drρ(r)+
1
2

∫
drρ(r)(iQ.r)2,

=
∫

drρ(r)− 1
2

∫
drρ(r)(Q2|r|2 cosθ),

=
∫

drρ(r)− 1
2

∫
drdφd cosθ|r|2ρ(r)(Q2|r|2 cosθ),

making z = cosθ and the integral
∫ 1
−1 z2dz = 2/3
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F(Q2) = 1− Q2

6

∫
4π|r|2dr(ρ(r)|r|2),

= 1− Q2

6

∫
drρ(r)|r|2

F(Q2) = 1− Q2

6
〈r2〉 (2.22)

and expanding the form factor F(Q) into a Taylor serie,

F(Q2) = F(Q2)
∣∣∣
Q2=0

+Q2 dF(Q2)

dQ2

∣∣∣
Q2=0

+ . . .

and comparing with Eq. 2.22 we obtain

〈r2〉=−6
dF(Q2)

dQ2

∣∣∣
Q2=0

, (2.23)

where this means that if we can measure the cross section for small values of Q, the information we can obtain

is limited to the total charge (Zα) and the size of its spreading. The higher the value of Q that we can obtain,

that is, the higher the energy and the scattering angle, the deeper we can probe the internal structure. It helps to

understand the physical meaning of the form factor if we know the spectral shape of typical spatial distributions.

For a spherical constant density distribution ρ(r) = ρo for r ≤ R and ρ(r) = 0 for r > R (Fig. 2.1a-2.1b)

F(ξ) =
3(sinξ−ξsinξ)

ξ3 , ξ= QR, (2.24)

and this is similar to light on through a pinhole making a diffraction pattern of rings.

ρ
(r
)

ρo

r R

(a) ρ(r) = ρo for r ≤ R and
ρ(r) = 0 for r > R.

F
(Q

2
) F (ξ)

|F (ξ)|2

ξ

1.0

0.5

−0.1 2 10

(b) F(ξ) = 3(sinξ−ξcosξ)/ξ3

If we look for example the nucleus, like a blurred sphere with radius R = roA1/3, the charge distribution that
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reproduces the observed pattern is depicted in Fig. 2.2 where R represents the nuclear size, t = (4ln3)a the

thickness of the surface or the degree of blurriness. When the distribution becomes harder smoothly towards

the core it may be represented by an exponential or a Gaussian respectively [32]:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

ρ
(r
)

r

R

t1.0

0.9

0.1

0

Figure 2.2: ρ(r) = ρo/[1+ exp(r−R)/a], t = (4ln3)a.

ρ(r) = ρoe−r/R, (2.25)

F(Q2) =
1

(1+Q2R2)2 . (2.26)

ρ(r) = ρoe−r2/2σ2
, (2.27)

F(Q2) = e−Q2σ2/2. (2.28)

2.2 Rescattering and hadrons FF

Here we concentrate in the using of FF in our problem of weak production pion amplitudes, where the hadronic

(h) contribution would be expressed in general as

M λ

h = ū(p′)χ†φ∗ ·
[
III†OλIII

]
·WWWu(p)χ, (2.29)

being ūχ†,uχ the final and initial nucleon spinors (isospin wave function included), φ∗,WWW the final pion and

initial W−boson wave functions and III = τ,TTT † the isospin and resonance isospin excitation operators. Firstly

Oλ is splitted in a resonant s-type (or pole P) contribution OλR and u+ t−type (or non-pole NP) background one

OλB. All these will be clarified in the next chapters.
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Now, omitting isospin coefficients we will support our discussion on the already pion photoproduction re-

action analyzed previously in Ref.[33], and we will have the analogy Oλ ≡ B̂λ and OλB,R ≡ B̂λNP, B̂
λ
P with the

photoproduction vertexes in that Reference. The minimum approximation that it is possible to implement can

be resumed as

Oλ ≈ OλB +OλR ≡ OλB +∑
R

VRπNGRW λ
WNR, (2.30)

where VRπN and W λ
WNR represent schematically the R→ Nπ and WN → R vertexes respectively, while GR a

resonance propagator. Normally GR within the OλR contribution can be dressed by a self-energy mainly due

to πN rescattering , as will be shown in the next chapter. Nevertheless, the Oλ

B contributions in special the u-

resonance contributions can not do so. As consequence, grows rapidly for certain final MπN invariant mass. As

described in Ref. [33] for the case of photoproduction, but valid also here, there are other effects not considerate

in the approximation Eq. 2.30 of Eq. 2.29. The complete M λ
h amplitude in the final πN center of mass (CM)

can be obtained with

Oλ(k,q) =
[
−i(2π)4δ4(k− k′)+TNP(k′)GπN(k′)

](
OλB(k′,q)+∑

R
VRπN(k′,k)GR(k)W̃ λ

WNR(k,q)

)

W̃ λ
WNR(k,q) = W λ

WNR(k,q)+

(
VRπN(k,k′′)+VRπN(k,k′)GπN(k′)TNP(k′,k′′)

)
GπN(k′′)OλB(k′′,q), (2.31)

where with k,q we indicate π and W momenta respectively, and where k′,k′′ are intermediate π momenta and

a repeated k,k′,k′′ are indicate i
∫

d4k,k′,k′′

(2π)4 ,

GπN(k′) = SN(p+q− k′)∆π(k′),

is the pion-nucleon intermediate propagator, and TNP the non-pole scattering T-matrix that iterates to all orders

the potential VNP ≡ VNπ,N′π′ built with nucleon Born terms, meson exchange t−contributions and u−resonant

contributions. In summary, in the full amplitude the rescattering of the final πN pair through TNP is considered

as well as the decay into a resonance of OλB. We will not introduce in this thesis work unitarizartion corrections,

done through imaginary contributions in Eq. 2.31, since as we will analyze the total and differential cross
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sections, where corrections to each multipole compensate out in the multipole expansion of the cross section

Ref. [33]. In Fig. 2.3 we show schematically the contributions in Eq. 2.31 and with FF we indicate the possible

places where FF would be necessary.

As we wish to deal with effective real coupling constants (TNP dresses but is a complex operator), it is

convenient to express the πN T-matrix operator in terms of the real K-matrix Ref. [33], and after a three

dimensional reduction we get

Oλ(kkk,qqq,WπN) ≈
[
(2π)3δ3(kkk− kkk′′′)+P

(
KNP(kkk,kkk′)GT H(kkk′,

√
s)
]

×
[

OλB(kkk
′,qqq,WπN)

)
+∑

R
VRπN(kkk′, ppp)

)
GR(ppp,WπN)W̃ λ

WNR(ppp,qqq,WπN)

]
, (2.32)

W̃ λ
WNR(ppp,qqq,WπN) = W λ

WNR(ppp,qqq)+P
[
VRπN(ppp,kkk′′′)GT H(kkk′

′′,WπN)OλB(kkk
′′′,qqq)

]
, (2.33)

where GπN(k′) is replaced by the Thompson propagator GT H(kkk′
′′,WπN) =

mN
2Eπ(kkk′′′)EN(kkk′′′)

∑ms′
u(−kkk′′′,m′s)ū(kkk

′′′,m′s)
WπN−Eπ(kkk′′′)−EN(kkk′′′)

and where with P is the principal value on the integral in repeated momenta.

The momenta integrals present in Eq. 2.32 and Eq. 2.33 are normally divergent, and in order to reproduce

the experimental data FF have to be introduced for getting good agreement with data, which affect both Oλ

B,R

to regularize the mentioned integrals. They are meant, as seen above, to model the deviations from the point-

like couplings due to the quark structure of nucleons and resonances, analogs of the electromagnetic ones

reflecting the extension of the hadrons, and should be calculated from the underlying theory or quark models

[34]. Because it is not clear a priori which form these additional factors should have, they introduce a source of

systematical error in all models [35]. The use of individual different FF in each vertex of a graph would requiere

vertex corrections when the propagators are dressed to fulfill electromagnetic gauge invariance in the radiative

processes. Then, guided by previous calculations in πN scattering and π-photoproduction in Ref. [36] and Ref.

[37], and the description of NC1π data obtained by the CERN Gargamelle experiment without applying cuts

in the neutrino energies [38], we multiply OλB +OλR by a global regularizing FF of the RπN and NπN′ vertexes

(k = |kkk|)
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O =

O( B + R + OB )R
FF

T( )I + NP

FF

Figure 2.3: Rescattering and dressed vertex contributions

F(k,MπN) =
(Λ)4

(Λ)4 +k(WπN)2
(
WπN−W th

πN
)2
θ(WπN−1.6 GeV)

, (2.34)

k(WπN) =

√
(W 2
πN−m2

N−m2
π)

2−4m2
Nm2

π

4W 2
πN

, (2.35)

being the threshold invariant mass W th
πN = mπ+mN and which is consistent with that introduced in Refs.[36]

and [37], but lighting it above the second resonance region that begins around WπN . 1.6 GeV because above

this value the hadron finite size begins to be important (see section 6) . At first, it is possible to manipulate the

FF proposed in those references to obtain forms very similar to Eq. 2.34. This FF can be seen as

F(k,WπN) =

(
Λe f f

)2(
Λe f f

)2
+k(WπN)2

,Λe f f = Λ
Λ

WπN−W th
πN

, (2.36)

where we have a monopole FF with an effective cutoff diminishing with WπN −W th
πN , making that certain term

”disappears” or contributes less in the amplitude since when WπN grows another resonance, not considered in

18



the amplitude, could be excited. Note that this FF affects also the on-shell contributions,i.e, the terms surviving

in Eq. 2.32 and Eq. 2.33 when the P terms are dropped.

In resume, to get the full amplitudes in Eq. 2.32 we need to add FF taking into account the hadron extensions

since as can be seen in GT H(kkk′
′′,WπN), we keep the π and N elemental character for any WπN , and this makes

the involved integral divergent. This entails to moderate the on shell amplitude Oλ with this FF, which is not

considered in the approach (2.30).
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Chapter 3

DRESSING THE SPIN-3/2 PROPAGATOR

As resonances are unstables states with certain width, in this section we describe how to get this width from

the decay of the resonance in certain channel and the different levels of approximation to dress them. The

resonance mass m and decay width Γ are intrinsic properties of a resonance for which there are at least two

commonly used definitions. One definition is obtained from the real and imaginary parts of the pole position

sp ≡ m2− imΓ of the S-matrix amplitude; this complex pole is located at the value s = sp, where s is the

square of the invariant mass of the decay products of the resonance. A different definition is provided by the

mass parameter m which is obtained from the renormalized propagator that includes the resummation of πN

self-energies computed from the field theory Lagrangian that describes the dynamics of the resonance; in this

case, the corresponding energy-dependent decay width Γ(s) is determined by the interactions of the resonance

with other fields and the decay width is given by Γ(m2). In this section we will develop this last approach and

hereafter, we will refer to these definitions as the pole and field-theoretic (FT) parameters of the resonance,

respectively. We would like to remark that in order to account for the electromagnetic gauge invariance of the

amplitude, when the spin−3/2 resonance participates in a radiative scattering the Ward identity Ref. [40],

i(p− p′)αGµν(p′)ΓανρGρσ(p) = Gσµ(p)−Gσµ(p′), (3.1)

where Γ is the electromagnetic vertex, should be satisfied. As as we will see below in detail, the introduction

of the width will be done through the replacement m→ m− iΓ
2 . It can be easily proved that if this change

is done only in the denominator of the propagator G(p) or if the width Γ = Γ(s) being not constant, these

identities are violated by terms of order Γ/m. We will describe a different weak pion production process, but in

consistence with the mentioned radiative one we should take care of this last observation and the departure of
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this assumption will be discussed in each case. From the Chapter 1 we have seen that the unperturbed reduced

propagator can be expressed in terms of (omitting indexes) projectors as (see appendix B)

G0(p)≡ G(p) =−
[

/p+m
p2−m2 P3/2 +2/m2(/p+m)P1/2

11 +
√

3/m(P1/2
12 +P1/2

21 )

]
, (3.2)

where the obtained spin projectors can also be expressed as

(P3/2)αβ = gαβ− 2
3

pα pβ

p2 −
1
3
γαγβ +

1
3p2 (γ

α pβ−γβ pα)/p,

(P1/2
11

)αβ =
1
3
γαγβ− 1

3
pα pβ

p2 −
1

3p2 (γ
α pβ−γβ pα)/p,

(P1/2
22

)αβ =
pα pβ

p2 , (3.3)

(P1/2
21

)µβ = −
√

3
p2

1
3p2 (−iσµα pα)/ppβ,

(P1/2
12

)µβ =

√
3
p2

1
3p2 (−iσβα pα)/ppµ,

with σµν = i[γµ,γν]/2. Another useful form is obtained using the propagator expressions and after operating

we get

Gαβ0 (p) =
/p+m

p2−m2

{
−gαβ+

1
3
γαγβ+

1
3m

(γα pβ−γβ pα)+
2

3m
pα pβ−

2(p2−m2)

3m2 [γα pβ−γβ pα− (/p+m)γαγβ ]

}
, (3.4)

where m is the bare mass of the spin−3/2 field and p its 4−momentum. The bare propagator being singular at

p2 = m2 should be dressed by the inclusion of a self-energy (Σ) giving to it a width corresponding to an unstable

particle. We will develop the dressing procedure for the ∆-resonance which results to be dominant, but then

we extend to another resonances. The self-energy (where usually only Born interaction terms are considered)

could include the lowest order pN one-loop contribution (Fig. 3.2 ) as well as other higher order pN irreducible

scattering non-pole (NP) terms Figs. 3.1(b) and 3.1(c) consistent with the pN scattering amplitude.

If we focus on the 3.1(a) contribution (since the final πN states concentrate rough all the decay ratio) for

the ∆ baryon, the corresponding interaction Lagrangian for the ∆→ Nπ decay is (R matrixes were defined in
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Figure 3.1: Self-energy possible contributions

chapter 1)

L
∆πN = gΨ̄µR(A)βνR−1(1/2(1−6Z/(1+4Z))µβψ̄∂ΦΦΦ

ν ·TTT †ψ+hc., (3.5)

while the reduced vertex (A-independent) is given by :

V∆πN =−gkµ×R−1(1/2(1−6Z/(1+4Z))µν, (3.6)

where g is the strong coupling with dimension of mass−1 and k denotes the 4−momentum of the outgoing pion

[41]. The factor depending on A cancels with that of the propagator in Eq. 1.35 and the same structure will be

assumed for the weak production resonant vertex. We adopt the value Z = 1/2 fixed in order to do not generate

dynamics for the Ψ0 component of the ∆ field [42] (note that the time derivative of Ψ0 does not appear in the

wave equation 1.29).

The expression for the dressed propagator Gµν(p) can be obtained by solving the Schwinger-Dyson equa-

tion that satisfied by the inverse propagators:

(iG−1)µν(p) = (iG−1
0 )µν(p)−Σ

µν(p), (3.7)

where Σµν(p) denotes the self-energy correction of ∆ as show in Fig. 3.2. In the following, we will consider only

the absorptive (imaginary) parts of the self-energy correction, i.e. we will assume [43, 44] that the parameter

m represents the ’renormalized’ mass of ∆ (we place quotation marks as a reminder that the Lagrangian is not
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∆

π(k)

∆(p) p− k

Figure 3.2: Self-energy correction to ∆ propagator

renormalizable; only the absorptive corrections are finite in this case). If we denote by p the 4−momentum of

∆ and compute the one-loop absorptive corrections by applying the cutting rules to Fig. 3.2, we obtain

Σ
µν
abs(p) = i

g2

2(2π)2

∫ d3k
2k0

1

2
√

p2
δ

(
k0 +

p2 +m2
π
−m2

N

2
√

p2

)
θ(p2− (mN +mπ)

2)(/p+/k+mN )k
µkν, (3.8)

which, in terms of the new more proper basis of projection operators [45]

(P1,2)
αβ = Λ

±(P3/2)αβ,

(P3,4)
αβ = Λ

±(P1/2
11 )αβ,

(P5,6)
αβ = Λ

±(P1/2
22 )αβ, (3.9)

(P7,8)
αβ = Λ

±(P1/2
21 )αβ,

(P9,10)
αβ = Λ

±(P1/2
12 )αβ,

where Λ± =

√
p2±/p

2
√

p2
, can be expressed as

Σ
µν
abs(p) = ∑

i
J̄i(Pi)

µν. (3.10)

The coefficients J̄i can be computed by introducing the Eq. 3.10 into Eq. 3.7 and solving using the projectors

properties and the expression Eq. 3.2 for the unperturbed G0(p) propagator. Thus we obtain (we use s = p2):
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J̄1 = J̄3 = −i
g2I0

(2π)2
1

12s

[
(
√

s+mN )
2−m2

π

4
√

s

]
λ(s,m2

N
,m2

π
),

J̄2 = J̄4 = i
g2I0

(2π)2
1

12s

[
(
√

s−mN )
2−m2

π

4
√

s

]
λ(s,m2

N
,m2

π
),

J̄5 = i
g2I0

(2π)2
1
4s
(s−m2

N
+m2

π
)2

[
(
√

s+mN )
2−m2

π

4
√

s

]
, (3.11)

J̄6 = −i
g2I0

(2π)2
1
4s
(s−m2

N
+m2

π
)2

[
(
√

s−mN )
2−m2

π

4
√

s

]
,

J̄7 = J̄8 = J̄9 = J̄10 = i
g2I0

(2π)2

√
3
s

1
48s

(s−m2
N
+m2

π
)λ(s,m2

N
,m2

π
),

where λ(x,y,z) = x2 + y2 + z2−2xy−2xz−2yz, and [45]:

I0 = θ(s− (mN +mπ)
2)

(
π

2

)
λ1/2(s,m2

N
,m2

π
)

s
(3.12)

and by comparison with the result of [45], we obtain the closely related coefficients:

J1 = J3 = −i
g2I0

(2π)2
mN

24s
λ(s,m2

N
,m2

π
),

J2 = J4 = −i
g2I0

(2π)2
1

48s2 (s+m2
N
−m2

π
)λ(s,m2

N
,m2

π
),

J5 = i
g2I0

(2π)2
mN

8s
(s−m2

N
+m2

π
)2, (3.13)

J6 = i
g2I0

(2π)2
1

16s2 (s+m2
N
−m2

π
)(s−m2

N
+m2

π
)2,

J7 = J9 = i
g2I0

(2π)2

√
3
s

1
48s

(s−m2
N
+m2

π
)λ(s,m2

N
,m2

π
),

J8 = J10 = 0,

which are defined from the relations: J̄2n−1 ≡ J2n−1 +
√

sJ2n and J̄2n ≡ J2n−1−
√

sJ2n, for n = 1, . . . ,5. Finally

by inserting the results shown in Eqs. 3.11−3.13 into Eq. 3.7 and Eq. 3.10, we obtain the following form of the

dressed propagator :
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Gαβ(p) =− 1
1− J2

{
m̃2 + /p
m̃2− p2 (P

3/2)αβ +
1
2

[
2m̃−2

√
p2 +A+

−m̃2 +X+
+

2m̃+2
√

p2 +A−
−m̃2 +X−

]
(P 1/2

11 )αβ

+
1

2
√

p2

[
− 2m̃−2

√
p2 +A+

−m̃2 +X+
+

2m̃+2
√

p2 +A−
−m̃2 +X−

]
/p(P 1/2

11 )αβ

+
1
2

[
3 J3−
√

p2J4
1−J2

−m̃2 +X+
+

3 J3+
√

p2J4
1−J2

−m̃2 +X+

]
(P 1/2

22 )αβ +
1

2
√

p2

[
3 J3−
√

p2J4
1−J2

−m̃2 +X+
−

3 J3+
√

p2J4
1−J2

−m̃2 +X+

]
/p(P 1/2

22 )αβ (3.14)

√
3

2

[
m̃−

(
J1+
√

3J7
1−J2

)
−m̃2 +X+

−
m̃−

(
J1−
√

3J7
1−J2

)
−m̃2 +X−

]
[(P 1/2

21 )αβ +(P 1/2
12 )αβ]

√
3

2
√

p2

[
m̃−

(
J1+
√

3J7
1−J2

)
−m̃2 +X+

+
m̃−

(
J1−
√

3J7
1−J2

)
−m̃2 +X−

]
/p[(P 1/2

21 )αβ− (P 1/2
12 )αβ]

}
,

where are defined

X± ≡ 2m(J1 + J3±
√

3J7∓ pJ4)+2p(∓J3 + pJ4)+ J2
1

(1− J2)2 , (3.15)

A± ≡
3(J5± pJ6)−2(J1± pJ2)

1− J2
.

In equation 3.14 we have introduced the effective mass term:

m̃ =
m+ J1

1− J2

= m+(J1 +
√

sJ2)+(m−√s)J2 +O(g4)

≈ m− i
Γ

∆
(s)
2

(3.16)

where we have neglected terms of O(g4) and O((m−√s)g2) in the last result, because these terms are

expected to be very small in the resonance region (
√

s≈m). In equation 3.15 we have introduced the ∆→ Nπ

energy-dependent decay width which is defined as

Γ
∆
(s) =

g2

4π

(
(
√

s+mN )
2−m2

π

48s5/2

)
λ3/2(s,m2

N
,m2

π
). (3.17)
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next, we define a renormalized propagator iGαβ

R
as follows:

Gαβ(p) = (1− J2)
−1[Gαβ

R
(p)], (3.18)

where the factor (1− J2)
−1 can be absorbed as a component of the ∆ wave function renormalization constant.

Then after these approaches we obtain in terms of the old projectors,

Gαβ

R
(p) =

m̃+ /p
m̃2− p2 (P

3/2)αβ− 2
m̃2 (m̃+ /p)(P

1/2
11 )αβ−

√
3

m̃
[(P1/2

21 )αβ +(P1/2
12 )αβ]. (3.19)

A comparison of Eq. 3.19 and Eq. 3.2 show that the renormalized propagator has identical form to the bare

propagator under the replacement m→ m̃ = m− iΓ
∆
(s)/2.

For the spin-3
2 resonances of negative parity (as the N∗(1520) that has isospin 1/2) we need to add γ5 in

Eq. 3.6 and now following the same procedure as above we get (we put g =
f
πNR
mπ

)

ΓR(s)×Br =
3
(

f
πNR
mπ

)2

4π

(
(
√

s−πmN )
2−m2

π

48s5/2

)
λ

3
2 (s,m2

N
,m2

π
), (3.20)

where we have only a minus sign of difference regards the positive parity case and we have added a branching

ratio factor (Br) since sometimes we have not a full decay into the πN channel.

In the case of spin-1
2 resonances the unstable character introduced could also be introduced by the replace-

ment

mR → mR− i
ΓR(s)

2
, (3.21)

into the unperturbed propagator without changing its structure, and similar to the nucleon one. This width ΓR is

obtained by considering the pion-nucleon loop contribution to the self energy [23] and reads

ΓR(s)×Br =
3

4π

(
fπNR

mπ

)2

(mR +πmN)
2

(
(
√

s−πmN )
2−m2

π

4s3/2

)
λ

1
2 (s,m2

N
,m2

π
), . (3.22)

being π=± the parity.

As mentioned above in this section, for the spin 3/2 resonances (a similar discussion would be valid for the
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1/2 case) when one introduces energy dependent widths in presence of radiative contributions, in order to fulfill

the ward identities we need to add vertex corrections. Then the propagator given in Eq. 3.14 with the width in

Eqs. 3.17 or Eqs. 3.20, or the usual spin 1/2 propagator with 3.22, should be used including vertex corrections

in the γRγ vertex. In order to overcome this problem it was adopted the complex mass scheme approach (CMS),

what was introduced for another process previously [39] and we resume here.

If one analyzes the formal scattering T-matrix theory, see the last part in section 2, for the final πN pair in

both elastic scattering or pion photoproduction, or weak pion it is mandatory that the RπN vertex should be

also dressed as the propagator by the πN rescattering through non-pole amplitudes (KNP in the first term of

Eq. 2.32). This makes also the vertex s−dependent, or in other words we get an effective coupling constant

g(s)≡ f
πNR(s)

mπ
, due to the decay mediated by the intermediate πN−propagator. The widths given in Eq. (3.17)

or Eq. 3.20 grow with energy as s3/2 while in the formal massless limit, the widths of the W boson and ρ

meson grow as s1/2 [39]. This different behavior can be easily understood because in the massless limit the

decay width behaves as Γ(s) = g̃2sx ; therefore, for dimensionless couplings, (W,ρ,x = 1/2), while for the

3/2−resonance x = 3/2, because its coupling g has (mass)−1units.

Therefore, if we assume that the RπN coupling behaves as fπNR(s) =
κ f 0

RπN√
s , being f 0

RπN the bare RπN

coupling constant and κ a constant of dimension MeV to fit, when the R resonance is off its mass shell (now

κ is dimensionless and constant), we get that ΓR(s) grows with energy in a similar way as the W boson and ρ

meson decay widths. We express as

ΓR(s) =

√
s

mR
Γ

CMS
R =

(
1+
√

s−mR

mR

)
Γ

CMS
R , Γ

CMS
R =

κ2(
f 0
πNR
mπ

)2

192π
mR. (3.23)

In this case, we can remove the energy dependence in the complex mass introduced in Eq. 3.14 and Eq.

3.20 by using a proper redefinition of the mass and decay width (see [39]). Note, that ΓCMS
R = ΓR(mR), mR and

κ is a parameters to fit, and the propagator in this approach is obtained from Eq. 3.16 with the replacement

mR→mR− iΓCMS
R /2 and the Ward identity is satisfied, since we get a global factor (1+ iΓCMS

R /mR)
−1 which is

also present in the corrected radiative vertex in the same approach.

Another approach commonly used [23], is to fix
√

s ≈ mR in Eqs. 3.14, (3.20) or (3.22) and to use the

experimental values for mR and ΓR times Br, and get fRπN . We use this method to fix parameters in the reso-

nances within the second region. Some another models, adopt the energy dependent width and is introduced

through the replacement Eq. 3.21 but only in the denominator the propagator Eq. 3.16, which as mentioned

above violates electromagnetic gauge invariance in the radiative case, without considering vertex corrections.
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We hope that this violation will be of minor importance here since at least in the case of 3/2 resonance the

vector weak component is obtained from electromagnetic self-gauge invariant vertexes. We will consider this

approach only for the sake of comparing with the mentioned works.
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Chapter 4

NEUTRINO-NUCLEON SCATTERING

WITH ONE-PION PRODUCTION.

∆ RESONANCE and BACKGROUND

In this section we will show how to built the amplitude from the ∆ resonance plus non resonant terms that are

also important since can interfere with the resonant amplitude. Then, in the next chapters, we will repeat this

scheme to include the second resonance region. In the early days before the discovery of quarks, hadrons,

including pions and nucleons, were considered elementary and their dynamics was extensively studied through

their reactions. Fig. 4.1 shows one example of such investigations. One immediately notes a rich structure

in their behavior and many resonances have been identified. Today, they are recognized as superpositions of

excited energy levels of quark composites. But discovery does not happen in a day. Given this kind of data, it

is necessary to isolate levels, identify their properties and classify them to make a Mendeleev periodic table of

hadrons. Namely, finding regularities among the many levels is the first step in reaching a deeper understanding

of the structure. This is the process called hadron spectroscopy. Before launching a systematic investigation,

we pick out the most conspicuous resonance at m
∆
= 1232 MeV, which used to be called the P33 resonance.

This is the main source of pions neutrino scattering since, when excited, it decays rough 99% in πN states.

Existence and properties of most N and ∆ resonances listed in the PDG ([46]) were derived from partial wave

analyses of πN elastic and charge exchange scattering data (Fig. 4.1). These resonances are also studied

through Neutrino-Nucleon scattering, which is the spirit of this work. The Table 4.1 shows some properties of

the ∆ resonance and the resonances belonging to what we know as the second region of resonances and his

representation in partial waves.
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Figure 4.1: Resonance structure of low energy π±− p scattering data. N for I = 1/2 and ∆ = 3/2 resonances. The
number in parenthesis is its mass value. S, P, D, E, F, G and H stand for the L = 0, 1, 2, 3, 4 and 5 states. D15 means
L = 2, I = 1/2, J = 5/2. Some resonances are overlaps of two or more states. N(1680) may be an overlap of N(1675)
D15 and N(1680) F15. Similarly, ∆(1930) D35. N(2200) may also be an overlap of N(2190) G17 and N(2200) H19 [32].

We will use effective Lagrangian models taking into account the consistent hints mentioned in the previous

chapters and apply the algebra of isospin symmetry to show the contribution for each channel [32]. In addition

we must add other contributions to the background that do not come from resonance decay that could interfere

with the resonance contribution at the amplitude level.

The CC interaction (we do not analyzed NC since the data is very scarce and by the reason mentioned in

the introduction) between a neutrino and a hadron is obtained from the weak Lagrangian

LCC =
−g

2
√

2

(
Jµ

lCC
Wµ+ Jµ

hCC
Wµ

√
2
(
τ or TTT †

)
·WWW ∗+h.c.

)
, (4.1)

where the isospin operators τ, TTT † and the isospin wave functions for the bosons WWW± (equal to the pion ones)

will be defined in the next section. The lepton and hadron charge current are

Jµ
lCC

= ∑
l
ψ̄lγ

µ(1−γ5)ψνl
,

Jµ
hCC

= ψ̄′
h
(Vµ−Aµ)ψh,
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∆∆∆(((111222333222))) or P33 I(JP) = 3
2

(
3
2
+
)

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV
Breit-Wigner full width (mixed charges) = 114 to 120 (≈ 117) MeV

∆(1232) Decay modes Fraction (Γi/Γ)
Nπ 99,4%
Nγ 0,55−0,65%

NNN(((111444444000))) or P11 I(JP) = 1
2

(
1
2
+
)

Breit-Wigner mass (mixed charges) = 1410 to 1470 (≈ 1440) MeV
Breit-Wigner full width (mixed charges) = 250 to 450 (≈ 350) MeV

N(1440) Decay modes Fraction (Γi/Γ)
Nπ 55−75%
Nη < 1%

Nππ 17−50%

NNN(((111555222000))) or D13 I(JP) = 1
2

(
3
2
−)

Breit-Wigner mass (mixed charges) = 1510 to 1520 (≈ 1515) MeV
Breit-Wigner full width (mixed charges) = 100 to 120 (≈ 110) MeV

N(1520) Decay modes Fraction (Γi/Γ)
Nπ 55−65%
Nη 0,07−0,09%

Nππ 25−35%

NNN(((111555333555))) or S11 I(JP) = 1
2

(
1
2
−)

Breit-Wigner mass (mixed charges) = 1515 to 1545 (≈ 1530) MeV
Breit-Wigner full width (mixed charges) = 125 to 175 (≈ 150) MeV

N(1535) Decay modes Fraction (Γi/Γ)
Nπ 32−52%
Nη 30−55%

Nππ 3−14%

Table 4.1: Baryon resonances and main decay channels of ∆ and second region resonances.

where ψh represents the field of the incoming nucleon and ψ̄′h represents the outgoing hadron, which can be a

fermion with spin 1/2 or 3/2 In this work we assume the convention of q = pl− pν outgoing from the hadronic

vertex. It is well know that the baryonic currents Jλhi have a vector-axial structure (Jλhi ≡ V λi −Aλi ). In term of

of the vector current, the electromagnetic one is written as Jλelec = V λisoscalar +V λ3 (V λ3 = τ3
γλ

2 for a nucleon or

V λT †
3 for the ∆) and the weak vector CC (τ3,T

†
3 → τ±,T

†
±) as V λ± ≡∓(V λ1 ± iV λ2 ) =

√
2 VVV ·WWW±.

The total cross section for weak production of single pions in terms of the νN center mass (CM) variables
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will be calculated from

σ(ECM
ν

) =
mνm2

N

(2π)4ECM
ν

√
s

E
+
µ∫

E−µ

dECM
µ

E
+
π∫

E−π

dECM
π

+1∫
−1

d cosθ

2π∫
0

dη
1
16 ∑

spin
|M |2, (4.2)

where
√

s = ECM
ν

+ECM
N

, the angular variable come from the integration elements dωµ = d cosθdφ and

dωπ = dξdη (dφ integrations gives a factor 2π and cosξ is fixed by energy conservation) and

E
−
µ
= mµ, E

+

µ
=

s+m2
µ
− (mN +mπ)

2

2(ECM
ν

+ECM
N

)
,

E±
π
=

(
√

2−ECM
µ

)(s−2
√

sECM
µ
−∆2)±A

√
(ECM
µ

)2−m2
µ

2(s−2
√

sECM
µ

+m2
µ
)

, (4.3)

with A =
√
(s−2

√
sECM
µ
−∆2)2−4m2

π
(s−2

√
sECM
µ

+m2
µ
), ∆2 = m2

N
−m2

µ
−m2

π
. The neutrino energy CM

energy is related with the laboratory one as ECM
ν

=
mN ELab

ν√
2ELab
ν mN+m2

N

.

The differential cross section is computed from [47]

dσ
dQ2 =

mµm2
N

2(2π)4(ECM
ν )2√s

E+
µ∫

E−µ

dECM
µ√

(ECM
µ )−m2

µ

E+
π∫

E−π

dECM
π

2π∫
0

dη
1

16 ∑
spin
|M |2 (4.4)

where now E−µ = (Q2 +m2
µ)/4ECM

ν +m2
µECM
ν /(Q2 +m2

µ) for a fixed value of Q2. Finally, in order to compare

with the experimental results, we calculated the neutrinos flux average cross section

d〈σ〉
dQ2 =

Emax
ν∫

Emin
ν

dσ(Eν)
dQ2 φ(Eν)dEν

Emax
ν∫

Emin
ν

φ(Eν)dEν

, (4.5)

where φ(Eν) is the flux of neutrinos corresponding to each experiment.
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4.1 ∆(1232) RESONANCE

Several models have been developed to evaluate the ∆ contribution to the corresponding cross section for the

1π−production in neutrino−nucleon scattering. Some works treat inconsistently the vertex and the propagator

of the ∆ resonance, the free lagrangian density L(A) (kinetic term), LπN∆(A,Z), LWN∆(A,Z) are invariant under

the contact transformations on the field Ψ
µ
∆

, and the amplitude built with them should be A−independent.

The difference between all models stems mainly from the treatment of the interaction vertexes and the

propagator used to describe the ∆ resonance and from the consideration (or not) of the background and it’s

interference with the resonant contribution. Here, we propose an effective Lagrangian model for the calculation

of one pion production cross section. The formalism used is fully consistent from the point of view of contact

transformations, and extends to weak pion production case the model used to treat elastic and radiative π+p

scattering and pion-photoproduction. The N, ∆, π, ρ, andω degree of freedom and their interactions are intro-

duced by preserving covariance and electromagnetic gauge invariance when the finite width of the ∆ resonance

is considered. We will adopt Z = 1/2 for the interactions terms and the reduced A−independent Feynman rules

for propagators and vertexes, in this way as explained in Chapter 1 there is not trace of A in the amplitude. First

of all we review the propagator and Lagrangians from where vertexes are obtained.

The ∆ propagator is given by

G
αβ

(p) =
/p+m

∆

p2−m2
∆

{
−g

αβ
+

1
3
γαγβ+

1
3m

∆

(γα p
β
−γ

β
pα)+

2
3m2

∆

pα p
β
−

2(p2−m2
∆
)

3m2
∆

[γα p
β
−γ

β
pα− (/p+m

∆
)γαγβ ]

}
, (4.6)

where the unstable character of the ∆ will be introduced by the replacement [43]

m
∆
→ m

∆
− i

Γ
∆

2
(4.7)

what is called CMS (Γ
∆
≡ ΓCMS

∆
) and is an approximation of the perturbed propagator developed in the previous

section, valid for the resonance region. For the strong ∆→ πN (or ∆πN) interaction Lagrangians (L
∆πN ) we

have (with disexcitement and excitation ∆ vertex shown)

L
∆πN (x) =

f
∆πN

mπ
ψ̄∂ΦΦΦ(x)µ∗ ·TTT Ψµ(x)+

f
∆πN

mπ
Ψ̄µ(x)ψ̄∂ΦΦΦ

µ(x) ·TTT †ψ(x), (4.8)
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where T† is the N→ ∆ isospin excitation operator. This Lagrangian enables definition of the ∆→ πN vertex

Γ̂
∆πN =− f

πN∆

mπ
kµ
(
χ†φ∗ ·TTT ∆

)
(4.9)

where we use the prescription Γ̂ = iL , ∂µφ=−ikµφ and i× propagator, in the amplitudes. Note the isospin

wave functions

χ(1/2) =

 1

0

 , χ(−1/2) =

 0

1


φπ− =

1√
2

(
1 −i 0

)
, φπ+ =

−1√
2

(
1 i 0

)
, φπ0 =

(
0 0 1

)
,

∆(3/2) =


1

0

0

0

 ,∆(1/2) =


0

1

0

0

 , ∆(−1/2) =


0

0

1

0

 ,∆(−3/2) =


0

0

0

1


and the operators (shown in Appendix C) τ ( or TTT ) = (τx,τy,τz) and τ± =∓ 1√

2
(τx±τy) = τ ·φπ± . The weak

interaction Lagrangian L̂WN∆
(compatible with the free L̂

∆
) and strong interacting Lagrangian L̂∆πN that make

possible also a definition of the weak ∆ excitation W βλ vertex, is [43, 33]

L̂WN∆
(x) = Ψ̄

µ(x)Rµα(A)R−1αβ(1/2(1−6Z/(1+4Z))(ŴV
β
+Ŵ A

β
)(TTT † ·WWW ∗)ψ(x)+h.c., (4.10)

with the same reduced W V
µν

obtained vector vertex ∆−production as in pion photo- [43] and electroproduction

[49] reads

Ŵ V
µν(p

∆
,q, p) =

√
2[(GM(Q

2)−GE (Q
2))KM

νµ+GE (Q
2)KE

νµ+GC(Q
2)KC

νµ]∆
∗WWW ∗ ·TTT †ψ, (4.11)

being Q2 = −q2 = −m`+ 2E`Eν(p`/E` cosθν`) > 0 and where the
√

2 factor from
√

2TTT ·WWW was shifted into
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the vertex Ŵ V , being KM
νµ, KE

νµ, KC
νµ are defined as [48]

KM
νµ =−KM(Q2)ενµαβ

(p+ p
∆
)α

2
qβ, KM(Q2) =

3(mN +m
∆
)

2mN ((mN +m
∆
)2 +Q2)

KE
νµ =

4KM(Q2)

((m
∆
−mN )

2 +Q2)
ενλαβ

(p+ p
∆
)α

2
qβελµγδpγ

∆
qδiγ5 (4.12)

KC
νµ =

2KM(Q2)

((m
∆
−mN )

2 +Q2)
qν[Q

2 (p+ p
∆
)µ

2
+q · (p+ p

∆
)

2
qµ]iγ5.

For the reduced axial contribution we use the model given in Refs. [49, 50], which is compatible with Ŵ V
νµ

(it could be, in principle, obtained by using −Ŵ V
νµ
γ5) and reads

Ŵ A
νµ(p

∆
,q, p) =−i

[
−D1(Q

2)gνµ+
D2(Q

2)

m2
N

(p+ p
∆
)α(gνµqα−qνgαν)−

D3(Q
2)

m2
N

pνqµ+ i
D4(Q2)

m2
N

εµναβ(p+ p
∆
)αqβγ5

]
∆
∗WWW ∗TTT †ψ, (4.13)

here for the ∆ resonance the
√

2 is incorporated in the Di(0) form factors. The Gi(Q
2) and Di(Q

2) form

factors will also be described below. Usually, some authors drop out the second term within square brackets

of the ∆ propagator from Eq. (4.6), this is usually wrong named Rarita- Schwinger propagator. This procedure

introduces inconsistencies since this propagator corresponds to A = −1 , but we need the full propagator

together with the above Γ̂∆πN ,Ŵνµ reduced vertexes.

In this chapter we analyze as a first step the charged current (CC) modes of three process

νp→ µ−pπ+, νn→ µ−nπ+, νn→ µ−pπ0, (4.14)

then we will extend to the antineutrinos in the results. The tree-level amplitudes are shown schematically in Fig.

4.2. Clearly, all the Feynman graphs do not necessarily contribute to each of the process in Eq. 4.14. We have

a background (B) contribution built from nucleon Born terms (Fig. 4.2(a)-(b)), the meson exchange amplitudes

(Figs. 4.2(c)-(f))and the ∆-crossed term (Fig. 4.2(g)); the genuine resonant contribution (R) coming from the

∆-pole amplitude is shown in Fig. 4.2(h). The sum of all these terms give rise to the total amplitude which can
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be separated into a background and a resonant contribution as

M = MB +MR

where using the Lagrangians and propagators for resonant and non resonant contributions plus the Eq. 4.1

lead to

Mi =
ig2(

2
√

2
)2 ū(pµ)(−)iγλ(1−γ5)u(pν)

igλλ′
m2

W
Vud ū(p′)Oλ

′
i (p, p′,q)u(p), i = B, R, (4.15)

being gλλ′
mW

is the W boson propagator in the high mass limit, where g2

(2
√

2)
2 =

G2
F√
2

,spin and isospin indexes are

omitted, GF =1.16637×10−5 GeV−2, |Vud|=0.9740, and the 4-momenta are defined as

p = (EN ,p), pν = (Eν,pν), pµ = (Eµ,pµ), k = (Eπ,k), p′ = (EN′,p′),

with Ei =
√
|pi|2 +m2

i (|vi|= |pi|
Ei

and we set mν = 0).

N

N

π
W−

(a)
N ′ N

π

N

W−

(b)
N ′

N

π

π

W−

(c) N ′

N

π
W−

(d) N ′
N

π

ω

W−

(e) N ′ N

π

ρ

W−

(f) N ′

∆

N

π
W−

(g) N ′

∆

N

π
W−

(h) N ′

Figure 4.2: Contributions to the scattering amplitude for the process νN → µN′π. Fig (a)-(f) is the background (B)
contribution. Fig (h) is a Resonantcontribution (R)
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The conserved vector current (CVC) hypothesis allow to relate the isovector pieces of these both vector

currents. In the same way it is also possible to get information on the effective WM→π′ (with M≡π,ω) and the

contact NWπ→N′π′ vector vertexes. Here the FF are again obtained assuming CVC from the electromagnetic

γM → π′and Nγπ → N′π′ vertexes obtained through the corresponding effective interaction Lagrangians,

making the replacement (ΦΦΦ
′∗
π ×ΦΦΦπ)3→∓[(ΦΦΦ

′∗
π ×ΦΦΦπ)1± i(ΦΦΦ

′∗×ΦΦΦπ)2] =
√

2(ΦΦΦ
′∗
π ×ΦΦΦπ)±=

√
2(ΦΦΦ

′∗
π ×ΦΦΦπ) ·

WWW± (the same is valid for the contact vertex changing Φπ→ τ) forM = π or Φ
′
π3
→
√

2ΦΦΦ
′
π ·WWW± for M =ω.

In this way, the Born and ω-exchange contributions (ρ-exchange contributions do not contribute to V since

the ρ− π is isoscalar) can be obtained from the usual strong [51] (LNNω(x) is built from LNNρ(x) change

ρµ(x)→ ωµ(x) and τ→ 1) and electromagnetic interaction Lagrangians [33, 52]. For the axial currents we

adopt the Lagrangians of Refs. [49, 50] based on standard effective methods and spin-parity arguments. These

Lagrangians and related propagators are shown in Appendix D. We get

OλB(p, p′,q) =−i
1
2

[
FV

1 (Q2)γλ− i
FV

2 (Q2)

2mN

σλνqν−FA(Q2)γλγ5

]
i

/p′+/q+mN

(p′+q)2−mN

gπNN

2mN

×

γ5(/p− /p′−/q)
√

2T1(mt ,mt ′)+
gπNN

2mN

γ5(/p− /p′−/q)i
/p−/q+mN

(p−q)2−m2
N

(−i)
1
2

[
FV

1 (Q2)γλ− i
FV

2 (Q2)

2mN

σλνqν−FA(Q2)γλγ5

]
√

2T2(mt ,mt ′)− iFV
1 (Q2)(2p−2p′−q)λ×

i
(p− p′)2−m2

π

gπNN

2mN

γ5(/p− /p′)
√

2T3(mt ,mt ′)+
gπNN

2mN

FV
1 (Q2)γ5γ

λ
√

2T4(mt ,mt ′)

+ i
gωπV

mπ
FV

1 (Q2)ελαβδqα(p− p′)
β
i

−g
δε

(p− p′)2−m2
ω

(−i)
gωNN

2

[
γε− i

κω

2mN

σεκ(p− p′)κ

]
×

√
2T5(mt ,mt ′)+ fρπAFA(Q2)i

−gλµ

(p− p′)2−m2
ρ

(−i)
g

ρNN

2

[
γµ− i

κρ

2mN

σµκ(p− p′)κ
]
√

2T6(mt ,mt ′)

+(−)Ŵ λα(p∆,−q, p′)iGαβ(p∆ = p′+q)(−) f
πN∆

mπ
(p− p′−q)βT7(mt ,mt ′), (4.16)

Oλ
R
(p, p′,q) =− fπN∆

mπ
(p− p′−q)αiG

αβ
(p

∆
= p−q)Ŵ βλ(p

∆
,q, p)T8(mt ,mt ′), (4.17)

where Ŵ = γ0Ŵ †γ0 and note that for the ∆→ πN vertex −γ0(−kµ)†γ0 = kµ, where q = pµ − pν is the

momentum transferred by leptons and Q2 ≡ −q2. In order to built the cross vertexes we use the rule Γc
µν =

−γ0Γ†
νµ
(−q)γ0 , that differs from other works since we use the convention iL and not L to get the vertexes.

Note that in the cross term in spite of using the h.c. term the mesons or bosons are still outgoing, for that we

39



need to make −q. Here we have defined the isospin matrix elements for each channel in Eq. 4.14 respectively

T1(mt ,mt ′) = χ
†(mt ′)(τ ·W∗)(τ ·ΦΦΦ∗π)χ(mt) =−2,0,−

√
2

T2(mt ,mt ′) = χ
†(mt ′)(τ ·ΦΦΦ∗π)(τ ·W∗)χ(mt) = 0,−2,

√
2

T3(mt ,mt ′) =−iχ†(mt ′)[(ΦΦΦ
∗
π×ΦΦΦπ′) ·W∗](τ·ΦΦΦ∗π′)χ(mt ′) = 1,−1,

√
2

T4(mt ,mt ′) = iχ†(mt ′)[(ΦΦΦ
∗
π×τ) ·W∗]χ(mt) =−1,1,−

√
2

T5(mt ,mt ′) = χ
†(mt ′)(ΦΦΦ

∗
π ·W∗)χ(mt) =−1,−1,0

T6(mt ,mt ′) = iχ†(mt ′)[(ΦΦΦ
∗
π×ρ) ·W∗](τ ·ρ∗)χ(mt) =−1,1,−

√
2

T7(mt ,mt ′) = χ
†(mt ′)(T ·W∗)(T† ·ΦΦΦ∗π)χ(mt) =−1/3,−1,

√
2/3

T8(mt ,mt ′) = χ
†(mt ′)(T ·ΦΦΦ∗π)(T† ·W∗)χ(mt) =−1,−1/3,−

√
2/3 (4.18)

whit mt and mt ′ being the isospin projections of the initial and final state nucleons, respectively and the isospin

1/2 to isospin 3/2 transition operator T is a 2 × 4 matrix defined by the matrix element of its components Tλ

=( −1, 0, +1) (see appendix C). The N → B weak vector currents (B = N′ or ∆) above are obtained from

electromagnetic transitions in photo-production (γN → B), by assuming CVC hypothesis. In addition to the

terms shown in the Eq. (4.16), we include the so-called pion-pole amplitudes (i.e., an intermediate pion is

introduced in the W propagation line).

The coupling constant we use are the values from pion-nucleon scattering and analysis of photoproduction

and electroproduction of pions. For the strong couplings of nucleons we take g2
πNN

/4π = 14,(note that f
mπ

=

g
2mN

) g2
ρNN

/4π= 2.9, κρ = 3.7, gωNN = 3g
ρNN and κω=−0.12 [51] with the usually adopted masses for involved

hadrons [27]. The coupling of nucleon ρ and ω mesons were obtained by assuming the vector dominance

model. For the ∆ mass width and πN coupling constant we assume consistently values obtained previously

from fitting to the π
+

p scattering data [51], namely: f 2
Nπ∆

/4π = 0.317± 0.003, m
∆
= 1211.7± 0.4 MeV and

Γ
∆
= 92.2±0.4 MeV.

In the weak sector the vector coupling constant are fixed by assuming the CVC hypothesis bot for B an R

amplitudes. As usual, for the axial currents we exploit the PCAC hypothesis and Golderberg-Treiman relations.

For the nucleon Born and meson exchange contributions we adopt gV = 1, gωπγ = gωπV = 0.324e [33], while

for the axial couplings we assume gA = 1.26 (PCAC values) and fρπA =
m2
ρ

(93MeV)g
ρNN

[49]. For the FF we adopt
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the usual Sachs dipole model for the vector current [49, 53] and also a dipole FF for the axial part [49]:

FV
1
(Q2) =

gV

1+ t

[
Gp

E
(Q2)−Gn

E
(Q2)+ t(Gp

M
(Q2)−Gn

M
(Q2))

]
,

FV
2
(Q2) =

gV

1+ t

[
Gp

M
(Q2)−Gn

M
(Q2)− (Gp

E
(Q2)−Gn

E
(Q2))

]
,

FA(Q2) =
gA

(1+Q2/M2
A
)2 , MA = 1.032GeV, (4.19)

where t = Q2/4m2
N

and

Gp
E
(Q2) =

1
1+κp

Gp
M
(Q2) =

1
κn

Gn
M
(Q2) =

1
1+Q2/M2

V

, Gn
E
(Q2) = 0,

with M2
V
= 0.71 GeV2, κp = 1.79, κn = −1.91. In the case of the contribution involving the Wππ vertex (third

term in Eq. 4.16) we adopt the same F1
V
(Q2) as in the other Born terms (first, second and fourth terms in Eq.

4.16) since these together should form a gauge invariant amplitude in the electromagnetic radiative case.

For the vector ∆ contribution to the B and R amplitude we use the effective (empirical) values GM(0) = 2.97,

GE (0) = 0.055 and GC(0) =
2m

∆

mN−m
∆

GE (0) fixed from photo and electroproduction reactions [33, 54]. We call

these ”effective” values, as discussed in Ref. [33], because they correspond to the bare ones G0
i
(0) (usually

related with QM) renormalized through the decay of a πN state coming from the B amplitude into a ∆ (FSI). In

Ref. [33] we also get the bare G0
E,M

(0) values by introducing dynamically the FSI by an explicit evaluation of the

rescatering amplitudes and show that the effective values, which are obtained through a fitting procedure, can

be in fact interpreted as the ”dressed” ones. For the FF we adopt

Gi(Q
2) = Gi(0)(1−Q2/M2

V
)−2(1+aQ2)e−bQ2

, (4.20)

with a = 0.154/(GeV/c)2 and b = 0.166/(GeV/c)2, for i = M, E, C, which corresponds also to Sachs dipole

model times a corrections factor already used in electroproduction calculations [54]. The axial FF at Q2 = 0,

F
∆
(0) ≡ Di(0), i = 1,4, are obtained by comparing the non-relativistic limit of ūν

∆
W A
νµu in the ∆ rest frame

(p∆ = (m
∆
,0), p = (EN (q), −q) with the non-relativistic QM [54, 50]. D4(Q2) = 0 since we will not take into

account the contribution of the ∆ deformation to the axial current. The Q2 dependence of Di is taken to be the

same as in vector case with a different parameter in the dipole factor, i.e.
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Di(Q
2) = Di(0)F(Q2), for i = 1,2, ,D3(Q2) = D3(0)F(Q2)

m2
N

Q2 +M2
π

, (4.21)

with MA = 1.02 GeV and F(Q2) = (1+Q2/M2
A)
−2(1+aQ2)e−bQ2

. Here

D1(0) =
6gA

5
mN +m

∆

2mN F(−(m
∆
−mN )

2)
, D2(0) =−D1(0)

m2
N

(mN +m
∆
)2 , D3(0) = D1(0)

2m3
N

(mN +m
∆
)m2
π

,

where F(−(m
∆
−mN )

2) in the denominator comes from the fact that we scale Di(Q2 = −q2) from the time-

like point q2
0 = (m

∆
−mN )

2 to q2 = 0 through F(Q2). Then, as in the case of pion photoproduction , we will

consider D1(0) as a free (effective or empirical) parameter to be fitted from the experimental data for dσ/dQ2

and including the final state interactions (FSI) effects. From this fit we get D1(0) = 2.35, C5 = 1.35 with

χ2/do f = 0.71, and results are shown with full lines in the Fig. (2) of Ref. [47].
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Chapter 5

SECOND REGION OF RESONANCES

In order to investigate the reanalyzed data of [19] for ANL and BNL, we need to go to energies around 1.7

GeV (they use this cutoff) and thus to extend the model that assumes only the ∆ as in the previous chapter.

For this reason we will included the so called second resonance region that encloses the N∗(1440),N∗(1535)

and N∗(1520) resonances. Since it is not easy to achieve a systematic analysis as was done for the ∆ [51],

we will adopt parameters values for these resonances from other works, changing vertex parametrization when

necessary in order to treat the 3/2-resonances on the same footing. Also we will explain in detail the different

approaches in including the width.

5.1 N∗(1440) RESONANCE

The N∗(1440 MeV)(P11) resonance has a spin-1/2, isospin-1/2 and positive parity. For the resonances of spin

1/2 the parametrization of the hadronic vertex is more simple than spin 3/2 resonances and is similar to the

parametrization for the νN→ N′ vertex depending on the parity.

The propagator of P11 is given by:

SP11
(p) =

/p+mP11

p2−m2
P11

+ iΓP11
mP11

, (5.1)

where the same CMS prescription mP11
→ mP11

− i
ΓP11

2 is followed. The P11 → Nπ strong coupling is described

by the Lagrangian [23]:

LP11πN =
fP11πN

mπ

(
Ψ̄P11γ

µγ5τΨN
)
·∂µΦΦΦπ+

fP11πN

mπ
∂µΦΦΦ

∗
π ·
(
Ψ̄Nγ

µγ5τΨP11

)
, (5.2)
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where LP11πN is similar to the LNπN . From the Lagrangian Eq. 5.2, we can deduce the P11πN vertex:

fP11πN

mπ
γ5
/k(ΦΦΦ∗π ·τ), (5.3)

where k is the pion outgoing momentum, and corresponds to the same π−production vertex that in the second

term of Eq. 4.16.

For the WNP11 vertex as we outgoing boson, make q→−q in the hadronic vertex of Ref. [22], and the

matrix element of P11 resonance production can be written as:

Γ
λ
WNP11

=−i
1
2

[
g1V

(mP11
+mN )

2 (Q
2γλ+/qqλ)− g2V

(mP11
+mN )

iσλνqν−g1Aγ
λγ5 +

g3A

mN

qλγ5

]
×
√

2τ ·WWW ∗, (5.4)

where the kinematics factors are scaled by mP11
+mN in order to make each term together the coupling constant

dimensionless. Here χP11(±1/2) is equal to the nucleon ones. Note the similarity of Eq. 5.4 with the second

term of Eq. 4.16 that is for nucleons. The term with g3A is called pion-pole term and gives de contribution

where the W boson decays in a pion and then interacts with the nucleon. This can be obtained replacing the

axial contribution Aλ by Aλ+ qµqA/(Q2 +m2
π) (see g3A below). Then, one assumes the resonance on shell

and evaluates (ū∗)/qγ5u = −ū∗(m∗+mN)u . Note that q = p− p∗ for out going q in the direct contribution.

This procedure is also assumed for the contributions of nucleons in Eq. 4.16.The form factors for WNN∗(1440)

vertex are obtained from the connection between electromagnetic resonance and the helicity amplitudes.The

helicity amplitudes describe the nucleon-resonances transition depending on the polarization of the incoming

photon and the spins of the baryons [22]. For non-zero Q2, data on helicity amplitudes for the N∗(1440) are

available only for the proton [22], where it is assumed that the isovector contribution on the neutrino production

is given as gV
i =−2gp

i .

The PCAC hipothesys allows us to relate the two form factors and fix their values at Q2 = 0:

g1A(Q2) =
0.51

(1+Q2/M2
A)

2(1+Q2/3M2
A)

(5.5)

g3A(Q2) = 0.51
(mP11

+m
N
)

Q2 +m2
π

mN (5.6)
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g1V (Q2) =
4.6

(1+Q2/M2
V
)2(1+Q2/4.3M2

V
)

, g2V (Q2) =
1.52

(1+Q2/M2
V
)2 (2.8ln(1+Q2/GeV2)−1).

(5.7)

With MV = 0.84 and MA = 1.05 . Note that the signs of g1V (Q2),g2V (Q2),g1A(Q2) are the same that for

F1V (Q
2),F2V (Q

2),FA(Q
2) in Eq. 4.19 in spite we have different form factors. The coupling fP11πN can be

obtained of the partial decay width (P11→ πN) according to:

ΓP11→πN =
IP11

4π

(
fP11πN

mπ

)2

(mP11 +mN )
2 EN −mN

mP11

|qc.m|, (5.8)

where |qc.m| is the momentum of the outgoing pion in the rest frame of the resonance

|qc.m|=

√
(m2

R
−m2

π−m2
N
)2−4m2

πm2
N

2mR

, (5.9)

being IR = 3 for isospin 1/2 resonances, and EN is the energy of the outgoing nucleon in the rest frame that

can be found as:

EN =
m2

R
+m2

N
−m2

π

2mR

. (5.10)

The expression Eq. 5.8 can be obtained from Eq. 3.22 fixing
√

s = mP11 and this should correspond and the

ΓCMS
P11

of the 3/2 resonances. The coupling f can be determinate from the Eq. 5.8 where the width ΓP11→πN ≈
0.69× 391 MeV = 269.79 MeV [23] since the branding ratio in Nπ is between 55% and 75%. With this the

coupling constant is calculate using the Eq. 5.9 and Eq. 5.10 and have value of fP11πN = 0.412. With this, the

contribution to the amplitude should be

Oλ
RP11

(p, p′,q)+Oλ
BP11

(p, p′,q) = ū(p′m′)
fP11πN

mπ
γ5(/p− /p′−/q)iSP11

(p−q)(−i)
1
2

[
g1V

(mP11
+mN )

2 (Q
2γλ+/qqλ)

− g2V

(mP11
+mN )

iσλνqν−g1Aγ
λγ5 +

g3A

mN

qλγ5

]
u(p,m)

√
2T10+

+ ū(p′m′)(−i)
1
2

[
g1V

(mP11
+mN )

2 (Q
2γλ+/qqλ)− g2V

(mP11
+mN )

iσλνqν−g1Aγ
λγ5 +

g3A

mN

qλγ5

]
(5.11)

× iSP11
(p+q)(−)

fP11πN

mπ
γ5(/p− /p′−/q)u(p,m)

√
2T9
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being

T9 = χ(m′t)(W
∗ ·τ)(ΦΦΦ∗ ·τ)χ(mt)

and

T10 = χ(m′t)(ΦΦΦ
∗ ·τ)(W∗ ·τ)χ(mt)

for pole a cross contributions respectively.

T10 = 0,−2,
√

2 ,T9 =−2,0,−
√

2, (5.12)

equal to T1 and T2 respectively. For the cross contribution, that is a background, the width of the resonance

should be done zero. The contributions in Eq.5.11 should be added to those obtained in Eqs.4.16

5.2 N∗(1520) RESONANCE

The (D13) resonance has a spin−3/2, Isospin−1/2 and negative parity. The propagator is the same as the ∆

Eq. 4.6 but changing m∆→mD13 and making mD13
→mD13

− i
ΓNπ

D13
2 where ΓD13

= ΓNπ
D13

+Γ∆π
D13

= 115.MeV from

PDG (Particle data Group).

The strong Lagrangian is given by [23]:

LD13πN =
fD13πN

mπ
Ψ̄µγ5∂

µ
ΦΦΦπ ·τΨ−

fD13πN

mπ
Ψ̄∂

µ
ΦΦΦ
∗
π ·τγ5Ψµ, (5.13)

where Ψµ is a Rarita - Schwinger field for the spin−3/2 but isospin 1/2. Note that is the same Lagrangian that

for ∆ but with γ5 inserted. From this Lagrangian we derive the vertex factor using iL(∂µΦΦΦ
∗
π→ ikµ) in the last

term

Γ̂D13Nπ =
fD13πN

mπ
kµγ5×ΦΦΦ

∗
π ·τ (5.14)

where the kµ is the pion momentum. Again isospin wave functions are the same as for nucleons. Clearly, the

s-contribution in the channel D±13→ pπ+ is forbidden due the charge conservation.

The coupling constant
fD13πN

mπ
can be calculated from the partial decay width as (replace

√
s = mD13 in

Eq.3.20)
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ΓD13→πN =
3

12π

( fD13πN

mπ

)2 EN −mN

mD13

|qc.m|3, (5.15)

where |qc.m| and EN are given by

|qqqcm| =

√(
m2

D13
−m2

π−m2
N

)
−4m2

πm2
N

2mD13

EN =
m2

D13
−m2

π+m2
N

2mD13

,

and which should correspond to ΓCMS
D13

. For EN =1.044 GeV, |qc.m|=0.45 GeV and using the partial width 0.55

× 115 MeV [46] the
fD13πN

mπ
constant coupling can be calculated giving 11.29 GeV−1 and

f 2
D13πN

4π =0.2.

The electromagnetic vector form factors can be expressed in the so called parity conserving parametrization

which is related with the other called Sachs one, that we assume for the ∆. This terms can be written in terms of

the Sachs form factors. We will assume similar vertex than for ∆ times γ5 , then transform to parity conserving

an compare with Ref. [55] and fix our parameters from this comparison. We use

Wνµ = Vνµ+Aνµ, (5.16)

Vνµ(pD13
,q, p) = [(GM(Q2)−GE(Q2))KM

νµ+GE(Q2)KE
νµ+GC(Q2)KC

νµ]γ5

√
2

2
D†

13
WWW ∗ ·τψ (5.17)

The Q2−dependence of form factors is assumed to be equal to the ∆ in Eq. 4.20 and Eq. 4.21. The Lorentz

tensor structure is:

KM
νµ =−KM(Q2)ενµαβ

(p+ pD13
)α

2
qβ (5.18)

KE
νµ =

4
(mD13

−mN )
2 +Q2 KM(Q2)ενλαβ

(p+ pD13
)α

2
qβ

ε
λ
µγδ

pγ
D13

qδiγ5

KC
νµ =

2
(mD13

−mN )
2 +Q2 KM(Q2)qν

[
Q2 (p+ pD13

)µ

2
+q ·

p+ pD13

2
qν

]
iγ5,
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with KM(Q2) =
3(mN+mD13

)

2mN (mN+mD13
)2+Q2 .

Now, V V
νµ can be expressed in the so-called “normal parity” (NP) decomposition making use of non-trivial

relation

− iεαβµνaµbnuγ5 = (/a/b−a ·b)iσαβ +/b(γαaβ−γβaα)−/a(γαbβ−γβbα)+(aαbβ−aβbα), (5.19)

and some on-shell considerations we get a simplified version of V V
νµ [55],

Vνµ(pD13
,q, p) = i

{
− (GM(Q2)−GE(Q2))mD13

KM(Q2)H3νµ (5.20)

+

[
GM(Q2)−GE(Q2)+2

2GE(Q2)(q · pD13
)−GC(Q2)Q2

(mD13
−mN )

2 +Q2

]
KM(Q2)H4νµ−[

2
2GE(Q2)m2

D13
+(pD13

·q)GC(Q2)

(mD13
−mN )

2 +Q2

]
KM(Q2)H6νµ

}
,

we have omitted isospin contributions and where

Hνµ
3 (p, pD13

,q) = gνµ/q−qνγµ, (5.21)

Hνµ
4 (p, pD13

,q) = gνµq · pD13
−qνpµ

D13
,

Hνµ
5 (p, pD13

,q) = gνµq · p−qνpν,

Hνµ
6 (p, pD13

,q) = gνµq2−qνpν.

Note tha the Hνµ
5 tensor does not contribute to Eq. 5.20, but it will appear in others expression. The Lorentz

tensor are independent of taking p = pD13
±q, + sign corresponds to the D13-pole contribution and− sign to the

cross-D13 term, which is clear since ενµαβqαqβ = 0. Thus, the Eq. 5.20 is valid in both cases, but the specific

value of q · pD13
depends on the particular contribution to the amplitudes

(
q · pD13

=±
m2

N
+Q2−m2

D13
2

)
. If we set

on the D13−pole contribution and replace p = pD13
+q we can write Eq. 5.20 as

V V
νµ(pD13

,q, p = pD13
+q) = iΓV

νµ(pD13
,q),
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Γ
V
νµ(pD13

,q) =

[
−CV

3 (Q
2)

mN

H3νµ−
CV

4 (Q
2)

m2
N

H4νµ−
CV

5 (Q
2)

m2
N

H5νµ+
CV

6 (Q
2)

m2
N

H6νµ

]
, (5.22)

where we have the new Form Factors:

CV
3 (Q

2) =
mD13

mN

RM

[
GM(0)−GE(0)

]
FV (Q2)

CV
4 (Q

2) =−RM

[
GM(0)−

3mD13

mD13
−mN

GE(0)

]
FV (Q2)

CV
5 (Q

2) = 0

CV
6 (Q

2) =−RM
2mD13

mD13
−mN

GE(0)FV (Q2), (5.23)

being RM = 3
2

mN
mD13

+mN
and FV (Q2) =

(
1+ Q2

(mN+mD13
)2

)−1

GV (Q2). Note that ΓV
νµ(pD13

,q) coincides with

eq.(30) and (31) in Ref. [23] making q→−q. For the axial part we get multiplying by γ5 the ∆ vertex (now we

explicitly put
√

2 in the axial vertex)

Aνµ(pD13
,q) = i

[
D1(Q2)gνµ−

D2(Q2)

m2
N

(p+ pD13)
α(gµνqα−qνgµα)

+
D3(Q2)

m2
N

qµpν

]
γ5

√
2

2
D†

13
WWW ∗ ·τψ

where D4(Q2) = 0 as before and rearranging we get (omitting again isospin factors)

Aνµ(pD13
,q) =

√
2i

[(
D1(Q2)± D2(Q2)Q2

m2
N

)
gνµ−

2D2

m2
N

H4νµ

± D3(Q2)+D2(Q2)

m2
N

qνqµ

]
γ5 (5.24)

= iΓA
µν

Γ
A
µν =

[
CA

5 gνµ−
CA

4
m2

N

gµνH4νµ+
CA

6
m2

N

H6µν

]
γ5. (5.25)
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We have for the pole contribution (“+” sign in previous equation, with “−” we use for the cross contribution).

Note that this last coincides with eq.(32 ) from Ref. [23] making q→−q. By comparison we get

D1±D2
Q2

m2
N

=CA
5 ,

−2D2

m2
N

=−CA
4

m2
N

,

C3
A = 0,

±D3 +D2

m2
N

=
C6

A
m2

N

. (5.26)

Choosing the values reported for the vector couplings for Q2 = 0 in Ref. [23], we have for the vector part

−2.98 =
3
2

1.52
0.94+1.52

(GM−GE),

4.21 =
−3
2

(
GM−

4.56
1.52−0.94

GE

)
0.94

0.94+1.52
, (5.27)

where GE = 0.6, GM =−2.62, while for ∆ GM(0) = 2.97,GE (0) = 0.055, the change in GM is consistente with

the change of CV
3 between both resonances (see Ref. [22]). If we use CA values of Ref. [22] we get GE =−0.26

and GM =−4.67. For the axial couplings (we fix for the pole case) we have

D1(0) =−2.15,

D2(0) = 0,

D3(0) =−2.15
m2

N

m2
π

=−2.15
m2

N

m2
π

. (5.28)

while for ∆ D1(0) = 2.35, this is consistent also with the change in C5
A [22]. The additional contribution from this

resonance to Eq. 4.16 will be
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Oλ
RD13

(p, p′,q)+Oλ
BD13

(p, p′,q) = (5.29)

1
2

fD13πN

mπ
γ5(p− p′−q)αiG

αβ
(pD13

= p−q)(Vβλ+Aβλ)(pD13
,q, p)

√
2T12(mt ,mt ′)

+
1
2
(Vβλ+Aβλ)(pD13

,−q, p′)iGαβ(pD13 = p′+q)
fD13πN

mπ
γ5(p− p′−q)β

√
2T11(mt ,mt ′),

Since −γ0(−kµγ5)
†γ0 = −kµγ5 note additionally that W (−q)γ5 = γ5W (−q) = −γ5Wcross then (W (q))γ5 =

−γ5Wcross(q) and for this case −Wcrossγ5, where the isospin coefficients are:

T11(mt ,mt ′) = χ
†(mt ′)(τ ·W∗)(τ ·ΦΦΦ∗π)χ(mt)

and

T12(mt ,mt ′) = χ
†(mt ′)(τ ·ΦΦΦ∗π)(τ ·W∗)χ(mt)

with value

T12 = 0,−2,
√

2 ,T11 =−2,0,−
√

2.

5.3 N∗(1535) RESONANCE

This resonance N∗(1535) is of negative parity and spin, isospin 1/2 and has a branching-ratio of decaying

0.51 in Nπ states. Its propagator corresponds to the half-spin fermion with the same complex mass scheme

prescription

S11(p) =
/p+mS11

p2−m2
S11

+ imS11
ΓS11

. (5.30)

The πNS11 coupling is described for the strong Lagrangian

LπNS11
=

fS11πN

mπ
Ψ̄S11γ

µ
∂µΦΦΦπ ·τψ+

fS11πN

mπ
ψ̄∂µΦΦΦ

∗
π ·τγµΨS11, (5.31)

which corresponds to that of P11 resonance by γ5. From this lagrangian we deduce the S11πN vertex as

−
fS11πN

mπ
/k(ΦΦΦ∗π ·τ), (5.32)
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The coupling fS11πN can be obtained from the same procedure as in the N∗(1440) case and from Ref. [23], we

get a value fS11πN = 0.17.

For the WNS11 vertex we assume (is obtained from Eq. 5.4 times γ5 or from Ref. [22]

Γ
λ
WNS11

=−i
1
2

[
g1V

(mS11
+mN )

2 (Q
2γλ+/qqλ)γ5−

g2V

(mS11
+mN )

iσλνqνγ5−g1Aγ
λ+

g3A

mN

qλ
]
√

2τ ·WWW ∗, (5.33)

where

g1V =
4.0

(1+Q2/M2
V )

2(1+Q2/1.2M2
V )

(7.2ln(1+Q2/GeV2)+1),

g2V =
1.68

(1+Q2/M2
V )

2
(0.11ln(1+Q2/GeV2)),

g1A =
0.21

(1+Q2/M2
A)

2(1+Q2/3M2
A)
,

g3A =
0.21(mS11

−mN )mN

Q2 +m2
π

. (5.34)

the contribution to the amplitude that should be added to those obtained in Eq.4.16, will be

Oλ
RS11

(p, p′,q)+Oλ
BS11

(p, p′,q) = ū(p′m′)(−)
fS11πN

mπ
(/p− /p′−/q)iSS11

(p−q)(−i)
1
2

[
g1V

(mS11
+mN )

2 (Q
2γλ+/qqλ)

(5.35)

− g2V

(mS11
+mN )

iσλνqν−g1Aγ
λγ5 +

g3A

mN

qλγ5

]
γ5u(p,m)

√
2T14+

+ ū(p′m′)(−i)
1
2
γ5

[
g1V

(mS11
+mN )

2 (Q
2γλ+/qqλ)− g2V

(mS11
+mN )

iσλνqν−g1Aγ
λγ5 +

g3A

mN

qλγ5

]

× iSS11
(p+q)(−)

fS11πN

mπ
(/p− /p′−/q)u(p,m)

√
2T13,

where T13,14 are equal to T9,10 in Eq. 5.12. Note that −γ0(−)(/k)†γ0 =−/k.
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Chapter 6

RESULTS

In this section we resume the results obtained with our formalism for the total and differential 1π−production

cross section and compare them with the old bubble chamber ANL, BNL data and also with the reanalyzed

ones. In addition we apart in some cases from the CMS approach in order to simulate the results obtained in

other works with the purpose of discuss the effects of the adopted inconsistencies on the calculations.

6.1 FORMAL ISSUES

We firstly consider in the amplitude contributions from the ∆ pole and cross terms, the nucleon pole and cross

terms, and contact, pion in flight and rho (ρ) plus omega (ω) exchange terms as shown in Eqs. 4.16 and 4.17.

Then, we add the contributions of the second resonance region enlarging the final MπN invariant mass in order

to see the effect of more energetic resonances to the cross section. We will add the amplitude of Eqs.( 5.11,

5.29 and 5.35).

We begin discussing a formal issue referred to spin 3/2 resonances and the introduction of FF. It would be

useful to repeat here the Eq. 3.2 , where ∆ propagator is written in a different way without using the projectors,

that is

53



Gµν(p) =
/p+m

∆

p2−m2
∆

{
−gµν+

1
3
γµγν+

2
3m2

∆

pµpν− 1
3m

∆

(pµγν−γµpν)

− 2
(
i/p−m

∆

)
3m2

∆

[
− (pµγν−γµpν)+

(
/p+m

∆

)
γµγν

]}

=
/p+m

∆

p2−m2
∆

[
−gµν+

1
3
γµγν+

2
3m2

∆

pµpν− 1
3m

∆

(pµγν−γµpν)
]

− 2
3m2

∆

[(
/p+m

∆

)
γµγν− (pµγν−γµpν)

]
. (6.1)

Note that the form Eq. 6.1 corresponds to the reduced propagator (see chapter 1) and should be used with the

corresponding interaction reduced vertexes to get A−independent amplitudes. On the other hand if one takes

A = −1 in Eq. 1.37 to get a simplified form, only the first term of Eq. 6.1 appears and the term in brackets

sometimes it is called (Wrongly) on shell 3/2 projector (see Eq. 3.3). Nevertheless, for the reduced and any

value of A, 1/2 off-shell propagation is always present. This is not private of the 3/2 field, also in the massive

vector meson propagator we have present an off-shell lower spin 0 component [56]. As can be seen from the

Eq. 6.1, the propagator has a contribution with a pole at p2 = m2
∆

and another that is not singular. When the

value A =−1 is adopted this last term is not present, nevertheless now the reduced interaction vertexes should

not be used and need to be modified.

The other formal point is how to fix Z in the interaction vertex’s. We concentrate for example in the strong

∆πN decay vertex that quit generally has a contact transformation invariant form (see Eq.(1.39) and [57])

Γ̂
α
∆πN × Rµα

(
1
2
(1+4Z)A+Z

)
, (6.2)

where Γ̂α
∆πN was defined in Eq. 4.9 and where Z is arbitrary and independent of A. Now we point to the question

of the true degrees of freedom of the spin 3/2 field, and remember that this it belong to a constrained quantum

field theory. Observe that in the free RS Lagrangian Eq. 1.31, there is no term containing Ψ̇0. So, the equation

of motion for it is a true constraint, and Ψ0 has no dynamics. It is necessary then that interactions do not change

that fact, and as it is shown in [42] this is fulfilled for the value Z = 1/2 . The same conclusion was obtained in

the original work of Nath [58] where through other method the same value was obtained. Then, we adopt this

value for our interactions. This election will be the same for the D13 that is a spin 3/2 resonance.
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In spite of this analysis some authors try to get both, the simpler versions for 3/2 propagator using A =−1

and vertexes with 1
2(1+4Z)A+Z = 0. This can be read in two different manners. First, if they are adopting the

same Z = 1/2 value (generally this is not discussed clearly), we could conclude that there is an inconsistence

since they are adopting a value A =−1 for the propagator while A =−1/3 to get 1
2(1+4Z)A+Z = 0, violating

the independence of the amplitude with A. Or second, they are thinking, but not expressing it, the different

choice Z =−1/2 and using A =−1 in both propagator and vertexes. Nevertheless, this Z value does not avoid

the dynamics of Ψ0 in the vertex Eq. 6.2. En each case, model dependencies are introduced. We fell important

to mention these shortcomings, because sometimes results are presented without taking into account these

formal issues and are only qualified by its proximity to the experimental data.

Up to now many studies have been achieved around the region MπN ∼ m∆ = 1232 MeV and with the

approach for the ∆ propagator assuming a constant width Eq. 3.23 into Eq. 3.19 (CMS approach), or with an

energy dependent width as in Eqs. 3.17 replaced only in the denominator p2−m2
∆

, violating thus the ward

identities . The ∆ contribution is supplemented by adding the background terms mentioned above and shown

in Figs 4.2(a)-(g). The resulting model was compared with CC1π or NC1π data subject to the invariant mass

constraints MπN < 1.4 and MπN <1.5 GeV, in accordance with experimental data respectively [59, 60, 61].

In addition, in Ref.[62] , the replacement L∆πN → L∆πN + cLC is proposed with LC describing contact terms

without the ∆ field, with adjusting the low-energy constant c to get a better fitting. The addition of contact terms is

based on the argumentation that within the ChPT framework, the equivalence between different Lagrangians is

at less of low energy constants, to be adjusted, terms. In Ref. [59, 60] the ∆πN vertex was chosen consistently

with the assumed form for the ∆ propagator, from the point of view of the contact transformations mentioned

above, and reduced Feynman rules were used. In Ref. [61, 24], this was not the case and the inconsistence

mentioned above respect different A-choices is present and also they use an energy dependent width with the

consequence already mentioned. Referring the procedure followed in Ref. [62], we fell that is arbitrary and

prefer the inclusion of higher derivative Lagrangians terms with new couplings constants [42, 63].

In the present thesis work we wish to built a model to describe the region of higher MπN invariant masses

and thus, we are faced to the following difficulties:

(i) Far away the ∆ resonance region, the approach for the ∆ resonant propagator 3.19 plus the fixed width

ΓCMS
∆

in all places, cannot be very good as shown for πN scattering [59].

(ii) At high πN invariant mass the finite size effects of hadrons become relevant [35]. These effects can be

taken into account empirically by introducing appropriate form factors. They are meant to model the

deviations from the pointlike couplings we use in all the Lagrangians employed to built the amplitudes,
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due to the quark structure of hadrons as was shown in the section 2.2. In addition, rescattering of the

final πN pair should be important.

(iii) At higher energies, other more energetic resonances should be included in the scattering amplitude. In this

thesis work we occupated of the so named second resonance region which includes the N∗(1440)(P11),

N∗(1520)(D13), N∗(1535)(S11) resonances. As it will be discussed later, the contribution of heavier

resonances does not warranty a better agreement with data unless the amplitudes are added coherently

and interferences of all contributions are properly taken into account.

π

T

RN N′￼

= +T Non pole

Non pole

Figure 6.1: Rescattering of the ∆ cross contribution

As mentioned in chapter 3, the use of a constant width via the CMS approach ensures electromagnetic gauge

invariance in the simplest way in the presence of an unstable particle. If the width of the resonance is energy-

dependent, the electromagnetic Ward identity involving the propagator and the radiative vertex may be broken

by terms of order Γ∆/m∆ if vertex corrections are not taken into account. We have also violations of the Ward

identiy if the width is only replaced in the denominator of the resonance.

Nevertheless, when final MπN invariant mass grows the CMS approach falls in reproduced for example πN

elastic scattering [59], then we needed to go ahead implementing more sophisticated approaches as using an
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energy dependent width or the exact form of the ∆ propagator, in order to describe the πN elastic scattering

data. But now the corresponding vertex corrections should be also included, that is not a trivial task. Now in

weak pion production we deal with similar problems. The resonance width has its origin in the self energy as

shown in chapter 3, which only dresses and includes rescattering in the resonant term shown in Fig. 4.2(h).

This effect can be included to different approximation degrees. Through a constant width, introducing an energy

dependent width and considering the effects of this dressing in the structure of the propagator that leads to the

form in Eq.3.14. The improvement in the approximation in treating the rescattering of the πN pair, regularize the

tree label (singular) resonant contribution by summing an infinite series of graphs. The cross term in Fig.4.2(g)

is not affected by this dressing and as we will see the enlarging effect of the 3/2 propagator caused by the

second term in Eq.(6.1)) cannot be corrected by a self energy. Still more, the final πN pairs in the all background

contributions in Fig. 4.2(a),(c),(d),(e),(f) (known as non resonant) to the amplitud could be of course rescattered,

exciting or not resonances, this changing and softening without doubt its tree behavior. This is schematized in

Fig.(6.1) for the resonance contributions.

To avoid model dependencies coming from the introduction of arbitrary FF at each interaction vertex (which

violates gauge invariance without vertex corrections), we will introduce a global form factor in the decay am-

plitude as described in section 2. As we are including resonances until around MπN ∼ 1.6 GeV, taking into

account the width of the most energetic considered one(S11(1535) MeV), we will only light on this FF above this

energy. In this way, we also correct the amplitude for excitation of more energetic resonances not considered

in our model since we also wish describe experimental data without MπN cuts. Guided by a previous proper

description on NC1π data obtained by the CERN Gargamelle experiment without applying cuts in the neutrino

energies, we adopt for the final πN pair a FF [60] (we have shown this FF in section 2 but repeat here for

completeness)

F(k) =
Λ4

Λ4 + k2(MπN−Mth
πN)

2θ(MπN−1.6 GeV)
(6.3)

where k ≡ |pπ(MπN)| = |−pN(MπN)| = [(M2
πN −m2

N −m2
π)

2− 4m2
Nm2

π)]
1/2/2MπN is the momentum of the

emitted pion in the πN CM frame, and Mth
πN = mN +mπ. We will adopt Λ = 600 MeV as we done previously for

neutral currents in Ref. [60].

This FF is expected to correct in an effective way the behavior of the theoretical dσ/dMπN distribution at

higher values of the πN invariant-mass. Since the excitation of heavier resonances lying above the second

region in the πN channel is expected to occur at higher values of MπN , their effects in the πN invariant mass
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are more important above this resonance region and only modifies slightly the mass distribution in the included

resonance region. Note that we are including explicitly, at difference of Ref.[60], resonances with energies in the

1.4−1.6 GeV and for this we will light on F(k) above the second region energy. These physical reasons justify

our choice for the modulation factor of the resonance amplitude by means of Eq. 6.3. As it can be realized, Eq.

(6.3) can be seen as a monopole hadronic FF, that takes into account the finite size of hadrons, with an energy-

dependent cutoff Λeff =−Λ2/(MπN−Mth
πN) only for MπN > 1.6 GeV (see the θ function in Eq. 6.3) since below

that energy (1.6 GeV) the description of weak pion production in the channels Eq. 4.14 are done acceptably

using the CMS approach without FF as will show immediately. At the same time as Λeff = f (MπN) , we are

correcting the behavior of the amplitude with the growing of MπN . It is important to mention that the form Eq.

6.3, was used satisfactorily in the description of the pion photoproduction reaction [33] as a regularization FF to

include final state interactions. In the case of pion photoproduction we have seen that a value of Λ = 0.7 GeV

properly accounts for the πN intermediate state contributions to the loop integrals present in the rescattering

amplitudes, which at the same time enables to get consistent values for the dressed GM and GE FF fitted from

experimental data. We take for consistence the same value of Λ = 600 MeV for all the channel. A more evolved

analysis would lead to different values, since experimental data on dσ/dMπN depends on the specific channel.

Nevertheless, by simplicity we adopt a common value for all channels. Finally the using of a global FF preserves

gauge invariance.

6.1 TOTAL CROSS SECTION

6.2.1 NEUTRINOS

Remember how the cross section is defined

dσ =
#events detected in dΩ/sec

#incidents ν/area sec #scattering centers
, (6.4)

where the amount F(Eν) = (#incidents ν ≡ Nν) in (Eν,Eν+ ∆Eν)/∆Eνarea sec is know as neutrino flux.

Nevertheless in long base line (LBL) experiments within the detector, an effective volume VF where the interac-

tion of the neutrinos with the protons (because the reaction νp→ µ−pπ+is use for calibration) is considered

and called fiducial volume. Then, we can consider that for a given geometry assumed for VF we have that

F(Eν)VF = Nνd(Eν), where d is the distance traveled by all the neutrinos of energy Eν called pathlength per

second and energy unit . When we divide both sides by the number of protons Np found by these neutrinos we

find F(Eν) =
Nνd(Eν)/Np

ρp
and reads F(Eν)≡ l(Eν)

ρp
. As in Eq. 6.4 we have a ratio of rates we considered l(Eν)
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in units of cm/GeV proton and as ρp , the proton density, is a fixed property of the detector for example in ANL

they use as unit of flux cm/GeV proton. Nevertheless, when cross section is calculated the factor 1/ρp should

be considered. This flux (normalyzed by the total flux and thus adimentional) is shown in the Figs. 6.2 for the

experiments BNL [64] and ANL [65] respectively. We analyze the total cross section calculated in Eq.4.2 and the
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Figure 6.2: Neutrino fluxes

total amplitud built as explained at the beginning of the chapter. We first compare our theoretical results with the

data obtained in the ANL experiment [65] which shows results for three regimes of events MπN < 1.4,1.6 GeV

and no cut of this invariant mass. The data to be considered are obtained by the ratio between the distribution

of events/Gev measured in each channel, that are considered integrated in Ω in Ref. [65] and the ANL flux

F(Eν) [66] as defined above. Note that the cross section is normally given in units of 10−38 cm2 while in the

experiment it is measured in Events per GeV units, then if we compare with the results for σ(Eν) reported in that

reference we can get the conversion factor which enclose the amount 1/ρp that is proper for the experiment.

Then, this factor enables us to calculate the differential cross section dσ/dQ2 from the corresponding event

distribution.

Firstly, in Fig. 6.3 we compare our results within the CMS approach, that was used previuosly to obtain the

∆ strong and weak parameters [47, 51, 33], without and with the second resonance energy region contribu-

tion(with constants widths also in Eq. 5.1 and Eq. 5.30) included, for MπN < 1.4 GeV. As can be seen the effect

of adding the second resonance region depends on the considered channel. If we considered a fixed energy

Eν = 3.0, 1.5, 1.5 GeV for the mentioned channels in Eq. 4.14 respectively, one can see that the contribution

of the second resonance region is correspondingly 4%,17% and 10% , approaching data and the theoretical

cross sections. Note that in spite of the cut in MπN , the tails of the resonances generated by the finite width

give an appreciable contribution and the interference between them is also important. Analyzing the individual

contributions of the P11,D13 and S11 resonances on can notice that the main contribution comes from the D13

being the other contribution less that 1%. All isospin factors for the mentioned three resonances for the resonant
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(direct) and background ( cross) amplitudes read
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Figure 6.3: Total νN cross section as function of the neutrino energy for different channel. Results with only the ∆

and ∆ + second region resonances plus the corresponding background in each case are shown for a cut MπN < 1.4 GeV.
Data are taken from Ref. [65]. The Figure show the three channels of interest for the single pion production, where (a)
νp→ ν−pπ+ process, (b) νn→ ν−pπ0 process, (c) νn→ ν−nπ+ process.

τR = 0,
√

2,−2

τB = −2,−
√

2,0, (6.5)

and thus this explain why the contribution for the first channel is small and comes from background terms.

For the second channel we have the main contribution since there are contributions of both the direct and cross

terms and interference between of them, while the last one we have only the direct contribution.

In addition, Also, one might ask why the contributions from the second resonance region are, apart from the

cutting in invariant mass effect, lower than the ∆ + background contributions. This can be understood form the

Eq. 4.2 that for certain value of the neutrino energy Eν in the Lab and νN CM systems ECM
ν

√
s = EνmN , being
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the limits in the cross section integrals fixed. This means that for a given final µπN′ state and amplitudes of

the same order of magnitude in the second resonance region regards the ∆ one, the kinematical cross section

factor 1
Eν

favors smaller neutrinos energies and thus lowest energy contributions. For example if we take the

final muon at rest P2
R = (Eν+mN−mµ)2 and thus P2

∆
= (1232)2 MeV2 with (mNEν)

−1≈ 7 while P2
D13

= (1520)2

MeV2 and (mNEν)
−1 ≈ 1.5. Then, in spite strong and weak coupling constants would be of the same order, the

∆ contribution is favored by the neutrino kinematical factor and because the propagator peak at each resonance

energy. This explain the different size of the resonances contribution.
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Figure 6.4: Total νN cross section as function of the neutrino energy for different channel. Results with only the ∆

and ∆ + second region resonances plus the corresponding background in each case are shown for a cut MπN < 1.6 GeV.
Data are taken form Ref. [65]. The Figure show the three channels of interest for the single pion production, where (a)
νp→ ν−pπ+ process, (b) νn→ ν−pπ0 process, (c) νn→ ν−nπ+process.

Now we go to the cut MπN < 1.6 GeV where the second resonance region is fully included. As can be

seen from the Fig. 6.4 the contribution of resonances in this region is more important and necessary in order

to improve the coincidence with data. In spite we are not fitting any of the parameters in the model, if one
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evaluates the χ2/do f amount defined as:

χ2

do f
= ∑

i

(σi
exp−σi

calc)
2

ε2
i

do f
,

where, ε is the error, do f = data number and i = 1, . . . ,data, it can be used to qualify the different approaches.

For example for the calculations in Fig. 6.4 the full line is closer than the dotted one in all the centroids (specially

in the (b) and (c) channels what are the most sensible to the resonance-background interference), it is evident

the χ2/do f it will be better for the calculations that include the second resonance region. A numerical estimates

lead to values χ2/do f = 0.11(0.11), 0.10(0.25), 0.10(0.2) for each channels from above to below in the Figure

and for the amplitude including (not including) second resonance region. In spite the difference It is small

the improvement it is clear for the last two channels where the background-resonance interference it is more

important. This will be totally evident in the calculations without cuts that will be shown in the Fig. 6.6.

Until this moment we kept within the CMS approach, the most simple to treat all the resonances together

the Born terms of the non-resonant backgrounds, that also enables to keep electromagnetic gauge invariance.

Nevertheless, the data of Ref. [65] contains also results without energy cuts and also all results in Ref. [64] are

reported without events exclusion. For this we need to extend the model to higher energies.

Before discussing a final calculations without cut, we will firstly analyze the behavior of the total cross section

without adding any FF. When total cross section is calculated without a FF we get the results in Fig.6.5. The

full lines corresponds to the CMS approach with constant width, and as can be seen the calculated values are

well above the data. It is clear the increasing of the cross section above 1.6 GeV, this perhaps the absence

of more energetic resonances to interfere in the model, and also from the lack of validity of the tree level

approach. Then, we keep the same propagators structure (Eq. 6.1, Eq. 5.1 and Eq. 5.30) and enable an

energy dependent widths Eq. 3.17, Eq. 3.20 and Eq. 3.22 but only in the denominator of the resonances, that

is more realistic regards the description of the self energy but with the observations done regards the violation

of the electromagnetic gauge invariance made above. This approach is assumed for several works. As can be

seen from the dashed lines the behavior is improved in the first channel where the direct resonance contribution

(that is the dressed by the self energy) contributes appreciably due to the isospin coefficients. Finally within the

CMS approach, we exclude the off-shell contribution in Eq. 6.1 for the 3/2 resonances, and as can be seen the

theoretical results fall bellow the experimental data (in the first channel below BNL data) as shown in the dotted

lines. This should be the results obtained if one uses an inconsistent spin 3/2 model, regards A−independence

of amplitudes, as mentioned above. All this indicates that it is necessary to use a FF if we wish to keep us within
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Figure 6.5: Results within CMS with FF=1. Total νN cross section as function of the neutrino energy for different
channel. The Figure show the three channels of interest for the single pion production, where (a) νp→ ν−pπ+ process,
(b) νn→ ν−pπ0 process, (c) νn→ ν−nπ+process.

a consistent treatment.

Now, that we have established the necessity of a FF to work within a spin 3/2 consistent model we discuss

with more detail the calculations without cuts. As we will see in the Fig. 6.5 the models used to treat the

3/2 propagator leads to different results, not losing sight that only the CMS preserves electromagnetic gauge

invariance. First we use the CMS approach with a constant width, second keeping the same propagators

structure but with the energy dependent widths only in the denominators. Finally we change to the exact

propagator given in Eq. 3.14 only for the ∆ resonance with the same energy dependent width, without affecting

the other resonances (more energetic and less important). The global FF Eq. 6.3 will affect the full amplitude as

explained above. Results are shown in Figs. 6.6. As can be seen, the tendency of increasing the cross section

by the second resonant contribution is persistent and the results that better reproduce the data is still the CMS

approach. If we calculate the χ2/do f throughs out, we get the same conclusions in the Fig. 6.4, it is clear that
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Figure 6.6: Total νN cross section as function of the neutrino energy for a no cut in MπN for the three channels of
interest for the single pion production. We also show here results within the CMS, variable width, and exact approach
for the ∆ with energy dependent width, where for the pannels (a) νp→ ν−pπ+ process, (b) νn→ ν−pπ0 process, (c)
νn→ ν−nπ+process.

the CMS approach has a better global approximation for the data centroids and the results in this case is for

ANL data 0.4(0.90), 1.1(1.1), 1.0(1.3) for the three channels mentioned above and the CMS (variable width)

approaches, and for the BNL data 0.6(0.9), 0.7(0.4), 0.8(1.0) respectively.

In order to understand why the CMS gives the better results we note what follows.The exact propagator is

obtained from a solution of the Schwinger–Dyson equation, if we do not make any approximation to the solution

we get the exact propagator. In the same way the T−matrix and amplitude for the weak pion production process

should be obtained form the relativistic Bethe-Salpeter equation. If one do so, rescattering contributions should

emerge and using adequate regularizing FF we would to get an ‘’exact” total amplitude valid to all order. Never-

theless we use a background at tree label that does not consider the rescattering and that is an approximation.

In this way, the CMS constant width approach is more consistent with the approach implemented for the total
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Figure 6.7: GENIE prediction [19] for the three single pion production channels of interest, and is compared to the
corrected ANL and BNL data, where for the pannels (a) νp→ ν−pπ+ process, (b) νn→ ν−pπ0 process, (c) νn→
ν−nπ+process .

amplitude. When we enable an energy dependent width we see a change that depends on the channel dimin-

ishing the results in the main one (first panel of Fig. 6.6 ) and growing and diminishing in the other two (second

an third panels of Fig. 6.6 ). The parameters used for the ∆ resonance ( fπN∆,m∆,Γ∆,GE ,GM,C5
A) have been

fitted using the CMS approach with a constant width, and thus if one wish to use another approach a new fitting

should be done. This could explain why the best approach to data is done with the simpler CMS model, which

is the only fully consistent approach that enable to satisfy the Ward identities in the electromagnetic case. In

another works it is possible that the inconsistency in the use of the Feynman rules for the 3/2 resonances plus

the inconsistence in using energy dependent widths compensate at the moment of get results. So, when one

only looks for the proximity to the data in the results, it is possible to get coincidence with inconsistent models.

We have analyzed if Figs. 6.5 and 6.6 the effects of these inconsistencies. In addition, is evident that the FF

taken from NC pion productions also works very well here.

Finally In Fig. 6.7, and for the sake of comparison, we show the result reported in [19], where It is clear

of the Figure that the nominal GENIE prediction cannot describe all of the pion production channels well for
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the reanalyzed datasets. We can check that for the total cross section in the three above mentioned channels

we get for ANL 0.4(1.13), 1.1(0.34), 1.0(2.6) and for BNL 0.6(1.9), 0.7(0.8), 0.8(5.2) results for the χ2/do f

within the CMS (Genie) models, what support that our model is working overall better.

6.2.2 ANTINEUTRINOS

Now, in order to follow probing our model we wish to calculate the antineutrinos total cross section. We have two

differences regards the neutrinos case. Firstly, the interactions of neutrinos with hadrons is not the same that for

antineutrinos. We have a sign of difference in the lepton current contraction that makes a different coupling with

the hadron ones. Then, the interaction with neutrinos is different from antineutrinos due the use of spinors for

antiparticles in Eq. 4.14 and has nothing to do with the well-known CP violation. Secondly, in the experiment we

have the detector of an admixture of heavy freon CF3Br that was exposed to the CERN PS antineutrino beam

(peaked at Eν̄ ∼ 1.5 GeV). It is informed that we have 0.44% on neutrons and 0.55% of protons, and since

our calculations were for free nucleons we weight out results with this percentages depending on the channel.

Firstly we only show results within the CMS approach with all resonances for a cutoff WπN ≡MπN = 1.4 GeV,

and we can be seen that the data is well reproduced but barely bellow the center of error bars. Secondly, we

show results without cuts and with the global FF. In the second Figure we have the CMS with only the ∆ and the

∆ plus the other resonances, showing an appreciable difference. Adding the energy dependent width we get an

improvement [67], but at the expense of a violation of electromagnetic gauge invariance. Our results compared

with the data are shown in Figs. 6.8 and 6.9.

6.2 DIFFERENTIAL CROSS SECTION

Now, as for the fitting of the ∆ parameters [47] the flux averaged differential cross section < dσ/dQ2 > it is

used, we show the results within our model and compare with the more recent experimental data where ANL

and BNL old results are reanalyzed and put in accordance [19]. In that reference results are shown for the event

Q2 distribution in units of Events/GeV2 for Both ANL and BNL experiments. As our results are given in 10−38

cm2/GeV2 we use the same conversion factor found in the total cross section calculation to compare with the

data. These data are reported without cuts. We first compare with ANL results that were originally measured

without cuts and this comparison is shown in Fig. 6.10. We show calculations within, the CMS approach

and omit the Exact one since as mentioned above, a readjusting of the full set of the ∆ parameters should be

necessary [59], while for the energy dependent width approach this reffiting though necessary it shouldn’t be

crucial since we are keeping the same structure of the CMS propagator but with the width’s replacement only
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Figure 6.8: Antineutrino’s total cross sections with a cut in 1.4 GeV for the ν̄n→ µ+nπ− and that leadding to a final
Nπ−final state.
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Figure 6.9: Antineutrino’s total cross sections for the ν̄n→ µ+nπ− and that leadding to a final Nπ−final state without
energy cut.

in denominators. As can be seen, results within the constant width CMS are acceptable in the three channels,

remember we are not doing any fit (the fixing of C5
Awas done previuolsy [47] using the ANL data with cuts

MπN < 1.4 GeV [65]). If we compare with Genie results [19], as before for the total cross section, we get
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better global reproduction of data.The using of energy dependent width enlarges the first and second channels

theoretical results and diminishes those for the third one, this leads to a worse coincidence with data in an

amount depending on the considered experiment ANL or BNL. Remember that this is an inconsistent approach

used by several works.
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6.1 CONCLUSIONS

Along this thesis work we have tackled the description of weak pion production within consistent effective models

from the point of view of the treatment of resonances described by spin 3/2 fields. In addition, we have

discussed as to include resonances in the second energy region and, how to treat the structure of hadrons

when MπN grows and the effect of more energetic resonances not included in the model.

We showed how to get the exact dressed propagator for a spin 3/2 resonance including only the πN loop

in the self energy. From this, we can generate different approaches that have each one certain advantages and

shortcomings. The complex mass scheme (CMS) where this approach is equivalent to the replacement mR→
mR− i

2ΓCMS
R

(with constant values for the mass and width) in the unperturbed propagator of the resonance

R in all places. It is obtained keeping terms until g2 =
(

fπN∆

mπ

)2
in the coefficients of the exact propagator

and evaluate the width as ΓR(
√

s ≈ mR). We use this approach also for the spin−1/2 resonances. This

means that the effect of the self energy on the spin
{1

2 ,
3
2

}
mathematical structure is not affected and that the

resonance width is assumed constant. This approach has the advantage that with it is is possible fulfill the

Ward identities that relates propagators and vertexes for radiation from a resonance, and thus this enables to

keep gauge invariance. In a next step, we kept the same structure of the propagator but enabling the energy

dependence in the width but only in the denominators, an approach very used in several works and that violates

gauge invariance. Finally we probe the effects of using the exact structure of the propagator for the ∆ (the

most important) with the energy dependent width, nevertheless in this case a readjustment of the ∆ parameters

should be done.

In all the mentioned approaches we have respected the consistence between vertexes and propagators

regards the contact transformations, for the spin 3/2 field. It is important to note that for the first time the

parametrization of Sachs was used for the D13 resonance, where the GE(Q2 = 0),GM(Q2 = 0),CA
5 (Q

2 = 0)

values where obtained by comparison with the usually adopted parity conserving parametrization.

Firstly, we achieved the comparison with the data of the ANL experiment in the region of MπN < 1.4,1.6

GeV, where we have worked within the CMS approach without FF. From the results including and not including

resonances in the second resonance region, we conclude that in spite that the fitting of CA
5 is not affected to

explain the data, in this region they should be included. Moreover, in the case MπN < 1.4 one can think why

? This second resonance region influences due to the tail of the resonances that have their centroids out

of this region but contribute through the interference effects with the ∆ and backgrounds. Finally, to make the

calculations with no cuts we show the need of using a common FF that was also successfully used in pion photo-
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production NC and calculations [33, 60]. This FF takes into account the hadron structure of the final πN′pair

and the rescattering into both nonresonant terms and more energetic resonances. In this case in addition to

the CMS approach we show results with the energy dependent width (replaced only in the denominator) and

the exact propagator with energy dependent width. In order to define which of the different approaches works

properly, taking into account the mentioned problems with the last two approaches and because many works

use the second one. You would think that the exact approach would be the best, however the constant width

CMS works best.. This could be because the ∆ parameters were obtained with this prescription and because

is the full consistent approach enabling gauge invariance. In addition, the exact approach introduces a more

complex structure for the propagator who takes into account in the more realistic way the rescattering through

intermediate πN loops of the direct ∆ amplitude. Nevertheless, neither the cross term nor the other background

contributions are dressed as should be, in a T-matrix calculation (that is out of the scope of this thesis work)

generating a not consistent treatment of all remaining contributions that are introduced at tree level. For this it

seems better to conserve the simpler CMS and introduce the common FF.

Then results for the flux averages cross section
〈

dσ
dQ2

〉
and total cross section for antineutrinos where

reported.

Now, we analyze the quality of our results and compare with other calculations putting emphasis in the

obtained advantages and differences, objects of this thesis work. As can be seen from a general view, our

model meets consistency with respect to contact transformations in the 3/2 field reproduce better the ANL

data than other inconsistent models including the second resonance region [20]. In addition, in that reference

it seems that the cross resonance contributions are omitted for the νp→ µ−π+p channel. It is true that the

direct contribution of isospin 1/2 resonances cannot contribute to a 3/2 isospin amplitude but the cross terms

do contribute, note the isospin factor for this channel that is not zero in Eq. 6.5. A last shortcoming to mention

is that for nonresonant backgrounds Figs 4.2(a)-(f) an arbitrary cutoff of MπN < 1.2 GeV is applied changing

artificially the behavior of these contributions independently from the rest of terms. This is done for all the

presented regimes MπN < 1.4,1.6 GeV and no cut. Note that we can reproduce very well the first two energy

ranges without the necessity of any special cutting, all contributions are calculated with the same MπN cutting,

while for the uncutted case we include a common FF. In addition, we note that in Ref. [20] the antineutrino

results are not reproduced, while within our model the accordance with the data is very well in all the energy

region where the data is reported. Finally in that reference differential cross section is not reported.

On the other hand in GENIE simulation [19], single pion production is separated into resonant and non-

resonant terms, with interference terms between them neglected, as also interferences between resonances
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are neglected in the calculation. The resonant component (RES) is a modified version of the RS model [26]. In

the original RS model, the production and subsequent decay of 18 nucleon resonances with invariant masses

W ≤ 2.0 GeV are considered. In GENIE, only 16 resonances are included, based on the recommendation of the

Particle Data Group [27]. In this work they make the assumption that interactions on deuterium can be treated as

interactions on quasi-free nucleons which are only loosely bound together, and so neglect FSI effects. In GENIE,

there are a number of systematic parameters which can be varied to change the single pion production model.

Resonant axial mass (MRES
A ) resonant normalization (RES norm) non-resonant normalization (DIS norm), and

normalization of the axial form factor (FA(0)). The total GENIE prediction is the incoherent sum of the RES

and DIS contributions, where interference terms have been neglected. GENIE cannot describe all of the pion

production channels well for the reanalyzed data sets. For example, the data of the νµn→ µ−pπ0,νµn→
µ−nπ+ channels are very similar, but there are large differences between the nominal GENIE predictions for

these channels. The non-resonant component of the GENIE prediction, which contributes strongly to these

channels, appears to be too large. Nevertheless, within our model these two channels are described properly

without cuts, within the same regime presented by GENIE.

Finally, it can be seen from Fig. 3 of Ref. [19], where neutrino energy distribution is shown, that the nominal

GENIE prediction fails to describe the low-Q2 data well for some channels. We also note that the GENIE

uncertainties are larger than the data suggests, and they may be reduced by tuning the GENIE model to the

ANL and BNL data. Nevertheless, within our model the low Q2 distribution seem to be right.

In resume we have described with a fully relativistic and consistent model from the point of view of contact

transformation and gauge invariance, which includes interference between resonances and resonances with

background contributions, total cross sections and averaging differential cross sections in different MπN ranges

without new fitting but those done for the ∆ resonances in the low cutting MπN < 1.4 GeV one for neutrinos. Also,

the antineutrino cross section was calculated. Our results give a reasonable description of the experimental

data, and better that other approach that lack in one or several conditions that we are assume in our approach.

These results we published recently in Refs. [68, 69]. Some ideas of improvement could be mentioned

• Remember that the axial ∆ parameter CA
5 (0) was fitted for MπN < 1.4 GeV with only the ∆ resonance

included. Perhaps a new fitting including the other resonances would be necessary.

• When the invariant mass MπN is enlarged one could add new resonances gradually and fitting the corre-

sponding axial parameters for them as was done for the ∆.

• The rescattering should be introduced through a T-matrix formalism.
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• Higher order derivative terms in the πNR vertexes could be included since they are important in elastic

πN scattering [63].
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Appendix A

DIRAC EQUATION FOR SPIN−3/2− FIELDS

In this appendix we will look for the relativistic equations satisfied by the Rarita-Schwinger field and equivalents

forms, useful for future developments in the thesis. Also we get the constrains that filters on-shell the spin

3/2 component. For many years there has been interest in studying spin−3/2 fields in order to describe

nucleon resonances with spin> 1/2 particles. In the latter case, Dirac Equation has been shown to provide

a reasonable starting basis for such studies. The formalism for spin−3/2 particles allows investigating the ∆

and D13 resonance. The Dirac Equation can de generalized to describe a general spin−m/2 particle, where

m =±1,±2,±3, . . . , etc and w get it for the 3/2 case.

Firstly we get an equivalent form of (1.29) and we start with the relations

εσµνρεσαβδ =−δµαδνβδ
ρ
δ−δ

µ
βδ
ν
δδ
ρ
α−δµδδναδ

ρ
β+δ

µ
βδ
ν
αδ
ρ
δ+δ

µ
αδ
ν
δδ
ρ
β+δ

µ
δδ
ν
βδ
ρ
α, (A.1)

γ5γσ =− i
6εαβδσγ

αγβγδ (A.2)

where we can get that

γ5εµνσργσ = (γ5γσ)ε
µνσρ =

i
6
εαβδσε

µνρσγαγβγδ

=
(
−δµαδνβδρδ−δ

µ
βδ
ν
δδ
ρ
α−δµδδναδ

ρ
β+δ

µ
βδ
ν
αδ
ρ
δ+δ

µ
αδ
ν
δδ
ρ
β+δ

µ
δδ
ν
βδ
ρ
α

)
γαγβγδ

=
i
6
(−γµγνγρ−γργµγν−γνγργµ+γµγνγρ+γµγργν+γργνγµ) , (A.3)
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and with the anti-commutator {γµγν}= 2gµν −→ γµγν+γνγµ = 2gµν, we can simplify the last result as

γργµγν = 2gµνγρ−γργνγµ

γνγργµ = 2gνργµ−γργνγµ

γνγµγρ = 2gµνγρ−γµγνγρ

γµγργν = 2gρνγµ−γµγνγρ.

and replacing in A.2, we get:

i
6
(−γµγνγρ−2gµνγρ+γργνγµ−2gνργµ+γργνγµ

+2gµνγρ−γµγνγρ+2gρνγµ−γµγνγρ+γργνγµ)

i
6
(3γργνγµ−3γµγνγρ) =

i
2
(γργνγµ−γµγνγρ) . (A.4)

The mass term in (1.29) can be written using the relation for σµν as,

1
2

m(γµγν−γνγµ ) . (A.5)

and collecting the equations A.4 and A.5 in 1.29, we have:

iγµνρ∂νψρ−mγµνψν = 0. (A.6)

We can get another more equivalent useful form expanding the operators γρνµ and γµν , getting (in the mo-
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menta space i∂ν→ pν)

1
2

pν (γργνγµ−γµγνγρ)ψρ−m
1
2
(γµγν−γνγµ)ψρ = 0,

1
2

pν (2gµνγρ−γµγνγρ−2gρµγν+γµγργν)ψρ−m
1
2
(γµγρ−2gµρ+γµγρ)ψρ = 0,

1
2

pν (2gµνγρ−γµγνγρ−2gρµγν+2gρνγµ−γµγνγρ)ψρ−m
1
2
(2γµγρ−2gµρ)ψρ = 0,

1
2

pν (2gµνγρ−2γµγνγρ−2gρµγν+2gρνγµ)ψρ−m(γµγρ−gµρ)ψρ = 0,

(−γµpνγνγρ+(pνgµνγρ− pνgρνγµ)+ pνγνgµρ)ψρ−m(γµγρ−gµρ)ψρ = 0.

and finally obtaining

(
γµ/pγρ− (pµγρ+ pργµ)− /pgµρ

)
ψρ+m(γµγρ+gµρ)ψρ = 0 . (A.7)

The solution ψν for the Rarita-schwinger equation A.6 must satisfy the constraint conditions 1.6 y 1.7 of the

3/2−spin field, to get them pre multiplying for γρ the equation A.6

γρ (iγµνρ∂νψρ−mγµρψρ) = 0,

and solving in the first term we get

γργ
ρνµ =

1
2
(γργ

ργνγµ−γργµγνγρ) ,

=
1
2

(
(γρ)

2γνγµ−γργµ2gνρ+γρ2gµργν−γργργµγν
)
,

=
1
2

(
4γνγµ−γργµ2gνρ+γρ (2gµργν)− (γρ)

2γµγν
)
,

=
1
2
(4γνγµ−2γνγµ+2γµγν−4γµγν) ,

=
1
2
(2γνγµ−2γµγν) ,

γργ
ρνµ = 2γνµ (A.8)

and in the second one
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γργ
µρ =

1
2
(γργ

µγρ−γργργµ) ,

=
1
2
(γρ2gµρ−γργργµ−γργργµ) ,

=
1
2
(2γµ−4γµ−4γµ) ,

γργ
µρ =−3γµ , (A.9)

then, we have that

γµ (pνγµνρ−mγµρ)ψρ = 0,

which implies that:

2pνγνρψρ+3mγρψρ = 0. (A.10)

Now, premultiplying by pµ the equation A.6

pµ (pνγµνρ−mγµρ)ψρ = 0, (A.11)

the first term in A.11 should be zero, since we have the product of a symmetric part with another anti-symmetric,

from this

mpµγµρψρ = 0, (A.12)

for any value of pµ which indicates that γµρψρ = γµ(γρΨρ−Ψµ) = 0 and thus we have that the only unique

solutions is:

γρψρ = 0. (A.13)
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Used it again in A.12 leads us to

pρψρ = 0. (A.14)

Since the physical field satisfies the constraint conditions 1.6 and 1.7, then the Rarita-Schwinger equation 1.28

becomes the equation (/p−m)ψν = 0.

Now Performing a contact transformation on the fields ,

ψρ→ψ
′
ρ =ψρ+aγργµψµ, (A.15)

with a an arbitrary parameter, a field which satisfies A.13 is not affected and also the new fields ψ′ρ satisfy the

same constraints:

pρψ
′ρ = 0,

γρψ
′ρ = 0,

and also the Dirac equation, (
/p−m

)
ψ
′ρ = 0,

therefore the components of spin−3/2− of the fields ψ y ψ′ match.
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Appendix B

SPIN−3/2 PROPAGATOR STRUCTURE

To find the propagator associated with the Rarita-Schwinger field, the kinetic operator must be inverted Λµν .

To do this, it is convenient to rewrite this operator as a function of the projection operators that obey a simple

algebra. To construct the projection operators we start from the orthogonal vectors found in the chapter 1.

pµ1 =
pµ

|p| = p̂µ (B.1)

pµ2 =
1√
3

(
γµ− /p

pµ

|p|2
)
, (B.2)

replacing B.1 in B.2 we find,

pµ2 =
1√
3

(
γµ− /p

p̂µ1
|p|

)
−→ γµ =

√
3pµ2 +

/p
|p| p̂

µ
1 , (B.3)

γµ =
√

3pµ2 + /̂ppµ1 , (B.4)

without indexes can be written as:

γ=
√

3p2 + /̂pp1, (B.5)

in the same way for the operator
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Λ
µρ =

(
/p−m

)
gµρ+γµ/pγρ− (pµγρ+γµpρ)+mγµγρ, (B.6)

without indexes can be written as

Λ =
(
/p−m

)
+γ/pγ− (pγ+γp)+mγγ. (B.7)

It can be shown that pµ2 y /p anti-commute

{pµ2 , /p} =
1√
3

{(
γµ− /ppµ

|p|2
)
, /p
}
=

1√
3

(
γµ/p− /ppµ

/p
|p|2 + /pγµ− /p/p

pµ

|p|2
)

=
1√
3

(
γµ/p− /p/p

pµ

|p|2 + /pγµ− /p/p
pµ

|p|2
)
=

1√
3

(
γµ/p/pγµ−2pµ

)
=

1√
3

({
γµ, /p

}
−2pµ

)
=

1√
3
({γµ,γν} pν−2pµ)

=
1√
3
(2gµνpν−2pµ)

= 0.

likewise the commutator p̂1 y /p it is null

[
p̂1, /p

]
=

[
pµ

|p| , /p
]
=

pµ

|p|/p− /p
pµ

|p| =
pµ

|p|/p−
pµ

|p|/p = 0.

Using B.5, we found a way to γ/pγ.

γ/pγ =
(√

3p2 + /̂pp1

)
/p
(√

3p2 + /̂pp1

)
= 3p2/pp2 +

√
3p2/p/̂pp1 +

√
3/̂pp1/pp2 + /̂pp1/p/̂pp1

= −3/pp2 p2 +
√

3|p|p2 p1 +
√

3|p|p1 p2 + /pp1 p1, (B.8)

where was used that /p/̂p = /p
/p
|p| =

|p|2
|p| = |p|, /̂p/̂p =

(
/̂p
)2

= 1,
{

p2, /p
}
= 0. On the other hand we have the
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projectors Λ±

Λ
± =

1± /̂p
2

, (B.9)

(B.10)

with the properties

Λ
++Λ

− = 1 (B.11)

Λ
+−Λ

− = /̂p. (B.12)

They allow to define the new projectors:

P±i j = piΛ
±p j; (B.13)

which satisfy the algebra

Pεi jP
ε′
k` = δ jkδ

εε′Pεi`, (B.14)

the linear combinations of these projectors form a conjunct operators, whose product have as coefficients the

matrix product of the coefficients of the multiplied operators.

Let,

A = aεi jP
ε
i j

B = bε
′

k`P
ε′
k`

AB = aεi jb
ε′
k`P

ε
i jP

ε′
k` = aεi jb

ε′
k`δ j`δ

εε′Pεk` = aεi jb
ε
jkPεik

aεi jb
ε′
k` = cεik

AB = cεikPεik

The first term of B.8, can be written:

/pp2 p2 =−p2/pp2 =−p2|p|/̂pp2 =−|p|p2 p̂p2,
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with Λ+−Λ− = /̂p

/pp2 p2 = −|p|p2
(
Λ
+−Λ

−) p2

= −|p|
[
p2Λ

+p2− p2Λ
−p2

]
= −|p|

[
P+

22−P−22
]
. (B.15)

The second term can be written:

|p|p2 p1 = |p|p2
[
Λ
++Λ

−] p1 = |p|
[
P+

21 +P−21
]
. (B.16)

The third term can be written as:o:

|p|p1 p2 = |p|p1
[
Λ
++Λ

−] p2 = |p|
[
P+

12 +P−12
]
, (B.17)

the fourth term can be written as:

/pp1 p1 = |p|p1
[
Λ
+−Λ

−] p1 = |p|
[
P+

11−P−11
]
. (B.18)

collecting all the terms, γ/pγ can be written as:

γ/pγ= 3|p|
[
P+

22−P−22
]
+ |p|

[
P+

11−P−11
]
+
√

3|p|
[
P+

21 + p−21 +P+
12 +P−12

]
, (B.19)

which in matrix form can be written as:

γ/pγ= ∑
i j

a±i jP
ε
i j, (B.20)

a±i j = |p|

±1
√

3
√

3 ±3

 . (B.21)
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The term pγ+γp in B.7 can be written as:

pγ+γp = p
(√

3p2 + /̂pp1

)
+
(√

3p2 + /̂pp1

)
p

= |p|p1

(√
3p2 + /̂pp1

)
+
(√

3p2 + /̂pp1

)
|p|p1

= |p|
(√

3p1 p2 + p1 /̂pp1 +
√

3p2 p1 + /̂pp1 p1

)
= |p|

(√
3p1 p2 + p1 /̂pp1 +

√
3p2 p1 + p1 /̂pp1

)
= |p|

(√
3P12 +

(
P+

11−P−11
)
+
√

3P21 +
(
P+

11−P−11
))

, (B.22)

which in matrix form can be written as:

b±i j =−|p|

 ∓2 −
√

3

−
√

3 0

 . (B.23)

For the last term mγγ we have

mγγ = m
(√

3p2 + /̂pp1

)(√
3p2 + /̂pp1

)
= m

(
3p2 p2 +

√
3p2 /̂pp1 +

√
3/̂pp1 p2 + /̂pp1 /̂pp1

)
= m

(
3p2 p2 +

√
3p2 /̂pp1 + p1 /̂pp2 + p1 /̂p/̂pp1

)
= m

(
3P22 +

√
3
(
P+

21−P−21
)
+
√

3
(
P+

12−P−12
)
+P11

)
, (B.24)

which in matrix form can be written as:

c±i j = m

 1 ±
√

3

±
√

3 3

 . (B.25)

For the term
(
/p−m

)
(gµν+P11 +P22), we have

(
/p−m

)
(gµν+P11 +P22) =

(
/p−m

)
gµν+

(
/p−m

)
(P11 +P22) , (B.26)
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where,

(
/p−m

)
(P11 +P22) = /pP11 + /pP22−mp11−mP22

= |p|/̂pp1 p1 + |p|/̂pp2 p2−mP11−mP22

= |p|p1 /̂pp1−|p|p2 /̂pp2−mP11−mP22

= |p|
(
P+

11−P−11
)
−|p|

(
P+

22−P−22
)
−mP11−mP22. (B.27)

which in matrix form can be written as:

d±i j = |p|

±1 0

0 ∓1

+m

−1 0

0 −1

 , (B.28)

adding the four matrices a±i j +b±i j + c±i j +d±i j we have

|p|

±1
√

3
√

3 ±3

+ |p|
 ∓2 −

√
3

−
√

3 0

+m

 1 ±
√

3

±
√

3 3

+ |p|
±1 0

0 ∓1

+m

−1 0

0 −1

 , (B.29)

|p|

±1∓±1
√

3−
√

3
√

3−
√

3 ±3∓1

+m

1−1 ±
√

3

±
√

3 3−1

= |p|

0 0

0 ±2

+m

 0 ±
√

3

±
√

3 2

 (B.30)

=

 0 ±
√

3m

±
√

3m ±2|p|+2m

 , (B.31)

what can be written as:

±
√

3±
√

3m±2|p|+2m = ±
√

3m
(
P+

12−P−12
)
±
√

3m
(
P+

21−P−21
)
±2|p|

(
P+

22−P−22
)
+2mP22

= ±
√

3m(P∗12 +P∗21)±2|p|P∗22 +2mP22, (B.32)
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where P∗12 = P+
12−P−12. So finally we can write Λ as

Λ =
(
/p−m

)
+γ/pγ− (pγ−γp)+mγγ

=
√

3m/̂p(P12 +P21)+2/̂p|p|P22 +2mP22 +
(
/p−m

)
P3/2

= 2
(
/p+m

)
P22 +

√
3m/̂p(P12 +P21)+

(
/p−m

)
P3/2. (B.33)

The propagator is the Green function, G=Λ−1, Λ transform as Λ(a)=R(a)ΛR(a), then Λ(a)−1 =R(a)−1Λ−1R(a)−1 =G(a),

so,

Λ = Λ3/2 +Λ1/2

=
(
/p−m

)
P3/2 +2

(
−/p−m

)
P22 +

√
3m/̂p(P12−P21) , (B.34)

(B.35)

and then the propagator can be written as:

Λ
−1 =

1
/p−m

P3/2 +

 0 ±
√

3m

±
√

3m 2|p|+2m

−1

, (B.36)

where we must find the inverse of the matrix in B.36. Taking into account the inverse of a matrix that can be

found as

 a −b

−c d

−1

=

d b

c a


(ad−bc) , then,

 0 ±
√

3m

±
√

3m ±2|p|+2m

−1

=

±2|p|+2m ∓
√

3m

∓
√

3m 0


3m2 (B.37)

Λ
−1 =

1
/p−m

P3/2 +

(
2/p+2m

)
P11−

√
3(P∗12 +P∗21)

3m2 . (B.38)

And as can be seen this is the expression for the propagator in Eq. 3.2
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Appendix C

ISOSPIN COEFFICIENTS

In this Appendix we calculate the isospin elements T for the equation 4.17 in three channel of pion−production

νµ− p→ µ−pπ+ (C.1)

νµ−n→ µ−nπ+ (C.2)

νµ−n→ µ−pπ0 (C.3)

W± =∓ 1√
2


1

±i

0

 (C.4)

τ1 =

 0 1

1 0

 , τ2 =

 0 −i

i 0

 , τ3 =

 1 0

0 −1

 (C.5)

Process νµ− p→ µ−pπ+

T1(m,m′) = χ†(m′)(τ ·W∗)(τ ·φ∗π)χ(m)

(τ ·W∗)(τ ·φ∗π) =−2

 1 0

0 0

 (C.6)
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T1(1/2,1/2) =−2
(

1 0
) 1 0

0 0

 1

0

=−2 (C.7)

Process νµ−n→ µ−nπ+

T1(m,m′) = χ†(m′)(τ ·W∗)(τ ·φ∗π)χ(m)

(τ ·W∗)(τ ·φ∗π) =−2

 1 0

0 0

 (C.8)

T1(−1/2,−1/2) =−2
(

0 1
) 1 0

0 0

 0

1

= 0 (C.9)

Process νµ−n→ µ−pπ0

T1(m,m′) = χ†(m′)(τ ·W∗)(τ ·φ∗π)χ(m)

(τ ·W∗)(τ ·φ∗π) =−
2√
2

 0 −1

0 0

 (C.10)

T1(−1/2,1/2) =− 2√
2

(
1 0

) 0 −1

0 0

 0

1

=
√

2 (C.11)

Process νµ−n→ µ−nπ+

T2(m,m′) = χ†(m′)(τ ·φ∗π)(τ ·W∗)χ(m)

92



(τ ·φ∗π)(τ ·W∗) =−2

 0 0

0 1

 (C.12)

T1(1/2,1/2) =−2
(

1 0
) 0 0

0 1

 1

0

= 0 (C.13)

Process νµ−n→ µ−nπ+

T2(m,m′) = χ†(m′)(τ ·φ∗π)(τ ·W∗)χ(m)

(τ ·φ∗π)(τ ·W∗) =−2

 0 0

0 1

 (C.14)

T2(−1/2,−1/2) =−2
(

0 1
) 0 0

0 1

 0

1

=−2 (C.15)

Process νµ−n→ µ−pπ0

T2(m,m′) = χ†(m′)(τ ·φ∗π)(τ ·W∗)χ(m)

(τ ·φ∗π)(τ ·W∗) =
2√
2

 0 1

0 0

 (C.16)

T2(−1/2,1/2) =
2√
2

(
1 0

) 0 1

0 0

 0

1

=
√

2 (C.17)
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Process νµ− p→ µ−pπ+

T3(m,m′) =−iχ†(m′)[(φ∗π×φπ′) ·W ∗](τ ·φ∗π′)χ(m)

(φ∗π×φπ′) ·W ∗ =−
1
2

∣∣∣∣∣∣∣∣∣
1 0 1

−i 0 i

0 1 0

∣∣∣∣∣∣∣∣∣= i (C.18)

(τ ·φ∗π′) =

 1 0

0 −1

 (C.19)

[(φ∗π×φπ′) ·W ∗](τ ·φ∗π′) = i

 1 0

0 −1

 (C.20)

T3(1/2,1/2) =
(

1 0
) 1 0

0 −1

 1

0

= 1 (C.21)

Process νµ−n→ µ−nπ+

T3(m,m′) =−iχ†(m′)[(φ∗π×φπ′) ·W∗](τ ·φ∗π′)χ(m)

[(φ∗π×φπ′) ·W∗](τ ·φ∗π′) = i

 1 0

0 −1

 (C.22)

T3(−1/2,−1/2) =
(

0 1
) 1 0

0 −1

 0

1

=−1 (C.23)
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Process νµ−n→ µ−pπ0

T3(m,m′) =−iχ†(m′)[(φ∗π×φπ′) ·W∗](τ ·φ∗π′)χ(m)

[(φ∗π×φπ′) ·W ∗](τ ·φ∗π′) =
2i√

2

 0 1

0 0

 (C.24)

T3(−1/2,1/2) =−i
(

1 0
) 2i√

2

 0 1

0 0

 0

1

=
√

2 (C.25)

Process νµ− p→ µ−pπ+

T4(m,m′) = iχ†(m′)[(φ∗π×τ) ·W∗]χ(m)

[(φ∗π×τ) ·W∗] =−1
2

∣∣∣∣∣∣∣∣∣
1 τ1 1

−i τ2 i

0 τ3 0

∣∣∣∣∣∣∣∣∣= iτ3 (C.26)

T4(1/2,1/2) = i
(

1 0
)

i

 1 0

0 −1

 1

0

=−1 (C.27)

Process νµ−n→ µ−nπ+

T4(m,m′) = iχ†(m′)[(φ∗π×τ) ·W∗]χ(m)
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[(φ∗π×τ) ·W∗] =−1
2

∣∣∣∣∣∣∣∣∣
1 τ1 1

−i τ2 i

0 τ3 0

∣∣∣∣∣∣∣∣∣= iτ3 (C.28)

T4(−1/2,−1/2) = i
(

0 1
)

i

 1 0

0 −1

 0

1

= 1 (C.29)

Process νµ−n→ µ−pπ0

T4(m,m′) = iχ†(m′)[(φ∗π×τ) ·W∗]χ(m)

[(φ∗π×τ) ·W∗] =
1
2

∣∣∣∣∣∣∣∣∣
0 τ1 1

0 τ2 i

1 τ3 0

∣∣∣∣∣∣∣∣∣=
2i√

2

 0 1

0 0

 (C.30)

T4(−1/2,1/2) = i
(

1 0
) 2i√

2

 0 1

0 0

 0

1

=−
√

2 (C.31)

Process νµ− p→ µ−pπ+

T5(m,m′) = χ†(m′)(φ∗π ·W∗)χ(m)

φ∗
π
·W∗ = 1√

2

(
−1 i 0

) 1√
2


1

i

0

=−1 (C.32)
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T5(1/2,1/2) =
(

1 0
)
(−1)

 1

0

=−1 (C.33)

Process νµ−n→ µ−nπ+

T5(−1/2,−1/2) =
(

1 0
)
(−1)

 0

1

=−1 (C.34)

Process νµ−n→ µ−pπ0

φ∗
π
·W∗ =

(
0 0 1

) 1√
2


1

i

0

= 0 (C.35)

T5(−1/2,1/2) = 0 (C.36)

T6 =−T3 (C.37)

To calculate isospin coefficients T7 and T8, we use the transition matrix T, that can be construct using the

Clebsch-Gordan coefficient. The matrix are given by

T1 =

 − 1√
2

0 1√
6

0

0 − 1√
6

0 1√
2

 , T2 =−i

 1√
2

0 1√
6

0

0 1√
6

0 1√
2

 , T3 =

 0
√

2
3 0 0

0 0
√

2
3 0

 .(C.38)

Process νµ− p→ µ−pπ+

T7(m,m′) = χ†(mt ′)(T ·W∗)(T†φ∗π)χ(mt)
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(T ·W∗)(T†φ∗π) =−

 0 0 1√
3

0

0 − 1√
6

0 1




0 0

0 0
1√
3

0

0 1

=

 1
3 0

0 1

 (C.39)

T7(1/2,1/2) =−
(

1 0
) 1

3 0

0 1

 1

0

 (C.40)

T7(1/2,1/2) =−1
3

(C.41)

Process νµ−n→ µ−nπ+

T7(−1/2,−1/2) =−
(

0 1
) 1

3 0

0 1

 0

1

 (C.42)

T7(−1/2,−1/2) =−1 (C.43)

Process νµ−n→ µ−pπ0

(T ·W∗)(T†φ∗π) =−

 0 0 1√
3

0

0 0 0 1




0 0√
2
3 0

0
√

2
3

0 0

=

 0
√

2
3

0 0

 (C.44)

T7(−1/2,1/2) =−
(

1 0
) 0

√
2

3

0 0

 0

1

 (C.45)

T7(−1/2,1/2) =

√
2

3
(C.46)

Process νµ− p→ µ−pπ+

T8(mt ,mt ′) = χ
†(mt ′)(T ·φ∗π)(T† ·W∗)χ(mt) (C.47)
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(T ·φ∗π)(T† ·W∗) =−

 1 0 0 0

0 1√
3

0 0




1 0

0 1√
3

0 0

0 0

=

 1 0

0 1
3

 (C.48)

T8(1/2,1/2) =−
(

1 0
) 1 0

0 1
3

 1

0

 (C.49)

T8(1/2,1/2) =−1 (C.50)

Process νµ−n→ µ−nπ+

T8(−1/2,−1/2) =−
(

0 1
) 1 0

0 1
3

 0

1

 (C.51)

T8(−1/2,−1/2) =−1
3

(C.52)

Process νµ−n→ µ−pπ0

(T ·φ∗π)(T† ·W∗) =−

 0
√

2
3 0 0

0 0
√

2
3 0




1 0

0 1√
3

0 0

0 0

=

 0
√

2
3

0 0

 (C.53)

T8(−1/2,1/2) =−
(

1 0
) 0

√
2

3

0 0

 0

1

 (C.54)

T8(−1/2,1/2) =−
√

2
3

(C.55)
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Appendix D

PROPAGATORS AND LAGRANGIANS FOR

BACKGROUND AND NON-RESONANT

AMPLITUDES

The propagators and interaction Lagrangians used to built amplitudes OBNwill be resumed here. First the

propagators, which come from the inversion of the kinetic operators present in the free Lagrangians are

S(p) =
6 p+mN

p2−m2 , nucleon (D.1)

∆(p) =
1

p2−m2
π

, pion (D.2)

Dµν(p) =
−gµν+

pµpν
m2

V

p2−m2
V

, vector-meson, (D.3)

while the effective strong interacting Lagrangians are

LπNN(x) = −gπNN

2mN
ψ̄(x)γ5γµτ · (∂µφ(x))ψ(x), (D.4)

LV NN(x) = −gV

2
ψ̄(x)

γµ
 ρµ(x) ·τ

ωµ(x)

− κV

2mN

σµν

∂
ν

 ρµ(x) ·τ
ωµ(x)


ψ(x), (D.5)

With V =ω,ρ. Now, we define the effective hadron weak Lagrangians
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LWNN(x) = − g
2
√

2
ψ(x)

[
γµFV

1 (Q2)− FV
2 (Q2)

2mN

σµν∂
ν−FA(Q2)γµγ5

]√
2WWWµ(x) · τ

2
ψ(x)+hc.,(D.6)

LWππ(x) = − g
2
√

2
FV

1 (Q2)
√

2 [φ(x)×∂µφ(x)] ·WWWµ(x), (D.7)

LWπNN(x) = − g
2
√

2
fπNN

mπ
FV

1 (Q2)ψ̄(x)γ5γµ
√

2(τ×φφφ(x)) ·WWWµψ(x), (D.8)

LWπρ(x) =
g

2
√

2
fρπAFA(Q2)

√
2(φφφ(x)×ρµ(x)) ·WWW (x)µ (D.9)

LWπω(x) = − g
2
√

2
gωπV

mω
FV

1 (Q2)εµαλν

(
∂
λφ(x)

)
· (∂µWWWα(x))ων(x). (D.10)
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