ANÁLISIS ESTÁTICO NO LINEAL (PUSHOVER) Y PUNTO DE DESEMPEÑO SÍSMICO EN UNA EDIFICACIÓN DE TRES PISOS EXISTENTE – REVISIÓN BIBLIOGRÁFICA Y CASO EJEMPLO

WILLMAN QUINTO QUINTO
EMIRO CHAVERRA MOYA

Monografía presentada Para optar al título de Especialista en Análisis y Diseño de Estructuras

Asesor
JUAN CARLOS VÉLEZ CADAVID, Doctor (PhD) en Ingeniería de Materiales

Universidad de Antioquia
Corporación Académica Ambiental
Especialización en Análisis y Diseño de Estructuras
Amalfi, Antioquia, Colombia
2022
Especialización en Análisis y Diseño de Estructuras, Cohorte X.

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.
Decano/Director: Jesús Francisco Vargas Bonilla.
Jefe departamento: Nombres y Apellidos.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.
Dedicatoria

Dedicado primeramente a Dios, él nos da poder para vivir y movernos, y para ser lo que somos. A mi querida familia, en especial a mi amada esposa Dina Marcela Maussa Moreno y a mis dos hermosos hijos Jonathan David Quinto M. y Cristall Quinto M. los amo, gracias por su apoyo y sacrificio, sin ustedes no lo hubiera logrado.

Willman Quinto

Agradecimientos

Quiero aprovechar la ocasión para agradecer el apoyo de toda mi familia en especial a mi Esposa Yalíle B. Suarez Romaña y a nuestro director de Monografía Ingeniero Doctor Juan Carlos Vélez C. a mis profesores y al mismo tiempo no olvidar a mis compañeros de Especialización que estuvieron compartiendo horas de estudio en los momentos más difíciles para el hacer realidad este sueño y gran logro

Emiro Chaverra
Tabla de contenido

Motivación .. 9
Objetivos ... 10
Objetivos específicos... 10
Marco teórico .. 11
1. Estado del arte... 13
 Análisis estático no lineal (push – over) de plastificación progresiva .. 15
 Procedimiento no lineal estático .. 16
 Espectro de capacidad .. 21
 Objetivos de desempeño y amenaza sísmica ... 22
Niveles de desempeño ... 22
 Niveles de Desempeño Estructural ... 23
 Ocupación Inmediata, SP-1.. 23
 Control de Daño, SP-2 .. 23
 Seguridad de Vida, SP-3 23
 Seguridad Limitada, SP-4 23
 Estabilidad Estructural, SP-5 23
 No Considerado, SP-6 .. 24
Nivel de desempeño no estructural .. 24
 Operacional, NP-A ... 24
 Ocupación Inmediata, NP-B 24
 Seguridad de Vida, NP-C ... 24
 Amenaza Reducida, NP-D .. 24
 No Considerado, NP-E .. 25
Lista de tablas

Tabla 1 Niveles de desempeño establecidos por el ATC-40 ... 21
Tabla 2 Combinación de Niveles de Desempeño Estructural y No Estructural, para conformar Niveles de Desempeño de la Edificación ... 26
Tabla 3 Definiendo un Objetivo de Desempeño .. 28
Tabla 4 Definiendo un Objetivo de Desempeño Dual ... 28
Tabla 5 Comparación de niveles de amenaza sísmica por norma .. 29
Tabla 6 Propiedades mecánicas de los materiales ... 34
Tabla 7 Peso propio losa de viguetas ... 36
Tabla 8 Carga muerta entrepiso planta tipo ... 36
Tabla 9 Peso planta tipo carga (D) .. 36
Tabla 10 Entrepiso de habitación carga viva tabla 4.2.1-1 ... 37
Tabla 11 Carga muerta lineal sobre viga principal (peso propio) ... 38
Tabla 12 Cargas lineales sobre viga principal .. 38
Lista de ilustraciones

Ilustración 1 Mapa de las placas tectónicas. La de Nazca se ve casi al centro, de color celeste 11
Ilustración 2 Curva de Capacidad Push-over ... 20
Ilustración 3 Curva de Demanda vs Capacidad ... 20
Ilustración 4 Representación gráfica del método del espectro de capacidad 22
Ilustración 5 Isométrico Edificación en Estudio ... 30
Ilustración 6 Planta Típica de la Edificación a Evaluar .. 31
Ilustración 7 Vista lateral derecha .. 31
Ilustración 8 Definición del Espectro de Aceleraciones .. 32
Ilustración 9 Esquema losa de viguetas ... 35
Ilustración 10 Curva Histerética del Modelo de Takeda en el concreto reforzado 35
Ilustración 11 Esquema losa de viguetas ... 37
Ilustración 12 Esquema pórtico analizado ... 38
Ilustración 13 Esquema pórtico de estudio ... 39
Ilustración 14 Introducción de cargas gravitacionales iniciales al pórtico plano, PP vigas 39
Ilustración 15 Introducción de cargas gravitacionales iniciales al pórtico plano, peso propio losa y sobre carga permanente ... 40
Ilustración 16 Introducción de cargas gravitacionales lineales al pórtico plano, Carga Viva 40
Ilustración 17 Definición de las cargas gravitacionales .. 41
Ilustración 18 Definición carga PUSH-OVER .. 42
Ilustración 19 Definición de carga lateral ... 43
Ilustración 20 Introducción fuerzas de piso .. 44
Ilustración 21 Rotula plástica para flexión en vigas en el programa Etabs 46
Ilustración 22 Asignación de Rotula plástica en el pórtico ... 47
Ilustración 23 Aparición de Rotulas plásticas en las vigas .. 48
Ilustración 24 Mecanismos de daños en la estructura ...48
Ilustración 25 Curva de capacidad pushover del pórtico de la estructura49
Ilustración 26 Curva demanda capacidad ..50
La vulnerabilidad sísmica es una de las grandes preocupaciones de los países que están ubicados en el cinturón de fuego del pacífico, entre ellos Colombia; en esta zona se presenta el noventa por ciento de la actividad sísmica del planeta y concentra la gran mayoría de volcanes activos del mundo (75 %), razón por la cual la placa tectónica se conoce con el nombre de cinturón de fuego.

El reglamento sismo resistente NSR-10 establecido mediante el decreto 926 de 2010 y modificado por el decreto 092 de 2011 establece los requisitos de carácter técnico y científico de obligatorio cumplimiento para las construcciones sismo resistentes en la nación colombiana.

Siendo Colombia uno de los países de Suramérica que mayor cantidad de leyes sanciona, en la etapa del cumplimiento y seguimiento de las normas presenta deficiencias. En este caso convergen dos términos muy similares gobernanza (normas y leyes) y gobernabilidad (hacerlas cumplir); por ello, a pesar de contar con un código sismo resisten, en el país la construcción de muchas edificaciones, en especial las viviendas se realizan obviando aspectos importantes de la norma, que pueden tener su origen en el desconocimiento de la misma, personal no calificado, falta de rigor en los entes gubernamentales a la hora de emitir licencias de construcción, entre otros.

De ahí la importancia de aplicar metodologías como el análisis no lineal (Pushover) que nos permite conocer de una forma aproximada el grado de vulnerabilidad o desempeño sísmico en que está sometida una edificación.

Este estudio pretende a través de una revisión bibliografía y la evaluación de una edificación existente, exponer como el análisis pushover puede ser una herramienta para considerar a la hora de analizar la vulnerabilidad sísmica de construcciones existen en el país.
Objetivos

Objetivo general

Realizar una revisión bibliográfica y un caso de estudio sobre Análisis estático no lineal (pushover) en edificaciones de tres pisos existentes.

Objetivos específicos

- Estudiar los conceptos y teorías más relevantes en el diseño por desempeño y comportamiento inelástico de estructuras.

- Evaluar una estructura de pórticos de concreto reforzado de uso residencial de tres niveles ubicada en una zona de amenaza sísmica alta

- Realizar un análisis no lineal estático (Pushover) de la estructura previamente Evaluada con el objetivo de determinar su curva de capacidad e interpretar su comportamiento no lineal.

- Analizar el desempeño sísmico de la estructura para establecer su nivel de desempeño o daño ante los movimientos sísmicos a los que puede estar sometida de acuerdo a las condiciones locales a partir del método del espectro de capacidad y las curvas de fragilidad.
Marco teórico

Uno de los grandes desafíos de la ingeniería estructural, es garantizar que las construcciones de las obras civiles sean seguras, tanto en condiciones de uso general cómo en situaciones relacionadas con eventualidades naturales como los sismos. Esta última condición, ha ocasionado un mayor interés y esfuerzo, en las investigaciones relacionadas con la reducción de los posibles efectos adversos que pueda generar un sismo de mayor o menor intensidad sobre las estructuras, y la actualización constante de las normas sismo resistentes de cada país.

Colombia por su localización geográfica es afectado por la actividad tectónica de las placas Nazca y Sudamérica (ver ilustración 1), siendo uno de los 30 países en los cuales el cinturón de fuego del pacífico tiene incidencia, esta zona presenta una mayor recurrencia en su actividad sísmica, comprometiendo de manera directa toda la costa pacífica del territorio colombiano.

Ilustración 1

Mapa de las placas tectónicas. La de Nazca se ve casi al centro, de color celeste

Fuente: WIKIPEDIA

Nuestro país es sísmicamente muy activo, esto se debe a su configuración geológica y tectónica. Hay diferentes placas que están en contacto y esto hace que se generen sismos en la mayor parte del territorio colombiano, principalmente en la costa del Pacífico, alrededor de nuestras cordilleras y en la Costa Caribe. Históricamente siempre ha sido así, explicaba Viviana Dionicio, coordinadora de la Red Sismológica Nacional del Servicio Geológico Colombiano en una columna de semana
Considerando lo anterior es claro que Colombia, se convierte en un actor importante con relación a la seguridad sísmica, por lo cual el desarrollo en cuanto a la construcción de las ciudades, asentamientos urbanos y suburbanos, no pueden hacerse de espaldas a esta realidad que vive el país. Conocer el comportamiento real de las estructuras ante una posible eventualidad sísmica, se convertiría en un insumo importante en la planificación del sistema nacional de gestión del riesgo, porque se busca de manera directa, la reducción considerable de víctimas mortales humanas.

De la misma manera, buscar la reducción de las pérdidas del patrimonio e impactos negativos en la economía de la nación tras un evento sísmico de gran magnitud, serían puntos por considerar en las construcciones civiles en el país. Podemos tomar como ejemplo la empobrecida Republica de Haití, la cual ostenta el tener el primer lugar con relación a la economía más pobre de América, que tras casi 12 años del terremoto ocurrido el 12 de enero del 2010, su economía aun sufre las consecuencias de este siniestro natural añadiendo un ingrediente ignorado en el desarrollo económico de esa nación.

Todo esto, debe ser analizado y tenido en cuenta, ya que en la actualidad ningún reglamento de sismo resistencia explícitamente exige la verificación de la protección a la propiedad, esto incluye a Colombia, aunque en las definiciones y consideraciones tiene como finalidad “reducir a un mínimo el riesgo de la pérdida de las vidas humanas, y defender en lo posible el patrimonio del Estado y los ciudadanos (A. 1.2.2.1)” (NSR-10, 2010)
1. Estado del arte

Conocer el desempeño real de las edificaciones no sería posible con los parámetros de la norma actual del código colombiano, según lo siguiente:

La NSR-10 se limita solamente a evaluar el comportamiento estructural de las edificaciones en rango elástico utilizando métodos estáticos elásticos (método de la Fuerza Horizontal Equivalente), que consiste fundamentalmente en reemplazar el efecto del sismo en un edificio por fuerzas horizontales equivalentes (divididas por un coeficiente de disipación de energía para el diseño sísmico), aplicadas en los niveles de las placas y calculadas de acuerdo a lo especificado por la norma sismorresistente” (Pulido, 2014, págs. 1-6)

Otro de los procedimientos utilizados en la norma son los dinámicos lineales que determinan las fuerzas y desplazamientos a través de un análisis modal, el método de espectro de respuesta y el método tiempo-historia son los más representativos. Estos últimos igual que el método de la fuerza horizontal equivalente evalúan la estructura en el ámbito lineal, cualquier comportamiento no lineal generaría un cambio en la rigidez y el amortiguamiento de la estructura. (Segura Hernández, 2021, pág. 27)

Por otra parte, el diseño por desempeño sísmico de estructuras está encaminado en predecir y evaluar el comportamiento real de la estructura, con lo cual el diseñador tomará decisiones más precisas, teniendo información sustentada en consideraciones con respecto al ciclo de vida del edificio.

El análisis no lineal (pushover) como todas las normas sismorresistentes nace de una necesidad. En los Estados Unidos varias edificaciones habían colapsado por los sismos que se presentaron en los años 70, debido a este suceso el gobierno del momento le encarga al Consejo de Tecnología Aplicado (ATC) trabajar en un documento que contemple una metodología para la evaluación y adecuación sísmica de edificios de hormigón existentes. Con estas metodologías se buscaba incrementar la ductilidad de las estructuras con el fin de disminuir las fallas frágiles y evitar colapsos inesperados. Es así como en 1997 La ATC junto con la Agencia Federal para el Manejo de Emergencias (FEMA) desarrollan un conjunto de guías para la rehabilitación sísmica de
edificaciones. Estas guías son las conocidas normas FEMA. En orden cronológico fueron apareciendo FEMA 273, FEMA 274, FEMA 310, FEMA 356, FEMA 440.

En el desarrollo de las normas FEMA también participó la ASCE (Sociedad Americana de Ingenieros Civiles), la cual contaba con múltiples investigadores de excelente renombre, y producto de estos trabajos de investigación nace la norma ASCE/SEI 31-03 reemplazando norma FEMA 310, cuyo objetivo principal consistía en desarrollar una metodología que pueda ser usada por un ingeniero no-especialista, el cual confiando en los procedimientos de las normas FEMA, pueda evaluar y comprobar la ductilidad de sus diseños. De esta forma se conseguiría llevar a todos los despachos de ingeniería, un conjunto de técnicas basadas en una investigación muy profunda, pero que pueda ser aplicada de forma sencilla.

Las normas siguieron evolucionando y en su orden nace en 2007 la norma ASCE/SEI 41-06, en 2014 ASCE/SEI 41-13 y posteriormente ASCE/SEI 41-17. Con el avance de estas normas que incluían procedimientos de análisis de los criterios de aceptación, se consigue llevar al terreno práctico las evaluaciones con los softwares actuales. (Zigurat, INESA)

El método de análisis inelástico más básico es el análisis completo tiempo historia no lineal, pero actualmente se considera excesivamente complejo y poco práctico para su uso general. Se encuentran métodos de análisis no lineales simplificados también llamados: procedimientos de análisis estáticos no lineales. Entre estos están: el método de espectro de capacidad (CSM) que utiliza la intersección de la curva de capacidad (PUSHOVER) y un espectro de respuesta reducido para estimar el desplazamiento máximo; el método de coeficiente de desplazamiento (por ejemplo, FEMA-273 (ATC 1996)) que utiliza el análisis PUSHOVER y una versión modificada de la aproximación de igual desplazamiento para estimar el desplazamiento máximo; y el método de la secante (por ejemplo, Ciudad de Los Ángeles, División 95 (COLA 1995)) que utiliza una estructura de sustitución y rigideces secantes.

Los análisis inelásticos ayudan a entender como las estructuras se comportarán cuando están sujetas a una solicitación que exceda su capacidad elástica. Esto resuelve algunas de las incertidumbres asociadas con los códigos de diseño y los procedimientos elásticos.
El desempeño de una estructura depende de su capacidad de resistir una demanda sísmica, y de su compatibilidad con los objetivos de diseño. Por ello los procedimientos de análisis no lineal simplificado, tal como el método del espectro de capacidad, requiere la determinación de 3 elementos primarios: capacidad, demanda y desempeño.

La metodología a emplear en la Evaluación Estructural estará basada en la FEMA – 356 y ATC – 40 en la cual están estipulados los lineamientos que se aplican para estructuras existentes. La metodología que desarrollaremos para la aplicación del Pushover definiendo el procedimiento a seguir para el desarrollo de un análisis estático no lineal de un programa de análisis y revisión estructural para conseguir la Curva de Capacidad y punto desempeño de la Edificación.

La NSR 10 en el apéndice A 3 relaciona el Método de análisis no lineal estático de plastificación progresiva A.3.4.2.4 como uno de los métodos mínimos a utilizar en el diseño estructural, mencionando lo siguiente:

Puede utilizarse el método del análisis no lineal estático, conocido como procedimiento “push-over” o de plastificación progresiva, en aquellos casos que a juicio del ingeniero diseñador se desee evaluar la capacidad de disipación de energía en el rango inelástico por este procedimiento. Cuando se utilice este método de análisis deben cumplirse los requisitos dados en el Apéndice A-3 y además se deben confrontar con otro de los métodos de análisis permitidos por el Reglamento, utilizando en el diseño lo más exigente. (NSR-10, 2010, p. A-45)

Análisis estático no lineal (push – over) de plastificación progresiva

Procedimiento de análisis sísmico también conocido como el método de la curva de capacidad. El análisis lineal estático no lineal viene siendo usado desde muchos años atrás en el diseño de estructuras para plataformas marinas y esta adoptado en varios países como una metodología para la evaluación, vulnerabilidad sísmica y rehabilitación de edificaciones.

El PUSH – OVER consiste en aplicarle ciertos desplazamientos a la estructura de la edificación con pequeños incrementos de manera monotónica hasta que llegue hasta el punto de colapso, algunas veces la falla se presenta después de los límites de la deriva permitida por normas, esto con el objeto de ver como es el comportamiento de cada elemento estructural8fluencia, pandeo o falla). Cada carga aplicada se marca en el punto del centro de masas de la cubierta. se registran
los cortantes en la base y los desplazamientos en el techo. Con esto se estima la curva de capacidad, la cual se compara con la demanda de varios espectros de diseño de acuerdo con la metodologías permitidas por la NSR-10 las cuales son la FEMA 356 y ATC 40.

Procedimiento no lineal estático

- **Diseño**
 Representa a la estructura en un modelo matemático donde represente la masa y la rigidez del sistema estructural estimando los efectos de la no linealidad del material de los componentes que excedan el límite de deformación, incluir los efectos P-Delta en el análisis.

 Las propiedades de los elementos y componentes más allá de fluencia deben tener en cuenta la degradación de la resistencia y la rigidez de acuerdo con los principios de la mecánica estructural o los resultados de ensayos experimentales. El modelo para las columnas debe tener en cuenta la influencia de la carga axial cuando se excede el 15% de la resistencia a la compresión. Igualmente se deben considerar los efectos de fisuración de la sección en el caso de las propiedades de rigidez de elementos de concreto y mampostería, así como la contribución de las deformaciones de las zonas de panel para los desplazamientos generalizados de piso en los pórticos de acero resistentes a momentos. (A-3.2, NSR-10, 2010, p. A-149)

- **Análisis**
 La estructura se debe analizar para la aplicación de las acciones sísmicas ocurriendo simultáneamente con los efectos de carga muerta combinadas con no menos del 25 por ciento de las cargas vivas requeridas por el diseño, reducidas como se permita para el área de un piso individual.

 Al incremento j de la carga lateral, el total de la fuerza lateral aplicada al modelo se debe caracterizar por el término Vj. El primer incremento en la carga lateral debe producir un comportamiento elástico. En cada paso del análisis se debe registrar el total de la fuerza lateral aplicada Vj, el desplazamiento lateral del punto de control j y las fuerzas y deformaciones de cada
componente. El análisis se debe continuar hasta que el desplazamiento del punto de control sea por lo menos 150% del desplazamiento objetivo determinado por la ecuación A-3.2.2. NSR-10

donde:
\[Sa = \text{Coeficiente obtenido de la aceleración de la Sección A.2.6 para el periodo fundamental efectivo } Te. \]
\[g = \text{es la aceleración debido a la gravedad} \]

El coeficiente \(C_0 \) se debe calcular utilizando la ecuación A-3.2.3. NSR-10

\[mi = \text{la porción de la masa total } M \text{ localizada en el Nivel i} \]
\[\Phi_i = \text{la amplitud del vector característico de forma al Nivel i} \]

Cuando el periodo fundamental efectivo de la estructura en la dirección bajo consideración, \(Te \), es mayor que el periodo de vibración \(T_c \) como lo define el numeral A.2.6.1.1, NSR-10 el coeficiente \(C_1 \) se debe tomar como 1.0. De lo contrario el valor del coeficiente \(C_1 \) se debe calcular utilizando la ecuación A-3.2.4 NSR-10 de la siguiente manera.

Donde: \(Rd \) es el factor de ductilidad del sistema analizado por “push-over”, dado por la ecuación A-3.2-5 NSR-10

\[T_c \] se define arriba, \(V \) y resistencia efectiva a la fluencia determinada de una curva bilineal ajustada a la curva de capacidad de acuerdo con la Sección A-3.2.3, \(S_a \) es la aceleración espectral del diseño en el periodo efectivo fundamental, \(T_e \) es el período efectivo fundamental definido en la sección A-3.2.3 y \(M \) se define en la Sección A-3.1.4. NSR-10.

\(T_1, V_1, \delta_1 \) se determinan en el primer incremento de la carga lateral
AL finalizar todo el diseño y análisis se debe tener en cuenta dos \(/2 \) datos para determinar el nivel de daño de la estructura como es el desempeño entre la capacidad y la demanda
• Capacidad

La capacidad de una edificación depende de la resistencia de los materiales como la deformación de cada uno de los elementos de la estructura sismorrresistente, para valorar está por encima de su límite elástico se utiliza el Push-over.

En el análisis no lineal lo que se tiene en cuenta es la perdida de rigidez de los elementos estructurales con la degradación que sufre la rigidez en el punto de fluencia hasta que alcance el límite de resistencia de la estructura.

• Demanda

La demanda de la estructura depende del sismo de diseño o del desplazamiento máximo que se tenga en el máximo permitido de desplazamiento (derivas) con el espectro de respuesta seleccionado, el caso de la NSR-10 lo estipula para un sismo de diseño de 475 años, que es donde coincide para la Seguridad de Vida. En la figura 3 se presenta una curva de capacidad para diferentes espectros de demanda Av, Aa para 0.10seg, Av, Aa para 0.20seg, y Av, Aa para 0.30seg, las cuales resultan varias espectros de respuestas para un mismo sismo con diferentes demandas de capacidad.

La evaluación del desempeño de la estructura utilizando el Análisis Estático No Lineal (Push-over) no se tiene en cuenta el límite máximo de desplazamiento si no que podríamos avanzar un poco más allá de este límite de diseño hasta alcanzar el punto de desempeño de la Edificación. El espectro de respuesta que normalmente se usa es el de aceleración espectral comparado con el periodo de la estructura (Sa vs T), debemos cambiar el periodo (T) por desplazamientos (sd) para tener la gráfica de Aceleraciones – Desplazamientos.

• Desempeño

Ya obtenido el cálculo de la capacidad y fijado la demanda se cuenta con criterios para definir el desempeño de la estructura, estos lineamientos los podemos elegir tanto de la ATC 40 como la FEMA 356 y estipulas 3 categorías las cuales están supeditadas por el ángulo de giro que
tiene las tablas 11-3 y 11-4 de la ATC 40 o las tablas 5 - 7 y 6 - 8 de la FEMA 356, donde están los límites que toman las rotulas plásticas primarias como secundarias.

1. Ocupación inmediata (IO)

 En este nivel de desempeño no se presentan daños o fisuras de relevancia estructural y no existen desplazamientos después de la ocurrencia del sismo. La edificación sigue funcionando normalmente.

2. Seguridad de vida (IS)

 En este nivel de desempeño se presenta la falla, pero la estructura no colapsa, da espera para evacuar pero va a tener muchos daños, se presentan muchas rotulas. Hasta este nivel la NSR-10 permite llegar considerando que la estructura resiste las cargas gravitacionales, basándose en los coeficientes de FEMA 356.

3. Colapso preventivo (CP)

 En este nivel de desempeño la estructura está a punto de colapsar, es decir la edificación queda casi totalmente dañada o inservible ver lustración 2 y 3.
Ilustración 2
Curva de Capacidad Push-over

Fuente: Trabajo final para la Maestría, Universidad Politécnica de Valencia. Análisis estático no lineal (pushover) de estructura a porticada de hormigón armado con diferentes grados de ductilidad. aplicando la norma sismorresistente colombiana 2010 (NSR-10)

Ilustración 3
Curva de Demanda vs Capacidad

Fuente: Trabajo final para la Maestría, Universidad Politécnica de Valencia. Análisis estático no lineal (pushover) de estructura a porticada de hormigón armado con diferentes grados de ductilidad. aplicando la norma sismorresistente colombiana 2010 (NSR-10)
Para conocer el comportamiento sísmico esperado de la Edificación, debemos proporcionarle un Objetivo de desempeño que se define como la selección de un nivel de desempeño del edificio deseado para un determinado movimiento sísmico existente para poder determinar cuál sería el más adecuado para la edificación (Duarte Bonilla et al. 2017, pág. 67) Ver tabla 1

Tabla 1
Niveles de desempeño establecidos por el ATC-40

<table>
<thead>
<tr>
<th>Operacional (1-A)</th>
<th>Ocupacional inmediata (1-B)</th>
<th>Seguridad de vida (3-C)</th>
<th>Estabilidad estructural (5-E)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para la determinación de las curvas de capacidad después de aplicar los desplazamientos con el Pushover de cada carga lateral aplicada procederíamos a escoger la de menor capacidad que representaría el punto de desempeño más desfavorable y representarla en forma bilineal.

Espectro de capacidad

El método del espectro de capacidad consta de la aplicación de un pushover o análisis estático no lineal para representar la capacidad de la estructura de resistir carga lateral, la representación de la demanda en términos de desplazamiento de la estructura bajo la acción sísmica, y la verificación del desempeño adecuado al comparar la capacidad de la estructura versus la demanda sísmica. Ver Ilustración 4
Objetivos de desempeño y amenaza sísmica

Un objetivo de desempeño especifica el comportamiento deseado de la estructura bajo la demanda sísmica. Se establece al definir el máximo estado permisible de daño (nivel de desempeño) para una amenaza sísmica identificada (nivel de amenaza sísmica).

Niveles de desempeño

Un nivel de desempeño describe una condición límite de daño para una determinada edificación a un determinado sismo. La condición límite se define mediante el nivel de daño físico de la estructura, la amenaza a la vida de los ocupantes, y la operabilidad que tendría después del evento sísmico.

Están descritos de manera independiente, entre elementos estructurales y no estructurales, definidos con números para los estructurales, y letras para los no estructurales. Juntos conforman el Nivel de Desempeño de la Edificación.

\[
\text{Nivel de Desempeño de la Edificación} = \text{Nivel de Desempeño Estructural} + \text{Nivel de Desempeño No Estructural}
\]
Niveles de Desempeño Estructural

Están definidos mediante un nombre y un número, a este último se le llama número de desempeño estructural, y se abrevia **SP-n** (SP: Structural Performance), donde n es el número designado. Esta clasificación se presenta a continuación.

Ocupación Inmediata, SP-1. Estado post-sismo en el cual ha ocurrido un daño muy limitado. Los sistemas básicos de resistencia a carga vertical y lateral mantienen casi todas sus características y capacidades pre-sismo. Se desprecia el riesgo a lesiones potencialmente mortales por falla estructural, y la estructura es segura para su egreso, ingreso y ocupación.

Control de Daño, SP-2. Es el estado de daño entre el nivel de Ocupación Inmediata, y el nivel de Seguridad de Vida. Aplicable a situaciones en las que se desea limitar el daño estructural más allá del nivel de Seguridad de Vida, sin requerir la inmediata ocupación. Ejemplos para este caso serían la protección de edificios históricos, arquitecturas importantes o contenidos valiosos.

Seguridad de Vida, SP-3. Estado post-sismo en el cual pudo haber ocurrido un daño significativo con algún margen remanente contra el colapso total o parcial de la estructura. Aunque pueden ocurrir lesiones menores en las personas durante el evento sísmico, el riesgo a lesiones mortales es muy bajo. Se espera que sea necesario llevar a cabo reparaciones estructurales extensas previas a la ocupación de la estructura, aunque el daño no siempre será económicamente reparable. Se pretende que este nivel de desempeño sea menor al desempeño esperado de edificios nuevos que cumplan con las normativas de diseño sismorresistente.

Seguridad Limitada, SP-4. Es el estado de daño entre el nivel de Seguridad de Vida y el nivel de Estabilidad Estructural. Aplicable a situaciones en las que una rehabilitación podría no cumplir con todos los requerimientos estructurales para el nivel de Seguridad de Vida, pero es mejor que el nivel de Estabilidad Estructural.

Estabilidad Estructural, SP-5. Corresponde al estado post-sismo límite de daño, en el cual el sistema estructural está al borde de experimentar el colapso parcial o total. Ha ocurrido un daño substancial, incluyendo degradación significativa potencial de la resistencia y rigidez del sistema resistente a carga lateral. Sin embargo, todos los componentes del sistema resistente a carga gravitacional continúan trabajando. Aunque la edificación mantiene su estabilidad global, puede existir un riesgo considerable de lesiones debidas a derrumbes de elementos, o si existiesen replicas sísmicas, estaría propensa al colapso. Debe esperarse que una reparación estructural considerable
sea necesaria antes de su reocupación. En edificaciones muy antiguas, puede que no exista posibilidad técnica o económica de reparación.

No Considerado, SP-6. Este no es un nivel de desempeño, pero proporciona un estado para situaciones en las que se lleva a cabo sólo una evaluación o adecuación sísmica a miembros no estructurales

Nivel de desempeño no estructural

Se definen mediante un nombre y una letra, esta última llamada letra de desempeño no estructural, y se abrevia mediante NP-n (NP: Nonstructural Performance), siendo n la letra designada.

Operacional, NP-A. Estado post-sismo donde todos los elementos y sistemas no estructurales están generalmente en su sitio y funcionando. Aunque se espere alguna alteración y limpieza posterior, todos los equipos y maquinarias deben continuar trabajando. Sin embargo, puede que se requiera la reparación de instalaciones exteriores. Deben preverse planes de contingencia para lidiar con posibles dificultades en la comunicación externa, transporte y disponibilidad de suministros.

Ocupación Inmediata, NP-B. Estado post-sismo en el que elementos y sistemas no estructurales permanecen generalmente en su sitio. Debe esperarse alteración y limpieza posterior, particularmente debido a daño o movimiento de cosas. Aunque los equipos y maquinarias estén debidamente anclados o sujetados, no se considera su funcionalidad luego del evento. Todos los suministros externos pueden no estar en su sitio. La seguridad no debe verse afectada.

Seguridad de Vida, NP-C. Estado post-sismo que podría incluir un daño considerable a componentes y sistemas no estructurales, pero no debe ocurrir algún colapso o caída de elementos lo suficientemente pesados como para causar lesiones graves dentro o fuera de la edificación. No se espera que existan riesgos secundarios por roturas en tuberías de alta presión, tóxicas o de extinción de incendios. Los sistemas, equipos y maquinaria no estructurales no funcionarán sin reemplazo o reparación. Si bien pueden ocurrir lesiones durante el sismo, el riesgo de que sean potencialmente mortales por este tipo de daño es muy bajo.

Amenaza Reducida, NP-D. Estado de daños post-sismo en el que se espera un daño extenso a componentes y sistemas no estructurales, pero sin ocurrencia del colapso o caída de objetos grandes y pesados causantes de lesiones importantes a grupos de personas, como parapetos, mampostería,
paredes exteriores, o techos pesados. Si bien pueden ocurrir lesiones graves aisladas, el riesgo de falla que conlleve poner en riesgo a un gran número de personas dentro o fuera del edificio es muy bajo.

No Considerado, NP-E. No se evalúan elementos no estructurales, distintos a aquellos que tengan un efecto en la respuesta no estructural. No es un nivel de desempeño, pero proporciona una designación al caso en el que los elementos no estructurales no son considerados a menos que afecten directamente a la respuesta estructural, como paredes de mampostería rellenas, o alguna otra tabiquería pesada.

Nivel de desempeño de la edificación

La combinación de un nivel de desempeño estructural con un nivel de desempeño no estructural forma el nivel de desempeño de la edificación, en orden de describir el estado de daño límite deseado. A continuación, se presenta una tabla, en la cual se combinan los niveles de desempeño estructural y no estructural. Las cuatro combinaciones más comunes se muestran resaltadas, y son: 1-A Operacional, 1-B Inmediata Ocupación, 3-C Seguridad de Vida, y 5-E Estabilidad Estructural. La recomendación es la utilización de una de ellas. Ver tabla 2
Tabla 2
Combinación de Niveles de Desempeño Estructural y No Estructural, para conformar Niveles de Desempeño de la Edificación

<table>
<thead>
<tr>
<th>Niveles de desempeño estructural</th>
<th>SP-1 Ocupación Inmediata</th>
<th>SP-2 Control de Daños (Rango)</th>
<th>SP-3 Seguridad de Vida</th>
<th>SP-4 Seguridad Limitada (Rango)</th>
<th>SP-5 Estabilidad Estructural</th>
<th>SP-6 No Considerado</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-A Operacional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-B Ocupación Inmediata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-C Seguridad de Vida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-D Amenaza Reducida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-E No Considerado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-A Operacional</td>
<td>2-A</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>1-B Ocupación Inmediata</td>
<td>2-B</td>
<td>3-B</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>1-C</td>
<td>2-C</td>
<td>3-C</td>
<td>4-C</td>
<td>5-C</td>
<td>6-C</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>2-D</td>
<td>3-D</td>
<td>4-D</td>
<td>5-D</td>
<td>6-D</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>3-E</td>
<td>4-E</td>
<td>5-E Estabilidad Estructural</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Nota. Nivel de Desempeño de la Edificación comúnmente utilizado (SP-NP)

Otras posibles combinaciones de SP-NP

Combinación No Recomendada de SP-NP

Nota. Fuente: Adaptación del ATC-40 (1996)

Nivel de amenaza sísmica

El movimiento sísmico del terreno puede expresarse bien sea al especificar el nivel de movimiento asociado a una probabilidad de ocurrencia (enfoque probabilístico), o, en términos del máximo movimiento esperado de un único evento con una determinada magnitud en una falla específica.
(enfoque determinístico). Para su uso en el diseño, se expresa en términos de un espectro de respuesta, o una serie equivalente de registros simulados de movimientos del terreno.

Los niveles de amenaza sísmica utilizados, se definen como:

Sismo de Servicio (SE)

Movimiento del terreno con un 50% de probabilidad de excedencia en un período de 50 años. Período de retorno $T \approx 75$ años.

Sismo de Diseño (DE)

Movimiento del terreno con un 10% de probabilidad de excedencia en un período de 50 años. Período de retorno $T \approx 500$ años

Sismo Máximo (ME)

Máximo nivel de movimiento del terreno esperado conociendo los aspectos geológicos del sitio debido a un evento único (atenuación media), o, el movimiento del terreno con un 5% de probabilidad de excedencia en un período de 50 años. Período de retorno $T \approx 1000$ años Seismic Evaluation and Retrofit of Concrete Buildings ATC-40.

Objetivos de desempeño

Un objetivo de desempeño sísmico se define al seleccionar un nivel de desempeño deseado para un nivel de sismo establecido, como se muestra en la tabla a continuación. Ver tabla 3
Tabla 3
Definiendo un Objetivo de Desempeño

<table>
<thead>
<tr>
<th>Nivel de Desempeño la Edificación</th>
<th>Nivel de Sismo</th>
<th>Operacional</th>
<th>Ocupación Inmediata</th>
<th>Seguridad de Vida</th>
<th>Estabilidad Estructural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sismo de Servicio (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismo de Diseño (DE)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sismo Máximo (ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Es posible definir un objetivo de desempeño dual o de múltiples niveles, al seleccionar dos o más niveles de desempeño deseados, cada uno para un nivel de amenaza sísmica distinto. Se muestra una tabla a continuación con este caso. (© Zigurat Consultoría de Formación Técnica S.L, © INESA adiestramiento, & © Sísmica adiestramiento)

Tabla 4
Definiendo un Objetivo de Desempeño Dual

<table>
<thead>
<tr>
<th>Nivel de Desempeño de la Edificación</th>
<th>Nivel de Sismo</th>
<th>Operacional</th>
<th>Ocupación Inmediata</th>
<th>Seguridad de Vida</th>
<th>Estabilidad Estructural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sismo de Servicio (SE)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sismo de Diseño (DE)</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Sismo Máximo (ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Norma</th>
<th>Movimiento sísmico de diseño</th>
<th>Intervalo de frecuencia</th>
<th>Probabilidad de excedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAOC-VISION 2000,1995</td>
<td>Frecuente</td>
<td>43 años</td>
<td>50 % en 30 años</td>
</tr>
<tr>
<td>FEMA 273</td>
<td></td>
<td>72 años</td>
<td>50 % en 50 años</td>
</tr>
<tr>
<td>NEC2015</td>
<td></td>
<td>2500 años</td>
<td>2 % en 50 años</td>
</tr>
<tr>
<td>SEAOC-VISION 2000,1995</td>
<td></td>
<td>72 años</td>
<td>50 % en 50 años</td>
</tr>
<tr>
<td>FEMA 273</td>
<td>Ocasional</td>
<td>225 años</td>
<td>20 % en 50 años</td>
</tr>
<tr>
<td>NEC2015</td>
<td></td>
<td>475 años</td>
<td>10 % en 50 años</td>
</tr>
<tr>
<td>SEAOC-VISION 2000,1995</td>
<td></td>
<td>475 años</td>
<td>10 % en 50 años</td>
</tr>
<tr>
<td>FEMA 273</td>
<td>Raro</td>
<td>474 años</td>
<td>10 % en 50 años</td>
</tr>
<tr>
<td>NEC2015</td>
<td></td>
<td>225 años</td>
<td>20 % en 50 años</td>
</tr>
<tr>
<td>SEAOC-VISION 2000,1995</td>
<td></td>
<td>950 años</td>
<td>10 % en 100 años</td>
</tr>
<tr>
<td>FEMA 273</td>
<td>Muy Raro</td>
<td>2475 años</td>
<td>2 % en 50 años</td>
</tr>
<tr>
<td>NEC2015</td>
<td></td>
<td>72 años</td>
<td>50 % en 50 años</td>
</tr>
</tbody>
</table>

Nota. Fuente: Propia
2. Caso Estudio

Características de la edificación a evaluar

La edificación que se evaluara en este documento se ubica en la ciudad de Carepa Antioquia y consiste en un sistema de pórticos de concreto reforzados resistentes a momentos, de 7 ejes en el sentido horizontal o Y, con distancias entre columnas de 4m, 2 ejes en el sentido X, con distancias entre columnas 6.50m y presenta 3 niveles con una altura de entrepiso de 3.0 m, la planta típica de la edificación es la que se muestra en las Ilustración 5, 6 y 7.

Ilustración 5
Isométrico Edificación en Estudio

Nota. Fuente: Propia programa Cypecad
Parámetros sísmicos de diseño.

Para llevar a cabo el estudio y análisis de la estructura se han utilizado los requisitos exigidos por la NSR – 10 según lo contemplado en su capítulo A.2, la zona de amenaza sísmica a la que pertenece la edificación es alta con una aceleración pico efectiva (Aa) de 0.25g, velocidad pico
efectiva (Av) de 0.25g, Tipo de perfil de suelo es D, coeficiente de amplificación que afecta la aceleración en la zona de períodos cortos, debida a los efectos de sitio Fa es de 1.30, Coeficiente de amplificación del suelo Fv de 1.90.

Los niveles desempeño para nuestra Edificación en estudio lo realizaremos desde las recomendaciones de FEMA 356 para diferentes Amenazas sísmicas para verificar su comportamiento estructural con los siguientes casos:

Sismo Frecuente (43 años) para un nivel de daño completamente funcional
Sismo Ocasional (72 años) para un nivel de daño funcional
Sismo Excepcional el que está relacionado con la NSR-10 (475 años) para un nivel de daño seguridad de vida.
Sismo Extremo el que está relacionado con la NSR-10 (970 años) para un nivel de daño prevención del colapso.

A continuación, se define el espectro de aceleración lustración 8

Ilustración 8

Definición del Espectro de Aceleraciones

![Ilustración 8](Image)

Nota. Fuente: Propia

Análisis de Irregularidades y Coeficiente de Disipación de Energía
Debido a las características geométricas y estructurales del proyecto, se cuentan con los siguientes valores:

Ro= 7.0 Muros de concreto con capacidad especial de disipación de energía (DES)
Φa=1,0 (Coeficiente de irregularidad en altura)
Φp=1,0 (Coeficiente de irregularidad en planta)
Φr=0,71 (Coeficiente de redundancia)

En la sección A3.3.8.2 NSR-10, existen verificaciones que deben realizarse en la conformación estructural para poder tomar el valor de φr=0.71, pero teniendo en cuenta la configuración de pórticos en la página 62 y la tabla 1.8 de valores del coeficiente básico debido a la redundancia del libro de Roberto Rochel Awad

Para fines en la evaluación del nivel de desempeño se establece un R=1.00.

Modelo matemático

El modelamiento de esta edificación se realiza teniendo en cuenta el sistema estructural de la misma, utilizando el programa de elementos finitos ETABS V.19.0.0, para esto se tuvieron en cuenta las características de los materiales, dimensiones de los elementos que componen la estructura y el modelo arquitectónico para el cual se realiza el estudio del pórtico bidimensional más desfavorable de la estructura.

Propiedades de los materiales.

Teniendo en cuenta que los materiales con los cuales será estudiada la edificación son aproximaciones de acuerdo a la visita en campo y la tecnología aplicada en la construcción de la misma edificación.

Materiales existentes

A continuación, se detallan las propiedades mecánicas de los materiales de la edificación

Tabla 6.
Tabla 6
Propiedades mecánicas de los materiales

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Material</th>
<th>f_c (kg/cm²)</th>
<th>f_y (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columnas</td>
<td>175.00</td>
<td>4200</td>
<td></td>
</tr>
<tr>
<td>Vigas</td>
<td>175.00</td>
<td>4200</td>
<td></td>
</tr>
</tbody>
</table>

Nota. Fuente propia

Dimensionamiento y refuerzos secciones existentes

Las dimensiones y refuerzos existentes son las siguientes:

- Columnas
 - Sección de 30 x 30 cm
 - Refuerzo: Longitudinal 6 barras de 5/8"
 - Transversal: 9 estribos N°3/ c/10cm apoyos y área central cada 20 cm
- Vigas
 - Sección de 30 x 30 cm
 - Refuerzo: Longitudinal superior 3 barras de 5/8"
 - Longitudinal inferior 4 barras de 7/8"
 - Transversal: estribos N°3/ c/10 cm apoyos y área central cada 20 cm
 - Losa de viguetas detalla en la ilustración 9 tiene un espesor de placa de 5 cm y viguetas de 10 x 25 cm con un inter eje de 55 cm
 - Refuerzo: Longitudinal superior barras de N° 4
 - Longitudinal inferior 2 barras de N 7"
 - Transversal: estribos N°2/ c/25 cm
Ilustración 9
Esquema losa de viguetas

Nota. Fuente: Propia

Con estas dimensiones y refuerzos se realiza el análisis dinámico correspondiente para conocer fuerzas estáticas y posterior evaluación del análisis no lineal.

Propiedades No Lineales del Concreto y del Acero
Para los elementos en concreto reforzado del pórtico Utilizaremos del Progama Etabs un tipo de curva Histeretica la del modelo Takeda, la cual es un modelo Bilineal que incluye carga y descarga de rigideces y para el concreto simple usaremos la de Mandel, ver ilustración 10

Ilustración 10
Curva Histeretica del Modelo de Takeda en el concreto reforzado

Fuente: Programa Etabs
Evaluación de las cargas

En la definición de las cargas que actúan sobre la edificación se debe tener en cuenta que su uso es residencial.

- Análisis de carga muerta y viva

Tabla 7
Peso propio losa de viguetas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>largo (m)</th>
<th>ancho (m)</th>
<th>espesor (m)</th>
<th>kN/m³</th>
<th>1/A aferente</th>
<th>Total Kn/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>placa</td>
<td>1.00</td>
<td>1.00</td>
<td>0.05</td>
<td>24</td>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>nervio</td>
<td>1.00</td>
<td>0.12</td>
<td>0.25</td>
<td>24</td>
<td>1.82</td>
<td>1.31</td>
</tr>
<tr>
<td>Aligerante en icopor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>Peso Total Kn/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.86</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia

Tabla 8
Carga muerta entrepiso planta tipo

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Carga superficial (KN/m²)</th>
<th>Tabla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particiones y fachadas</td>
<td>3.00</td>
<td>B.3.4.3-1</td>
</tr>
<tr>
<td>Afinado de pisos y cubierta</td>
<td>1.60</td>
<td>B.3.4.3-1</td>
</tr>
<tr>
<td>Ductos mecánicos</td>
<td>0.30</td>
<td>B.3.4.1-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.90</td>
<td></td>
</tr>
</tbody>
</table>

Nota. Fuente: propia

Tabla 9
Peso planta tipo carga (D)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>KN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso propio losa de viguetas</td>
<td>2.86</td>
</tr>
<tr>
<td>Carga muerta entrepiso</td>
<td>4.90</td>
</tr>
<tr>
<td>Peso planta tipo</td>
<td>7.76</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia
• Cargas Vivas

Se definen las cargas vivas mínimas uniformemente distribuidas de diseño según la Tabla B.4.2.1-1.

Tabla 10
Entrepiso de habitación carga viva tabla 4.2.1-1

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Carga superficial</th>
<th>Tabla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balcón</td>
<td>5.00</td>
<td>B.4.2.1-1</td>
</tr>
<tr>
<td>Cuartos privados y corredores</td>
<td>1.80</td>
<td>B.4.2.1-1</td>
</tr>
<tr>
<td>Escaleras</td>
<td>3.00</td>
<td>B.4.2.1-1</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia

A continuación, se procede a cargar la vigueta con las cargas analizadas ilustración 11

Ilustración 11
Esquema losa de viguetas

Una vez obtenidas las reacciones D=17.246 KN y L= 3.99 KN producidas en el apoyo del eje D, más el peso propio de la viga del pórtico a analizar, se calcula la carga uniforme distribuida a aplicar en el pórtico ver ilustración 12
Ilustración 12
Esquema pórtico analizado

Fuente: propia

Tabla 11
Carga muerta lineal sobre viga principal (peso propio)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>h (m)</th>
<th>a (m)</th>
<th>KN/m3</th>
<th>KN/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga sobre viga principal</td>
<td>0.30</td>
<td>0.30</td>
<td>24</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia

Tabla 12
Cargas lineales sobre viga principal

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Reacciones (KN)</th>
<th>Ancho aferente (m)</th>
<th>KN/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga D</td>
<td>17.25</td>
<td>0.55</td>
<td>31.36</td>
</tr>
<tr>
<td>Carga L</td>
<td>4.00</td>
<td>0.55</td>
<td>7.27</td>
</tr>
<tr>
<td>Carga PP Viga</td>
<td></td>
<td></td>
<td>2.16</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia
A continuación, se detalla el modelo modelado en el programa de diseño Etabs ilustración 13

Ilustración 13
Esquema pórtico de estudio

Fuente: programa de diseño Etabs

Análisis del pórtico en el programa de diseño Etabs

Asignación de cargar gravitacionales en el modelo Lustraciones 14, 15 y 16

Ilustración 14
Introducción de cargas gravitacionales iniciales al pórtico plano, PP vigas

Fuente: programa de diseño Etabs
Ilustración 15
Introducción de cargas gravitacionales iniciales al pórtico plano, peso propio losa y sobre carga permanente

Fuente: programa de diseño Etabs

Ilustración 16
Introducción de cargas gravitacionales lineales al pórtico plano, Carga Viva

Fuente: programa de diseño Etabs
Combinación de cargas:

U1: 1.4CP

U2: 1.2CP + 1.6C.V.

U3: 1.2CP + 1.0C.V. + SX

U4: 0.9CP + SX

Donde, CP = D + S.C.P.

Descripción del proceso de análisis mediante el *programa ETABS V 19.0*

Carga gravitacional del estado inicial No lineal

Son los parámetros de carga vertical inicial para empezar el análisis Estático No Lineal o Pushover. Se Definen dos casos de cargas para el análisis no lineal de la edificación, donde contienen las cargas por peso propio y la sobre carga muerta y un 25% de la carga viva, mayoradas por un factor de 1.10. ver ilustración 17

Ilustración 17

Definición de las cargas gravitacionales

![Load Case Data](image)

Fuente: programa de diseño Etabs
Pushover con patrón de cargas por Modo 1 y Fuerzas (No Lineal)

Definimos 2 casos de cargas para el análisis de cargas laterales para la dirección X que se iniciarían en el último estado del caso de Carga Gravitacional.

Pushover con patrón de cargas por Modo 1 (No Lineal)

Se define que la carga debe iniciar como tipo del modo fundamental 1 con un factor de escala de 1. Ya no iniciaría desde cero sino desde que empieza la fisuración de los elementos.

Para los otros parámetros los definimos de la siguiente manera:

- **Load aplicación, asumir o calcular con las fórmulas del apéndice A de la NSR-10 o en su reemplazolo la deriva que tendría la edificación el desplazamiento máximo como parámetro de control, se requiere especificar un nudo de la cubierta para registrar los desplazamientos en este punto.**

- **Múltiple states, múltiple estados, mínimum y máximum number mínimo y máximos pasos guardados, save positive displacement incrementos only, guardar los incrementos positivos no tener en cuentas los negativos ya que complicaría más los resultados del análisis no lineal.**

Definición de la carga lateral PUSH-OVER en Etabs

Continuando con el modelado de la estructura definimos la carla lateral pushover ilustración 18

Ilustración 18

Definición carga PUSH-OVER

![Definición carga PUSH-OVER](image)

Fuente: programa de diseño Etabs
Se procede con la Definición de la carga lateral PUSH-OVER en Etabs

2.6.2.2 Pushover con patrón de cargas Lateral por Fuerzas (No Lineal)

Para el caso de cargas por fuerzas serían los mismos pasos que el Pushover por modo 1, lo que se modifica es en la escogencia de la carga ya es load pattern, seleccionamos el nombre de la carga que sería CARGA LATERAL (ilustración 19) donde asignamos las cargas por piso del pórtico.

Ilustración 19

Definición de carga lateral

![Ilustración de carga lateral en Etabs](image-url)

Fuente: programa de diseño Etabs
Fuerzas de piso conforme al análisis dinámico espectral

Se muestran las fuerzas de piso de acuerdo a la carga sísmica Sx

Tabla 13
Story Response

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>FPISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SISMO X</td>
<td>Bottom</td>
<td>127.73</td>
<td></td>
<td>127.731</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>194.10</td>
<td></td>
<td>66.3725</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>239.80</td>
<td></td>
<td>45.6973</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>0.00</td>
<td></td>
<td>239.8008</td>
</tr>
</tbody>
</table>

Nota. Fuente: propia
Obtenidas las fuerzas de piso o fuerzas laterales para el análisis pushover se procede con su asignación en el modelo ilustración figura 20

Ilustración 20
Introducción fuerzas de piso

Fuente: programa de diseño Etabs
Definición de Rotulas Plásticas para el análisis Pushover

Para la definición de las Rotulas platicas incluimos en el modelo según el 2 tipos de demanda o solicitud según sea el elemento, para el caso de las vigas se tiene a flexión y para las columnas usamos Flexocompresion Biaxal. Le incluimos la distancia que se encuentran desde el Nodo, Por lo regular las rotulas plásticas casi siempre ocurren en la zona de mayor confinamiento del elemento. Para incluirlas en el programa Etabs de la siguiente manera.

Se debe incluir cada uno de los valores de la curva Esfuerzo vs Giro o deformación por medio del menú define - section proporties – Hinge proporties elegimos si el material es concrete. Seguido seleccionamos si el tipo de rotula es frágil o control por deformación que seria ductil y escoger el esfuerzo si es por carga axial, corte, flexión o flexocomprension.

Posterior a esto se debe ingresar automáticamente en que ubicación se encuentra la rtula si esta en la zona interna, cerca o mas alejada del nodo, para esto lo hacemos con un 5% y 95% de la longitud del elemento. Se selecciona add Hinge y aparece una base de tablas de la ASCE 41 – 13 donde podremos elegir en

- Tabla 10-7 (Vigas en concreto – cortante)
- Tabla 10-8 (columnas en concreto – flexo compresión y cortante)
- Tabla 9-6 (vigas en concreto – flexion)

Con esto obtenemos las rotulas plásticas para cada elemento de la estructura que se pueden modificar de acuerdo con las condiciones que se requieran de acuerdo con lo estipulado en el programa Etabs. Las rotulas que se derivan son las mostradas en la Ilustración 21.
Ilustración 21
Rotula plástica para flexión en vigas en el programa Etabs

Fuente: modelo programa de diseño Etabs

Para el análisis del Pushover en Vigas y Columnas en concreto reforzado las definimos con la ASCE – 41 – 13, tabla 10-7 para concreto en vigas ver ilustración 22
Ilustración 22
Asignación de Rotula plástica en el pórtico

Las primeras rotulas plásticas se forman en las vigas desde el primer paso, con un desplazamiento de 1.06 cms figura 22, y el primer primer mecanismo de daño se forma cuando la edificación cuenta con un desplazamiento de 14 cms, lo cual se presenta cuando esta en la zona seguridad de vida, ilustraciones 23 y 24.

Fuente: modelo programa de diseño Etabs

Mecanismos de falla en la Edificación

...
Ilustración 23
Aparición de Rotulas plásticas en las vigas

Fuente: modelo programa de diseño Etabs

Ilustración 24
Mecanismos de daños en la estructura

Fuente: modelo programa de diseño Etabs
Curva de capacidad
La relación entre el cortante Basal y el Desplazamiento en el nivel superior de la edificación para nuestro caso es el punto 2, representa la capacidad de la estructura con el modo fundamental de vibración de la estructura. La máxima capacidad que muestra la edificación esta dada en la ilustración 25, donde cuando alcanza los 14 cm de desplazamiento horizontal con un cortante en la base de 120Kn, empieza a decaer la curva y por tanto es lo máximo que podría soportar la estructura en estudio.

Ilustración 25
Curva de capacidad pushover del pórtico de la estructura

Fuente: modelo programa de diseño Etabs

Desempeño Sísmico
El Desempeño Sísmico lo realizamos bajo el espectro del Municipio de Carepa, para ver si la edificación existente cuyo uso es residencial, cumple al menos con el objetivo de seguridad de vida. En nuestro caso tomamos aceleraciones del orden registrado para 0.065seg./cm2, y para 0.17seg./cm2, en ambos casos la curva de capacidad esta por debajo de la meseta del espectro de aceleraciones, para el punto 2 que es de 0.17 ya la estructura esta en el nivel total de colapso., como lo enseñan ilustración 26.
Conclusiones

Con los resultados obtenidos, mediante el Análisis Estático No Lineal concluimos que la estructura presenta un comportamiento en el paso 1 de formación de rotulas plásticas en todas las vigas, pero se mantienen en el rango de seguridad a la vida.

El diseño sismorresistente con un sistema estructural en pórticos en concreto, con uso residencial localizado en el Municipio de Carepa debido a un sismo de diseño frecuente (43 años) se consiguió un nivel de desempeño de seguridad de vida, lo cual no cumple con lo estipulado en el código ya que la estructura entra rápido a un nivel de rango inelástico de los elementos estructurales en los cuales podría resultar daños severos a la edificación.

Es importante mencionar que el análisis pushover para el diseño o evaluación de estructuras especiales como colegios, hospitales, edificaciones esenciales, edificaciones de gran altura cobra relevancia por que conocerías de antemano el comportamiento real de este tipo de edificaciones.
Recomendaciones

La estructura debe disponer de una mejor estructuración de sus elementos, buscar un buen diseño de nodos, columna fuerte viga débil, esbeltez de columnas… para resistir mayores cargas sísmicas y disminuir los desplazamientos de los entrepisos y así evitar un colapso de la edificación.

Es recomendable incorporar en la Norma Colombiana, la filosofía del desempeño sísmico, para tener mejor eficiencia en el diseño de las estructuras ampliando el conocimiento del comportamiento estructural ante diferentes solicitudes sísmicas.

Referencias

Segura Hernández, O. I. (2021). Comportamiento del desempeño sísmico mediante análisis estático no lineal (pushover) de dos edificios en concreto reforzados situados en zona de amenaza sísmica alta con grado de disipación de energía DES, diseñados bajo los criterios de AIS 114-17 y la NSR. Bogotá D.C.

© Zigrurat Consultoría de Formación Técnica S.L., © INESA adiestramiento, & © Sísmica adiestramiento. (s.f.). Máster de Estructuras de Concreto Armado y Precomprimido Diseño por desempeño y control estructural.