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A B S T R A C T   

Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The 
conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from 
transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics 
of biological communities and physical components of the sites and thus complement the information about the 
structures of landscape. However, the link between the analysis and quantification of ecosystem transformation 
based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a 
new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape 
transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture 
models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of 
different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape hetero-
geneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out 
recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using 
GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We 
tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two wa-
tersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using 
forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation 
of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI 
interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified 
that AHI allows estimating the similarity of points with similar transformations, and where the soundscape 
provides information about the transition states. This proposal allows complementing landscape transformation 
studies with information on the acoustic heterogeneity between pairs of sites.   

1. Introduction 

An essential part of ecological conservation plans is identifying the 
landscape heterogeneity in highly transformed habitats. We understand 
landscape heterogeneity as the complexity or variability of landscape 
features (Malanson and Cramer, 1999). To study the heterogeneity is 
necessary to compile biodiversity data of planning regions or ecosystems 
(Worboys et al., 2010). A cost-efficient alternative to study ecosystems is 

Passive Acoustic Monitoring (PAM), which uses environmental acoustic 
signals to obtain reliable information on biodiversity and ecosystem 
health (Napoletano et al., 2011; Krause and Farina, 2016). The sound-
scape is the collection of biological, geophysical, and anthropogenic 
sounds that make up a specific site (Pijanowski et al., 2011). Sounds 
from the soundscape reflect behavior aspects of biotic components and 
characteristics of the landscape (Hill, 2008; Farina and Fuller, 2014). 
Thus, the soundscape is usually related to environmental health 
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indicators (Gregory and Strien, 2010; Sánchez-Giraldo et al., 2021). 
PAM helps to monitor these indicators since acoustic recorders collect 
the sounds for hours, days, or months. Representative variables have 
been necessary to automatically identify biological characteristics given 
the large number of collected recordings (Sueur et al., 2014). 

Researchers have developed two types of acoustic indices to characterize 
the acoustic communities of animals and soundscapes: alpha (within- 
group) and Beta (between-group) (Sueur et al.,2014; Towsey et al., 
2014). Alpha indices help to understand the amplitude, evenness, 
richness, heterogeneity of a soundscape in a particular site (Sueur 

Fig. 1. Study area in the Caribbean region of Colombia. Spatial distribution of samples sites, ecological transformation and land cover of the Dry Forest in the Guajira 
and Bolivar regions. 

Fig. 2. The method takes the acoustic recordings and filters out the noisy ones. We estimate acoustic indices of the remaining recordings for each stage of the day 
(see appendix). GMM models for each transformation are calculated in each period. Then, the Loglikelihood at each GMM transformation is used to determine the 
AHI. Finally, with the AHI we plot marks between each pair of sites to see the relations spatially. 
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et al.,2014). For example, Alpha indices have been used to link acoustic 
behaviors to the heterogeneity of local sites (Barbaro et al., 2022; 
Sánchez-Giraldo et al., 2021), to give information about habitats 
changes (Gómez et al., 2018; Hayashi et al., 2020; Ospina et al., 2013) 
and communities behaviors (Pijanowski et al., 2011). On the other hand, 
Beta acoustic indices help to compare and measure changes in acoustic 
communities or soundscapes among sites (Sueur et al.,2014). 

Some PAM studies have focused on ecosystems disturbance’s iden-
tification using Alfa and Beta acoustic indices as the quantification of 
shelterwood logging influence on soundscapes (Doser et al., 2020), 
acoustic variations in a perturbed site (Deichmann et al., 2017), and 
ecological transformation quantification (Duque-Montoya and Isaza, 
2018). 

Some of most used acoustic characteristics are related with spectral 
profiles and amplitude envelopes (Rodriguez et al., 2014; Sueur et al., 
2014), acoustic indices that give frequency information (Barbaro et al., 
2022; Sánchez-Giraldo et al., 2021), Power Spectral Density (DSP) 
among others (Doser et al., 2020; Duque-Montoya and Isaza, 2018). But 
only a few studies identify soundscape heterogeneity through time and 
between sites (Barbaro et al., 2022; Sánchez-Giraldo et al., 2021; Bur-
ivalova et al., 2018; Rodriguez et al., 2014) exhibiting that acoustic 
characteristics of landscapes vary throughout day and do not necessarily 
vary in linearly continuous states with landscape transformations. These 
studies have begun to use methodologies such automatic noise recording 
filtering (Duque-Montoya and Isaza, 2018), periods of the days (Barbaro 
et al., 2022; Doser et al., 2020), and variables relate to entropy of fre-
quencies Rodriguez et al., 2014), frequency modulation, and linear 
combinations of alfa acoustic indices (Barbaro et al., 2022). However, no 
study has integrated these methodologies and variables modeling dis-
tributions of soundscape keeping in mind the transition states of trans-
formation to analyse the acoustic dissimilarity between pair of sites. 

Landscape ecology has matured enormously, and it is progressing 
towards incorporating new conservation strategies and monitoring 

schemes (Dickson et al., 2019). Our interest was not to quantify the 
acoustic heterogeneity in a particular site as the alfa indices do, but to 
quantify the acoustic heterogeneity between transformed geographical 
sites (Beta). As we seek to find heterogeneity among sites in transformed 
TDF, we modele mixture models of the acoustic caracteristics related to 
transformation levels for each site in the BST. With the models we 
measure the differences between pairs of sites, and consequently know 
how heterogeneous the sites are. Therefore, we propose a Beta index 
called Acoustic Heterogeneity Index (AHI) that integrates the trans-
formation states and diverse acoustic behaviors to automatically iden-
tify the acoustic heterogeneity between pair of sites. Finally, we used the 
proposed index in maps trazing lines of dissimilarity that help to achieve 
an idea of acoustic heterogeneity patterns in the forest remnants of TDF. 

2. Materials and methods 

2.1. Study site 

The Tropical Dry Forest (TDF) of Colombia has only 8% of its original 
distribution, making it one of the most threatened ecosystems in the 
country (Hoyos et al., 2017). Under this scenario is a challenge to protect 
and restore the TDF landscapes. Between December 2015 and March 
2017, the Global Environment Facility (GEF) project was established to 
characterize biodiversity at TDF remnants along different landscape and 
successional gradients in Colombia (Hernández et al., 2018). During this 
project, several TDF remnants were acoustically monitored. Three wa-
tersheds along the Caribbean region were included, but in our study only 
two were analyzed: Rio Cañas (La Guajira) and Arroyo Grande (Bolivar) 
as show the Fig. 1. The ecosystem in the study areas corresponds to a 
typical TDF that is distributed between 0 and 1000 m.a.s.l., and it has a 
strong seasonality marked by rainfall with a dry period of at least three 
months. Within each watershed, nine forest patches were randomly 
selected along a combination of two gradients, landscape transformation 
and forest successional stage. The transformation level was labeled ac-
cording to the proportion of retained and new forests on each sub- 
watershed established using a forest/non-forest time series (between 
1990 and 2015, IDEAM 2012) of 30 m resolution that was aggregated as 
percentage of forest lost, gain, and retained for a grid of 1x1 km2 using 
vegetation cover on satellite imagery. Three transformation states were 
defined: high, low, and medium. High transformation refers to sub- 
watershed with a low proportion of retained or new forest and highest 
proportion of lost forest. Low transformation indicates high proportion 
of retained or new forest and low proportion of lost forest. The medium 
transformation refers to remaining sub-watershed, which is not cate-
gorized within high or low transformation. These labels were used to 
train our classification models and identify the transformation based on 
audio recordings. Acoustic monitoring of sites in each watershed were 
carried out using autonomous recorders (Wildlife Acoustics SM2 and 
SM3 models), which were programmed to record in a frequency of 5-min 
every 10 min during 5 continuous days and stopping to record 5 days 
(sites coordinates are shown supplementary material). We split the re-
cordings for the model train (70%), test (20%) and validation (10%). 

2.2. Heterogeneity estimation 

We proposed the Acoustic Heterogeneity Index (AHI) to estimate the 
acoustic heterogeneity between sites based on the transformation level 
of each sampling site. The methodology to calculate the AHI consists of 
five steps which are presented in Fig. 2. 

The first stage consists of excluding noisy recordings using an 
approach based on Bedoya 2017 method (see details in subsection 
2.2.1). Second, to calculate the selected acoustics indices from the 
recording. In the 2.2.2 section are presented the used acoustic indices. 
Third, each recording is labeled according to the day period (morning 
5–8 h, day 8–17 h, and night 17–5 h). A temporal pattern analysis was 
done to identify the TDF day intervals (see Supplementary information). 

Table 1 
Number of components for each GMM model.   

Morning Day Night 

Bolívar number of components 28 37 30 
La Guajira number of components 22 10 33  

Table 2 
Validation classification performance.   

Morning Day Night All periods 

Bolívar F1 Score Test  0.92  0.90  0.92  – 
La Guajira F1 Score Test  0.91  0.89  0.92  – 
Bolívar F1 Score Validation  0.90  0.90  0.87  0.88 
La Guajira F1 Score Validation  0.91  0.89  0.92  0.88  

Table 3 
Centroid by transformation for Bolívar.   

ESM MD NDSI MID WE SC SB 

Low  0.84  0.39  0.83  0.31  0.12  0.34  0.53 
Medium  0.82  0.44  0.80  0.26  0.19  0.44  0.66 
High  0.87  0.4  0.77  0.43  0.20  0.12  0.45  

Table 4 
Centroid by transformation for La Guajira.   

ESM MD NDSI MID WE SC SB 

Low  0.82  0.47  0.74  0.18  0.15  0.34  0.55 
Medium  0.87  0.35  0.79  0.21  0.17  0.29  0.65 
High  0.85  0.37  0.73  0.20  0.19  0.32  0.68  
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The fourth step (subsection 2.2.3) consist on identify the landscape 
transformation which is necessary for the AHI calculation. We imple-
mented three GMM with the acoustic indices to automatically identify 
the ecological transformation level. A GMM was estimated for each 
transformation (low, medium, and high) in each day period. The tem-
poral patterns established the model selected to classify the audios. To 
train the GMM models the Expectation-Maximization algorithm is used. 
For each recording indices the Log-likelihood for each transformation 
level is estimated. The predicted transformation was determined using 
the maximum log-likelihood from each recording to each GMM. The last 
step calculates the AHI between each pair of sites, which is computed 
using the GMM log-likelihood transformation values explained in sub-
section 2.2.4. 

2.2.1. Noise analysis 
The acoustic indices are highly sensitive to noisy recordings (Greg-

ory, 2010; Duque-Montoya and Isaza, 2018; Gómez et al., 2018; 
Sánchez-Giraldo et al., 2020). In consequence, we decided to automat-
ically detect and exclude noisy recordings. The Power Spectral Density 
(PSD)-based method proposed by Bedoya et al., 2017 is an adequate 
estimator for detecting recordings with geophonic and anthropogenic 

elements. PSD indicates how the signal power is distributed across fre-
quencies. The non-parametric Welch method (Welch, 1967) was 
implemented to calculate the PSD, which uses the Fast Fourier transform 
based on short time averages with modified periodograms. The 90% of 
the rain sounds are distribute in the 600–1200 Hz frequency band 
(Bedoya et al., 2017), then we used this bandwidth as a parameter in the 
PSD calculation. To avoid false positive recordings the Signal Noise ratio 
(SNR) was used. SNR establishes a relationship between desired signal 
power level and background noise power. In this study, we modified the 
algorithm calculating an automatic noise threshold of PSD using its 
median for each analyzed geographical site. In this way, the recordings 
that pass the PSD threshold were considered with high noise level and 
were excluded from subsequent analyses. 

2.2.2. Acoustic indices calculation 
Acoustic communities have complexity, amplitude, and frequency 

characteristics that vary significantly across regions (Carruthers-Jones 
et al., 2019). Doser et al. 2020 and Gómez et al., 2018 recommended to 
incorporate multiple attributes to better capture the characteristics of 
the soundscape diversity. Futhermore, Barbaro et al., 2022 show the 
relation of soundscape and the compositionaland configurational 

Fig. 3. Daily long-term spectrogram for each landscape transformation in La Guajira (right) and Bolívar (left) regions. In green is evidence the most notable fre-
quency differences between the Guajira and Bolivar sites. 
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heterogeneity through a multivariate analysis of alfa acoustic indices. 
Then, we decided to make a multivariate acoustic indices analysis. To 
select the most discriminative indices to identify the transformation 
level, we applied a box-plot analysis using the median and quartile 
separation in 22 acoustic indices (see supplementary material). We 
selected seven indices: Spectral Maxima Entropy (ESM) (Sueur and 

Farina, 2015), Musicality Degree (MD) (De Coensel, 2007), Normalized 
Difference Soundscape Index (NDSI) (Kasten et al., 2012), Mid-band 
activity (MID) (Sueur and Farina, 2015) and Wiener Entropy (WE) 
(Sueur and Farina, 2015) Spectral Centroid (SC). Futhermore we pro-
pose to use Spectral Bandwidth (SB), an index used in automatic iden-
tification of musical generes. Some the choose indices help to describe 

Table 5 
AHI between sites in La Guajira region (label 0 low, 1 medium, 2 high transformation).  

Table 6 
AHI between sites in Bolívar region.  
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characteristics of landscape as species richness and species diversity 
with Biophony, Antropophony, and Geophony (Towsey et al., 2014). 
Also, some of they have been used to describe the relations between 
landscape configuration and ecological conditions (Barbaro et al., 2022; 
Dema et al., 2017). To automatic indices estimation we created a 
computational tool in Python available in: https://udeaeduco-my. 
sharepoint.com/:u:/g/personal/nestor_rendon_udea_edu_co/ 
Eb_g2fJbQKBLmRHliwXsp5wB7MhSbE8msTvIJ1V1sVEZOg? 
e=4B7MzX. 

2.2.3. Identification of transformation level 
With the calculated acoustic indices we use GMM (Reynolds et al., 

2000) to estimate the habitat transformation level generated with the 
filtered audios (session 2.2.1). The GMM permits to establish the general 
pattern for each transformation level within an acoustic period. The 
distribution is a linear combination of M multi-modal Gaussian densities 
P(x); 

P(x|α) =
∑M

{i=1}

wGi

(2π)
D
2 |Σi|

1
2
exp

[

−
1
2
*(x − μGi)

′

*Σ{− 1}
{i} x − μGi

]

(1)  

where µGi and Σi are GMM mean and co-variance matrices of the data 
respectively. D is the number of dimensions (i.e., number of selected 
indices). With the constraint of 

∑M
i=1wi = 1, and the parameters are 

denoted as λ = (wGi,µGi,Σi). These parameters were estimated by 
Expectation-Maximization (EM) that iterative refines the parameters to 
increase the likelihood to each transformation label. In the GMM 
training, the number of components must be estimated for each model. 
Grid-search was used with the purpose to find the optimal number of 
components for each Gaussian’s on the two geographical regions. We 
used diagonal covariance matrices for the training set of recordings 
GMMs. To identify the transformation level with each new recording 
(validation recordings) the acoustic indices must be estimated. To 
calculate the transformation state for each recording we use the 

maximum log-likelihood value as the new label transformation state. We 
propose to implement one GMM per period. In our case we found 
necessary do the analysis with 3 periods:morning, day (see supple-
mentary material). 

2.2.4. Acoustic heterogeneity index 
To estimate the acoustic heterogeneity between sites, we proposed a 

Betha indice the Acoustic Heterogeneity Index (AHI) based on the 
automatic transformation level identification (see section 2.2.3). The 
goal is to measure the acoustic dissimilarity that exists between each 
pair of analyzed geographic points (i,j). As the Log-likelihood de-
termines how much a recording belong from high, low, or medium GMM 
transformation (section 2.2.3) the acoustic similarity between points can 
be identified according to their proximity to each GMM model. Then for 
each recording, we calculated the log-likelihood on each transformation 
GMM. Therefore, the results form a vector of NrixTm, where Nr is the 
number of recordings in site i and Tm the number of transformation 
levels. We proposed to define the AHI as the Euclidean distance between 
the median transformation log-likelihoods of a site j to another k, as it 
shown equation (2). 

AHIjk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Tm

{i=1}

(

μ
(

Loglikelihoodi(sitej)

)2
− μ

(
Loglikelihoodi(sitek)

)2
)√

(2)  

where μ is the median and i is each transformation state. We created a 
matrix in which each element corresponds to the normalized AHI be-
tween sites. The matrix must be symmetric with dimensions SxS in 
which S corresponds to the number sites and diagonal elements with a 
0 value, due to the difference in the log-likelihood of the same sites. To 
validate the AHI proposal, and to analyze the relation with geographical 
distances, we used a long-term spectrograms soundscape analysis. The 
Pearson correlation in the spectrograms given by the equation (3) were 
evaluated for all sites in both regions (La Guajira and Bolivar). 

Corr =

∑
m
∑

n(Amn − A)(Bmn − B))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
∑

m
(Amn − A)2

)(
∑

m
(Bmn − B)2

)

√ (3)  

where A and B being long-term spectrograms of the recordings of two 
sites, m and n are the matrix positions and A and B correspond to the 

Table 7 
Pearson correlation between the geographical distance and AHI values of study 
sites.  

Sites\Period Morning Day Night 

Guajira  0.054  0.25  − 0.08 
Bolivar  0.27  0.15  0.26  

Fig. 4. Acoustic heterogeneity index generated map for La Guajira and Bolivar regions. The map is generated taking the AHI matrix and mapping each value to a 
color gradient palette (left). Color points are the ecological transformation level white, gray, black correspond to low, medium, high transformation respectively. 
Lines with hot colors (red) correspond to AHI high values and cold colors (blue) correspond to low values. 

N. Rendon et al.                                                                                                                                                                                                                                 



Ecological Indicators 140 (2022) 109017

7

mean long-term spectrogram of the sites. The analysis was done under 
the hypothesis that two sites with the same transformation are similar 
acoustically. Then, we interpreted the correlation of two long-term 
spectrograms with the same transformation less than 0.5 as success 
and higher than 0.5 as an error. In section 4 we show the validation of 
the AHI through longterm spectrograms and correlation images. 

3. Results 

3.1. Classification of the landscape transformation 

To identify transformation levels in both regions, we selected the 
most discriminative acoustic indices. Using the indices, the GMMs were 
obtained. Through clustering, we evidenced the existence of three-hour 
periods (see supplementary material) representing temporal patterns in 
the studied geographical zones: morning (5–8), day (8–17), and night 
(17–0). We include the temporal patterns information in the classifica-
tion step in which were implemented 3 models (morning, day, and 
night) in the Bolívar and La Guajira regions. To obtain the GMMs as wee 
explain in section 2.2.3 is necessary select the number of components. 
The Table 1 show the selected components using grid-search. 

The Table 2 shows the F1 performance of the classification of land-
scape transformation for each study region. We remark that variables SC 
and SB helped us to find acoustic differences through the day and 
improve the TDF transformation analysis. Test with GMM without SC 
and SB showed a low F1 score performance of 86 %, and using SC and SB 
showed an F1 score of 90%. 

In Table 2, the fourth column (All periods) correspond to a GMM 

model created to integrate the two zones (Bolivar and Guajira). F1 score 
decreased in this case. Results confirm that it is necessary to implement 
different models depending on the recording hour and geographical 
zone. To estimate the differences between transformations, an analysis 
of the transformation centroids was done. The acoustic indices centroids 
for each transformation are showed in Tables 3 and 4. The centroids 
correspond to vectors that better represent the patterns in each trans-
formation type. 

The spectral complexity (correspond to ESM and WE indices) varies 
between transformation levels but it has similar values for the two re-
gions. The Spectral Centroids (SC) shows a similar behavior for the low 
transformation in both regions. Perhaps this is due to acoustic commu-
nities that sing at the same frequency (SC on Table 3 and Table 4). 
However, future studies are necessary to demonstrate this. The sound 
recordings from each site were analyzed using long-term spectrograms 
for each daily hour as shown in Fig. 3. NDSI with high values and MID 
with medium values for the two regions (Bolivar higher than Guajira) 
show high activity in the 2–8 kHz band and little activity in the 482 Hz – 
3500 Hz band (Fig. 3). 

In the Fig. 3 it is observe high differences among the long-term 
spectrograms between La Guajira and Bolivar. La Guajira showed an 
intense activity in range 5–7 kHz for all transformations in the night 
period, a lower activity in morning period in high transformation, and 
high activity in 7–9 kHz on the day. In the case of Bolívar, it can be 
observed 3–7 kHz activity in the night, 0–3 kHz activity for the morning, 
and 8–10 kHz activity for all transformations. In accordance with Duque 
et al. 2018 work, spectrogram gives similarity between high and me-
dium landscape transformation for both regions. However, if it is done 

Fig. 5. The figure shows the AHI between sites G10 and G3 in the La Guajira region (red line) and the long-term of both sites (right). The AHI (1) shows high 
differences between the sites with different transformation level. This behavior is consistent with the low correlation (0.29) between the long-term spectrograms. See 
the differences in the 4–6 kHz and the 0–2 kHz long-term spectrograms on the figure. 
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an analysis using hour periods, it can be observed that there are several 
differences between stransformations for each region. Then, segmenta-
tion using temporal patterns (hour period) allowed us to obtain better 
sites characterization. 

3.2. Acoustic heterogeneity between two sites 

Using the validation data, the log-likelihood was calculated per 
recording using GMMs described in section 2.2.3. According to region 
and hour of each recording, acoustic heterogeneity matrices were 
calculated (see section 2.2.4). Tables 5 and 6 show the acoustic het-
erogeneity in Bolívar and La Guajira regions between one site (column) 
and the other sites (rows). Each cell is the Acoustic Heterogeneity Index 
(AHI) between two sites. We expected to find lower acoustic heteroge-
neity among two sites with same transformation level. 

Green labels cells were assigned to lower values of AHI (sites with the 
same transformation label), red cells are the sites with the same 

transformation label but higher AHI, and white cells are the remaining 
cells associated with the sites with different transformation. 

In the AHIjk analysis, the hypothesis is that pairs of sites with same 
transformation level have similar acoustic landscape. In results, most of 
pair of sites show low acoustic heterogeneity if they were labeled by 
experts in the same transformation level. 

3.3. Correlation of AHI and geographical distance 

In order to compare the relation between the heterogeneity proposed 
metric (AHIjk) and the distance between sites (site j and k), we per-
formed a Pearson correlation between AHI matrices and a geographic 
distance matrix calculate with Vicenti distance (Vincenty, 1975). We not 
detected direct relationships between geographical distances and the 
sound characteristics like Hayashi et al. 2020 work. Table 7 shows low 
correlation values, and therefore, it cannot be assured that there is a 
relationship between the geographical distance of sites and the AHI. 

4. Discussion 

With the acoustic heterogeneity index matrix (Table 6 and 7), we 
created color/intensity marks on geographical maps to graph the 
dissimilarity between a site and the others as shown in Fig. 4 using the 
python simplekml library. In Fig. 4, the AHIs between all site pairs of 

Fig. 6. AHI and spectrogram correlation of site G5 with sites G3, G2, G1 that were tagged with the same transformation (Low) and sites G8, G9, G7 previously tagged 
with different transformation (medium). The AHI showed the heterogeneity with same transformation places. While for the places that were labeled with different 
transformation the index showed homogeneity. 

Table 8 
Pearson correlation among the site G5 and other Guajira’s sites. The place shows high correlation with other places from different transformation than the one that was 
tagged.  

Site G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 

G5 Transformation 0 0 0 0 0 0 1 1 1 2 2 
Correlation spectrograms 0.43 0.5 0.1 0.94 1 0.89 0.9 0.91 0.88 0.89 0.89  

Table 9 
Mean spectrum of G5.  

G5 ESM MD NDSI MID WE SC SB 

La Guajira  0.79  0.36  0.81  0.08  0.12  0.26  0.64  
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Guajira are represented, with the connection between sites being indi-
cated by a color line. 

Acoustic dissimilarity should theoretically be consistent with biotic 
homogenization (Olden et al., 2004). Our results indicate that there are 
low AHI values (cold colors: blue, green, yellow) between sites with 
similar transformation level. Also, estimating the long-term spectrogram 
between sites that have high AHI levels exhibit big differences (see 
Fig. 5). This suggests the efficacy of our proposed index based on the 
acoustic indices for detecting acoustic heterogeneity between two sites. 

However, there are certain sites that were tagged with a trans-
formation state but the AHI index indicates that they have a greater 
similarity with others exhibiting a different transformation level (See 
red cells in tables 6 and 7). For example, site G5 in La Guajira, originally 
labeled with low transformation has a low value of AHI with sites with 
medium or high transformation that means high similarity. At the same 
time, sites with low transformation have a high heterogeneity value 
between them (see Fig. 6). Due to the values of AHI, our hypothesis was 
that the label was in a transition state of Low-medium transformation. 
This is consistent with what was found by Flower, 2021, revealing a 
geography that will not necessarily match the obvious landscape or vi-
sual geography. We Validate this assumption with Long-term spectro-
grams correlation for each pair of sites (Fig. 6). If the spectrogram 
correlations is high there is acoustic similarity, then the acoustic het-
erogeneity should be low. 

To understand high AHI values between sites from the same label 
transformation, we analyzed the long-term spectrogram correlation 
between places. A low correlation between the mean spectrograms in-
dicates large sound differences. In Table 8 the correlation between G5 
and other sites are showed. 

The G5 site was initially labeled by the experts with low 

transformation (Fig. 6) The spectrogram is more similar to medium 
transformation if it is compared with long-term spectrograms of medium 
and low transformation. These sound behaviors can be correlated with 
the mean of acoustics indices, where NDSI and ESM show high values, 
and MID, WE low values (see Table 9). This pattern evidence high ac-
tivity and entropy in the 3–8 band that can be interpreted with high 
biodiversity. Then, the heterogeneity index allows to identify interme-
diate levels of transformation that they were not expected. The AHI 
proposal permits to associate similar sites (with low heterogeneity) in an 
appropriate way from the acoustic analysis. The acoustic evidence 
shows that the site can be associated with an acoustic transition degree 
providing complementary information to describe the landscape trans-
formation. The mean of the acoustic indices of this site are show in 
Table 9. 

We identified a special situation on B6 site (Bolívar region) wih have 
high AHI with all sites except for B1 site (Fig. 7). 

The long-term spectrograms of different transformations and the B6 
site are showed in the Fig. 8. This probably can be associated to sites that 
are in a soundscape special condition: not homogeneous with other sites 
(high AHI). The long-term spectrogram presented high intensities in the 
medium frequencies and a power intensity line in the 6–7 kHz frequency 
band. The behavior was very different for other sites of the same region. 
The spectrogram indicates that the site has acoustic communities’ 
behavior, mostly in the medium frequencies. Then the AHI allowed 
finding additional information about the acoustic richness of sites that 
had not been initially detected when the labeling was done. 

In our study, the regions (La Guajira and Bolívar) showed high AHI 
values. Also, with GMM the method is based in density distributions that 
allowed finding continuous transformation values. Thanks to this, the 
method provides additional information related with acoustic 

Fig. 7. AHI among B6 and other sites. Note the warm colors which represent high AHI value have low correlation values.  
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heterogeneity associated with ecological transformation of sites that 
could be in transition states. 

The proposed methodology allows the analysis of acoustic hetero-
geneity related to the ecological transformation. According to Big-o 
notation* (Bae, 2019), the computational complexity of AHI is associ-
ated to calculations inside three steps in our proposal: The first step is 
the detection of the noisy recording having a complexity of O(c log(f)) 
where c is the block length of each recording, and f is the number of 
overlapping windows. The c and f are parameters to choose to calculate 
the Fast Fourier transform required in the PSD estimation (Welch, 
1967). In our proposal, f was 128, and c was 1024 for each recording. 
The second step is the acoustic indices calculation having a complexity 
type of O(c log. 

c). The other step is the GMM model estimation which have a 
computational complexity of O(NK) for N recordings and K Gaussian 
components which are more efficient than the other steps. In conse-
quence, the computational complexity relies mostly on the fast Fourier 
transform parameters. In this work, we analyzed 124,989 recordings of 
five minutes each. The method was implemented in an intel core i7- 
6800 k computer with 32 gigabytes of RAM. To analyze an equal or a 
large number of recordings, we recommend a computer with the same or 
greater ram. Despite this complexity underlying the AHI methodology, it 
can be implemented for the analysis of any ecosystem as long as two 
inputs are available: The discrete transformation categories of each 
study site (e.g. high, medium and low), and acoustic data of each site. 

Finally, the results show that sounds to describe the health of the TDF 
cannot be understood as something discrete, but rather as a set of sound 
relationships between various study sites that may share similar 
elements. 

5. Conclusions and future work 

We proposed the AHI that allow to quantify the acoustic heteroge-
neity between geographical points of the TDF. Specifically, the differ-
ences between our proposal and other works to quantify the acoustic 
heterogeneity between different sites (Rodriguez et al., 2014; Bur-
ivalova et al., 2018) are the integration of mixture models of transition 
states transformations through multivariate information from alpha 
indices related to complexity (ESM and WE) and relationships between 
frequencies (MID, SC, NDSI, and SB). Also, AHI is based on different 
ranges of hours that present different patterns of the sound: morning 
(5–8), day (8–17), and night (17–0). Those strategies allow to identify 
intermediate values transformation and associate sites with similar 
transformations through acoustic indices GMM distributions. 

Our method not only evaluates whether the forest transformation 
estimated automatically in a site is similar to the transformation estab-
lished a priory by field personnel or other alternative methods as remote 
sensing, but also allows evaluating whether a priory classification is 
appropriate. 

Regarding the transformation classification results, the method was 
tested in two TDF regions, and it attained a maximum F1 score of 90% 
for Bolivar and 92% for La Guajira. These results showed the high of the 
model since the maximum performance in the TDF classification of 
transformation was 68% (Duque-Montoya and Isaza, 2018). These re-
sults are key for the management of TDF because they not only allow to 
classify ecosystems from their acoustic traits, but also allow to evaluate 
the congruence between different sources of information (acoustics, 
remote sensors, biological characterizations). 

These models could be useful to landscapes monitoring, determining 
sites with transition of the transformation, sites with special behaviors, 
and the development of action plans to slow down ecosystem degrada-
tion. The soundscape is a valuable element that can help us to under-
stand the natural landscapes and can serve as a complement to 
ecological research projects. There is a long way to understanding the 
ecosystem’s soundscape, the relation with the dynamics of the com-
munities, and the health state of landscapes and mobility of species. 
Species recognition over landscapes is needed to identify the entities 
related to activity and can permit the correlation of acoustic indices with 
the biodiversity patterns. Then it is needed to continue the exploration 
of soundscape for the development of new tools that allow the under-
standing of landscape transformation. These studies will allow corre-
lating species’ presence in the study sites with the specific hour of the 
day, as-well the environmental health. 
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Hernández, A. González, R. Villegas, F. Martínez., 2018. Bosque seco tropical. Monitoreo 
comunitario de la biodiversidad. Cuenca río Cañas. GEF, Alexander Von Humbolt 
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