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Abstract
1.	 Passive acoustic monitoring is usually presented as a complementary approach to 

monitoring wildlife communities and assessing ecosystem conditions. Automatic 
species detection methods support biodiversity monitoring and analysis by provid-
ing information on the presence–absence of species, which allows understanding 
the ecosystem structure. Therefore, different alternatives have been proposed to 
identify species. However, the algorithms are parameterized to identify specific spe-
cies. Analysing multiple species would help to monitor and quantify biodiversity, as 
it includes the different taxonomic groups present in the soundscape.

2.	 We present an unsupervised methodology for multi-species call recognition from 
ecological soundscapes. The proposal is based on a clustering algorithm, specifi-
cally the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, 
which automatically suggests the number of clusters associated with the sono-
types. Emphasis was made on improving the segmentation of the audio to analyse 
the whole soundscape without parameterizing the algorithm according to each 
taxonomic group.

3.	 To estimate the performance of our proposal, we used four datasets from different 
locations, years and habitats. These datasets contain sounds from the four major 
taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mam-
mals and insects) in audible and ultrasonic spectra. The methodology presents per-
formances between 75% and 96% in presence–absence species recognition.

4.	 Using the clusters proposed by our methodology, the whole soundscape biodi-
versity was measured and compared with the estimate of four acoustic indices 
(ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to 
acoustic indices with the advantage of providing information about acoustic com-
munities without the need for prior knowledge of the species present in the audio 
recordings.
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1  |  INTRODUC TION

The confluence of biotic, geophysical and anthropogenic sounds 
generates what is known as soundscape. These sounds are chang-
ing in time and space, reflecting important ecosystem processes 
(Pijanowski et al., 2011). Passive acoustic monitoring (PAM) is used 
to identify ecosystem conditions by collecting audio recordings of 
all the activities present in a soundscape, thus providing informa-
tion about animal behaviour and the structure of the ecosystem 
(Dumyahn & Pijanowski,  2011; Stowell & Sueur,  2020; Sueur & 
Farina, 2015).

One way to carry out PAM is through species identification. 
Nowadays, different computational techniques allow automatic 
species detection of birds (Bedoya & Molles,  2021; Stowell & 
Sueur,  2020; Zhao et al.,  2017), anurans (LeBien et al.,  2020; Xie 
et al., 2017, 2018), mammals (Agranat, 2013; Dufourq et al., 2021; 
Ruff et al.,  2021) and insects (Aide et al.,  2017). Most automatic 
acoustic detection techniques perform a species-by-species analy-
sis. However, a method that can simultaneously detect animal calls 
from multiple taxonomic groups is preferable to monitor and quan-
tify biodiversity. Identification of multiple animal calls increases the 
difficulty of detection, especially in ecosystems with a large number 
of species, such as tropical ones.

Most automatic call detection techniques are based on proba-
bilistic models (Ovaskainen et al., 2018) and machine learning tech-
niques (Gan et al.,  2020; Xie et al.,  2020). In general, they follow 
a common four-step procedure for species identification: (i) pre-
processing, (ii) segmentation, (iii) feature extraction and (iv) classifi-
cation. In most frameworks based on deep learning, several of these 
steps are integrated into a single workflow, feature extraction and 
classification (Stowell, 2022).

Signal denoising and estimation of a time–frequency representa-
tion (e.g. spectrogram) are usually performed at the pre-processing 
stage (Stowell, 2022). In Xie et al. (2021), authors disclose different 
noise-reduction techniques based on the acoustic characteristics of 
the species of interest.

Audio segmentation is typically performed by (i) manually se-
lecting the frequency range and time location in which an individ-
ual emitted sounds (Ducrettet et al., 2020; Premoli et al., 2021); (ii) 
creating templates with examples of the vocalizations (Araya-Salas 
& Smith-Vidaurre, 2017; Katz et al., 2016); (iii) using energy-based 
analysis (Bedoya, Isaza, et al.,  2014; Ulloa et al.,  2018); and (iv) 
using segmentation methods based on image analysis techniques 
(Potamitis, 2015; Xie et al., 2017). However, no specific segmenta-
tion technique has been studied for species belonging to different 
taxonomic groups that also allows segmentation for species at high 
frequencies.

Spectro-temporal features (e.g. call rate, dominant frequency, 
duration; Priyadarshani et al., 2018) are extensively used for both call 
description and clustering/classification tasks. Mel-frequency ceps-
tral coefficients are commonly used as features in species identifi-
cation (Bedoya, Isaza, et al., 2014; Potamitis, 2015). However, these 
coefficients are based on human auditory perception (30 Hz–3 kHz) 

and redistribute the frequency across the spectrum logarithmically, 
which is not useful for multi-species identification as most frequency 
bands are occupied.

Species identification usually relies upon supervised learn-
ing methods. Techniques based on convolutional neural networks 
(CNNs), support vector machines, and random forest algorithms 
dominate this area of research (LeBien et al., 2020; Ruff et al., 2021; 
Xie et al.,  2018). However, working with supervised learning ap-
proaches requires labelled data, which implies prior knowledge of 
the species in a site of interest. This is particularly troublesome in 
tropical biomes and biodiversity hotspots, which are significantly 
understudied, have large Linnean and Wallacean shortfalls, and 
where most species are unknown to science (Giam et al.,  2011; 
Joppa et al.,  2011; Scheffers et al.,  2012). In these regions, taxo-
nomic and call descriptions are unavailable for most species (Brehm 
et al., 2008), and even for known taxa, the incompleteness of sam-
ples (Brehm et al., 2008) complicates the development of automatic 
recognition techniques (Acconcjaioco & Ntalampiras, 2021).

In the absence of training data, species identification and the es-
timation of bioacoustic inventories are foregone. Instead, acoustic 
indices (Sueur et al., 2008), which are proxies for biodiversity metrics, 
are used. These indices bypass the need for training species-specific 
models by generating a rapid all-encompassing biodiversity assess-
ment based on the species acoustic energy distribution (Depraetere 
et al.,  2012; Towsey et al.,  2013). However, acoustic indices are 
highly dependent on the type of recorder, the recorder setup and 
the signal-processing parameters (Brodie et al., 2020), which makes 
their reliability to be continuously challenged (Bradfer-Lawrence 
et al.,  2019; Mammides et al.,  2017; Moreno-Gómez et al.,  2019). 
Despite these flaws, there are no other viable approaches to acous-
tically assess biodiversity in the absence of training data. In 2018, 
Ulloa et al. proposed a methodology that allows decomposing 
acoustic communities to differentiate between sites. Their approach 
focuses on analysing the general soundscape composition and clus-
tering similar sounds, but without associating clusters to species or 
taxonomic groups. Also, a critical stage in their approach is the se-
lection of the number of clusters, which is challenging to estimate 
without prior knowledge of the area.

In this manuscript, we propose an unsupervised methodology 
for animal call identification and its potential applications as a bio-
diversity estimator. We show that by using unsupervised learning 
techniques, we can obtain biodiversity information similar to the 
one generated with acoustic indices, and recover highly accurate 
species-specific information. The core of our proposal is a clus-
tering algorithm (learning algorithm for multivariate data analysis 
[LAMDA]; Aguilar-Martin & Mantaras,  1982), which does not re-
quire the number of classes as an input parameter. Here, LAMDA is 
combined with a species feature set and a segmentation stage that 
does not require species-specific parameter tuning. Our method is 
able to analyse multiple frequency bands of a recording, extract seg-
ments (possible vocalizations from species of different taxonomic 
groups) and cluster them using an unsupervised workflow. Thus, 
clusters represent sonotypes that respond to intra-species acoustic 
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variability and allow differentiating between taxonomic groups. An 
expert associates the sonotypes with the calls of the species; then, 
this association is used to identify species-specific vocalizations in 
new recordings.

The number of proposed sonotypes reflects the biodiversity of 
the analysed site. To demonstrate the capability of our method in 
estimating biodiversity, we compare our results against four com-
monly used acoustic indices: Acoustic complexity index (ACI), bio-
acoustic index (BI), number of peaks (NP) and spectral occupancy 
(SO). Succinctly, using four case studies, we show that the species 
structure can be used as a biodiversity indicator. Specifically, we (1) 
evaluate our approach in a highly biodiverse location, where there 
are 39 sound-producing species; (2) compare our approach to other 
supervised and unsupervised methods; (3) test the generalizability of 
our method to independent samples from various species, sites and 
years; and (4) assess the ability of our approach to identify animal 
vocalizations in the ultrasonic spectrum without parameter settings.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

We used four datasets seeking to measure the algorithm perfor-
mance in different seasons, years, and habitats. These datasets are 
from tropical regions. Datasets A and B were collected in the pro-
tected area of Jaguas hydroelectric power plant (06°26 N, 075°05 W; 
06°21 N, 074°59 W), on the eastern slope of the northern Cordillera 
Central in Antioquia, Colombia. The protected area comprises 
50 km2, including the San Lorenzo reservoir. It is dominated by differ-
ent successional stages of secondary forest (70%), with the remain-
ing areas of cropland/natural vegetation mosaic (23%), unnatural or 
degraded surfaces (5%) and grassland (2%). The area maintains rich 
communities of terrestrial vertebrates, including threatened and en-
demic species, and is considered paramount for biodiversity conser-
vation at the regional scale (Sánchez-Giraldo et al., 2020).

Datasets C and D were collected from a rural area in Puerto 
Wilches, Santander, Colombia (7°21′52.5”N, 73°51′33.0”W). The 
characterized zone corresponds to a circular area delimited by a ra-
dius of 1500 m. Oil palm crops of different ages (75%), secondary 
vegetation (7.6%), some forest (6.13%), grassland (5.5%) and aquatic 
vegetation (3.2%) dominate the site. Dataset C focuses on species 
in the audible spectrum, whereas dataset D was acquired with an 
ultrasonic recorder to detect calls from bats and stridulations from 
orthopterans (see Section 2.2).

2.2  |  Acoustics datasets

We evaluated our method in four different case studies (one dataset 
by each case) to demonstrate its capabilities for species identifica-
tion and analyse the acoustic patterns which give an idea of the bio-
diversity of the site.

2.2.1  |  Case 1—Dataset A

We tested the capabilities of our approach to recognize species of 
different taxonomical groups in a highly biodiverse site. This study 
case consists of 50 randomly selected recordings collected between 
November 2012 and February 2013 using a Song Meter SM2 device.1 
Each recording was 1-minute long, acquired every 10 minutes, with a 
sampling rate of 44.1 kHz using a single channel at 16-bit resolution. 
Species present in the soundscape were manually labelled by three ex-
perienced bioacoustic experts. They listened to the audio and reviewed 
the spectrograms generated in Raven.2 The dataset contains calls from 
39 species, including 21 species of birds (3 species with two different 
calls identified), seven species of anurans and 11 species of insects. 
There was disagreement between the bioacoustic experts regarding 
the data labels, which shows that multi-species identification is a com-
plex issue, even when it is performed by humans (see Appendix A).

2.2.2  |  Case 2—Dataset B

This dataset was used to compare our proposal with other available 
packages and software: Autodetec from WarbleR package (Araya-
Salas & Smith-Vidaurre,  2017), MonitoR (Katz et al.,  2016) and 
Kaleidoscope Pro1. The dataset includes 1000 one-minute audio 
recordings obtained every 15 min using a Song Meter SM4 device1 
with a 24 kHz sampling rate and 16-bit resolution. Data were manu-
ally labelled by experts using Raven2 and Sonic Visualiser3 . Four 
anuran species and one bird species were found.

To detect species using R packages, we divided the dataset into 
200 recordings for each species. We then randomly split this dataset 
into clustering and test subsets for both Kaleidoscope Pro and our 
proposal, with 100 audios in each subset.

2.2.3  |  Case 3—Dataset C

We use this dataset to test our method in different environments, 
sites and years. This is known as method-based validation (Ullmann 
et al., 2021). This type of external validation tests the stability of the 
clustering and focuses on the structural similarities of the clustering re-
sults generated by a method (Ullmann et al., 2021). It allows verifying 
that our results are not an artefact of our initial dataset. In addition, test 
the capabilities of our method to characterize the community compo-
sition and quantify each species acoustic contribution to the site bio-
diversity. We compare these results against acoustic indices. Dataset 
C was collected using a Song Meter Mini device1, recording a minute 
every 10 min with a sampling rate of 48 kHz. It consists of 2638 audio 
recordings obtained between March and June 2021. This dataset was 
divided into two: a 207 recordings subset used for species identifica-
tion and another 2431 recordings to compare our approach with acous-
tic indices. In the subset used to evaluate species identification, strict 
labelling work was done by experts where 11 species were labelled, 
including six species of birds, four species of anurans and a primate.
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2.2.4  |  Case 4—Dataset D

Test the capabilities to detect species in the ultrasonic spectrum. The 
dataset was acquired using a Song Meter Mini bat device1 recording 
15 s every 15 min with a sampling rate of 384 kHz. In all, 13 species 
of bats and 6 orthopterans were found. Table 2 in Appendix B pre-
sents the dataset information for each case study.

In the four case studies, we only used external validation (labels) 
to estimate the performance of our approach to identify the pres-
ence of the species (see Section 2.6). These labels did not partake in 
any stage of the process.

2.3  |  Proposed approach

Our method (Figure 1) suggests sonotypes that can be associated 
with animal sounds present in a soundscape and group them based 
on acoustic similarities. The first stage (pre-processing) reduces 
the background noise and highlights the biotic acoustic activity. It 
facilitates the second stage (segmentation), where segments are 
extracted using Otsu thresholding (Otsu,  1979) and morphologi-
cal operations. The third stage (feature extraction) estimates the 
dominant, minimum and maximum frequencies, and the linear-scale 
cepstral coefficients, which are used as input for the last stage (clus-
tering). Then, a clustering algorithm analyses the extracted features 
and groups the segments based on their acoustic similarities. Finally, 
the clusters were associated with an animal call pattern.

This approach does not require either training or prior knowl-
edge of the number of species and allows the estimation of acoustic 
structure of the site.

2.3.1  |  Pre-processing

The pre-processing is performed on the magnitude spectrogram 
(spectrogram hereafter) S ∈ ℝ

Ns×Nt of each recording, where Ns 
and Nt are the number of data in the axes that represent the fre-
quency and time domains, respectively. We created a denoised 
spectrogram S� ∈ ℝ

Ns×Nt by applying the noise-reduction method 
proposed by Xie et al. (2017). Spectrograms are convolved using a 
Gaussian kernel to remove small gaps and graininess in the audio 
signal. In our case, the size of the Gaussian Kernel was 3 × 3. Some 
noise sources cannot be reduced using Gaussian filtering; thus, 
the spectral subtraction technique proposed by Xie et al.  (2017) 
was included. We only considered as background noise the sounds 
generated by geophonies such as wind and rain. This type of sound 
is broadband, with spectral components at all frequencies (Bedoya 
et al., 2017).

2.3.2  |  Segmentation

To detect and isolate possible, we proposed modifying the (Xie 
et al., 2017) acoustic event detection (AED) algorithm to work on all 

F I G U R E  1  Proposed approach schema. Each recording is noise reduced and segmented. Then, the frequency information, and the linear-
scale cepstral coefficients are extracted and clustered using LAMDA 3pi. The analysed segments are represented as a point for clustering, 
and each colour corresponds to one cluster. Each cluster has a pattern (sonotype) that will be associated with different species calls.
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the frequency bands. To select the AED, different proposals were 
analysed (see Appendix C).

Our segmentation approach applies Otsu thresholding (Otsu, 1979) 
and morphological operations such as opening and closing in the S′ 
spectrogram. The original method proposed by Xie et al. (2017) elimi-
nates all segments that are not species of interest (e.g. segments above 
5 kHz). Since we are interested in multiple taxonomic groups, we con-
served the segments in all frequency bands. The resulting segments 
are stored in a matrix G ∈ ℝ

Nb×4, where Nb is the number of segments, 
and used as spectral and temporal delimiters in the noise-reduced 
spectrogram during the feature extraction process.

As the segmentation we propose is based on the intensity of 
the vocalizations in the spectrogram and a noise reduction has been 
previously performed, most of the segments identified correspond 
to biophony. Appendix D contains more details about the segmen-
tation process.

2.3.3  |  Feature extraction

After obtaining G, each segment is extracted directly from the noise-
reduced spectrogram S′ using the information from the bounding 
boxes. Then, a feature vector is computed for each segment. The first 
step of the feature extraction algorithm consists in estimating the loga-
rithm of the energy for the segment H ∈ ℝ

Nu×Nh (Equation (1)), where 
Nu ∈ ℝ and Nh ∈ ℝ are the length of the segmented call in the spectral 
and temporal domains, respectively. This operation extracts the rel-
evant acoustic information from the temporal domain of the segment; 
and then, redistributes it across the spectral domain in a nonlinear way. 
The step is performed using windows (frames) of size w.

where Q ∈ ℝ
Nu×Nm is a matrix with the logarithm of the energies cal-

culated from H, w is the size of the moving window (rectangular, no 
overlapping), m is the current frame and Nm = Nh ∕w is the number of 
logarithms calculated in each window.

Afterward, the unitary discrete cosine transform (DCT) of Q is 
computed (Equation 2). The objective of this step is to reduce the di-
mensionality of Q and set a common length for the extracted feature 
vector in all animals sounds, regardless their duration or bandwidth.

 where Yk,m is a matrix that contains the DCT coefficients, k is the index 
of the frequency band, Nk is the number of coefficients and Np is a 
normalization factor used to make the transformed matrix orthogonal. 
Np =

√
1∕Nu for k = 1 and Np =

√
2∕Nu for 2 ≤ k ≤ Nu.

Usually, the first 12–13 coefficients are enough to detect a 
species. However, more coefficients are needed when a finer 

level of detail is required (Bedoya & Molles,  2021; Ntalampiras & 
Potamitis, 2021). In our work, 24 coefficients allowed us to have an 
adequate vocalization representation and, consequently, a high de-
tection accuracy over all the studied taxonomic groups.

Finally, the extracted coefficients are concatenated with three 
spectral features (peak, minimum and maximum frequencies), cre-
ating a feature vector y ∈ ℝ

Nf for each segment H (sonotype). Each 
vector is represented as a hyper point of dimension 27 (Nf), which are 
then grouped in the clustering stage.

2.3.4  |  Clustering

The hyper points represented by the extracted features are grouped 
according to their closeness in the ℝNf space. Thus, similar segments 
will be in a cluster. Each cluster groups the points corresponding to 
a call pattern, and intra-species call variability is preserved by having 
several clusters that can be associated with the same species. For 
this reason, we call each cluster a sonotype because it represents a 
call pattern associated with a species.

Since the number of species in each recording is unknown, it is 
necessary to use a clustering algorithm that does not require the 
number of clusters as an input parameter.

We used LAMDA (Aguilar-Martin & Mantaras,  1982) for the 
clustering of identified segments in soundscapes. LAMDA is a fuzzy-
based method that does not require the number of classes (i.e. num-
ber of species) as an input parameter. This is in fact one of the biggest 
bottlenecks in the development of unsupervised approaches, as 
the initial number of classes is arguably the most important hyper-
parameter in clustering. We implemented the full-reinforcement 
version of LAMDA (Bedoya, Waissman, et al., 2014), which uses a 
fuzzy aggregation operator that naturally restricts the number of 
generated clusters and has been validated in bioacoustic data anal-
yses (Bedoya & Molles, 2021; Bedoya, Waissman, et al., 2014). The 
features extracted from all segments were normalized before using 
them as input for the clustering algorithm.

The first step of LAMDA consists in calculating the marginal ad-
equacy degrees (MADs) M (Equation 3), which are the contributions 
of the features extracted (cepstral coefficients) from each acoustic 
segment to each of the existent clusters (sonotype).

where M ∈ ℝ
Nc×Nf is a matrix with the values of the MADs extracted 

from the analysed element, � ∈ ℝ
Nc×Nf is a matrix with the mean 

values of the Nf features in each c-th cluster, ŷ ∈ ℝ
Nf is the vector 

with the normalized values of the features of the analysed element, 
f = 1, … ,Nf is the current feature, c = 1, … ,Nc is the current clus-
ter, Nf is the number of features and Nc is the number of existent 
clusters.

Initially, the only predefined cluster is the non-information class 
(NIC), which accepts all elements equally (�0,f = 0.5∀ f = 1, … ,Nf). 
The first element is always assigned to the NIC; thus, it is considered 

(1)Qi,m = log

(
m(w+1)∑

j=mw

|||
Hi,j

|||

2

)

, ∀m = 1, … ,
Nh

w
∧ ∀ i = 1, … ,Nu,

(2)
Yk,m=Np

Nu∑

i=1

Qi,mcos

(
�

Nu

(i−1)(k−0.5)

)

,

∀k=1, … ,Nk ∧∀m=1, … ,Nm

(3)Mc,f = �c,f
ŷf
(
1−�c,f

)1−ŷf ,
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unrecognized. Afterward, a new class is created with the NIC param-
eters modified by the values of the first element:

Every time a new element (a feature vector from sonotype) is analysed 
(using Equation 3), the obtained MADs are combined using a full rein-
forcement aggregation operator (Equation 5). The result of this oper-
ation is known as the global adequacy degree (GAD) gc of an element 
to a cluster:

where g ∈ ℝ
Nc is calculated using the MADs of the new entry. Once the 

GADs of all clusters are obtained, the element is classified in the cluster 
with the maximum GAD. If such maximum GAD is the NIC class, a new 
cluster is created using the parameters of the NIC updated with the 
values of the element Equation (4). On the other hand, if an element 
is assigned to an existing class c, the parameters of the cluster are up-
dated with the values of such element Equation (6)

where c is the current cluster, n(k)c  is the current number of elements 
classified in the cluster c and �(k−1)

c,f
 is the previous k − 1 value of �c,f 

(before the update). A cluster is considered stable when the data do 
not change clusters from the previous to the current iteration. Stable 
clusters were obtained by iterating 10 times the LAMDA algorithm.

Each resulting cluster represents a specific sound pattern that 
we call sonotype. According to the sonotype represented, each 
group could be associated with an animal species.

The expert analyses the time–frequency information of the seg-
ments associated with the cluster, the call patterns and the most repre-
sentative element obtained from the membership degrees GAD. Using 
this information, the expert associates sonotypes with species, allow-
ing species identification in new audio recordings. Species with com-
plex vocalizations, species with different call types or vocalizations 
with high variability will require multiple clusters to be represented.

Spectral information in the vocalization (peak, minimum and 
maximum frequencies), and the median and standard deviation of 
these three features, together with clustering information, are taken 
into account to identify species in new recordings.

2.4  |  Bioacoustic tools parameter setting

2.4.1  |  Warble R

Warble R is an R package used to analyse the structure of acoustic 
animal signals. It includes the Autodetect function for vocalization 

detection. Parameters were defined based on the acoustic charac-
teristics of each species (frequency band, amplitude, and call length). 
Additionally, Autodetect has a parameter related to the amplitude 
threshold to differentiate the signal of interest from background 
noise; we performed different tests for this threshold: 10%, 15% 
and 20%.

2.4.2  |  Monitor R

Monitor R is an R package for animal vocalization identification in 
large acoustic datasets. It works as an acoustic template detector. 
The parameters for creating the template include the time range and 
frequency bands (maximum and minimum) of the targeted vocaliza-
tion. These were defined for each species.

2.4.3  |  Kaleidoscope Pro (version 5.4.3) by Wildlife 
Acoustics Inc.

It is a licensed software for detecting animal vocalizations using a 
clustering algorithm. It requests parameters such as the frequency 
range, maximum and minimum detection duration, and the maximum 
time interval between vocalizations; we manually selected the pa-
rameters for each species. For clustering analysis, Kaleidoscope re-
quires the maximum distance to the cluster centre, the FFT window, 
the number of maximum states and the maximum cluster number; 
these parameters were left as default, except for the FFT window 
for which we used 5.33 ms (128 @0–12 kHz, 256 @13–24 kHz, 512 
@25–48 kHz and 1024 @49–96 kHz).

2.5  |  Acoustics indices

For the third study case, we used four acoustic indices related to 
the species richness to compare the application of our method to 
estimate site biodiversity: ACI (Pieretti et al., 2010), BI (Boelman 
et al.,  2008), NP (Gasc et al.,  2013) and SO (Rojas et al.,  2022; 
Xue et al., 2013). In general, these four indices aim to measure 
the contributions of biotic elements to the acoustic spectrum. We 
compare the trend of these indices with the application of our 
approach.

ACI quantifies spectral variations in the acoustic spectrum by 
penalizing similar energy values in adjacent frequency bins. The 
more heterogeneous the soundscape, the higher the value of 
the ACI. We use the ACIft, which is the ACI calculated along fre-
quencies (Pieretti et al., 2010). BI quantifies the acoustic energy 
between 2 and 8 kHz, which is usually the frequency band with 
most biophonies (Boelman et al.,  2008). NP measures the num-
ber of elements contributing to the acoustic spectrum (i.e. the 
number of peaks in the power spectral density; Gasc et al., 2013). 
Similarly, SO measures the percentage of the acoustic spectrum 
that is being used. It is done by aggregating the bandwidths of 

(4)�1,f =

(
ŷf + �0,f

)

2
.

(5)gc =

∏Nf

f=1
Mc,f

∏Nf

f=1
Mc,f +

∏Nf

f=1

�
1 −Mc,f

� ,

(6)�
(k)

c,f
= �

(k−1)

c,f
+

ŷf − �
(k−1)

c,f

n
(k)
c

,
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the occupied frequency bands; then, dividing by the total acoustic 
spectrum available (Xue et al., 2013).

A Hann-type window was used for the spectrogram calculation 
of the acoustic indices, with a window size of 512 and no overlap-
ping. The frequency band was limited to 2–8 kHz for BI, and the 
signal was divided into 10 parts for NP. The computational tool in 
Python by Rendon et al.  (2022) was used to estimate ACI, BI and 
NP, while the SO index was estimated using the implementation pro-
vided by Rojas et al. (2022).

2.6  |  Evaluation metrics

The performance of each case study was evaluated according to the 
presence/absence detection of each species in a recording:

where Nd is the number of audio files where the species was correctly 
detected, and Na is the total number of audio recordings where the 
species is present according to the labels. In addition, we estimate 
the false-positive rate (FPR) = True Negatives/(True Negatives + False 
positives).

In the exploration stage, species from different taxonomic groups 
are associated with specific sonotypes proposed by our methodol-
ogy (see Section 2.3.4). Based on this association, the species will 
be automatically recognized in new recordings. Then, presence (Nd) 
will be counted in the recordings where the algorithm identifies the 
vocalization of the species.

3  |  RESULTS

3.1  |  Case 1: Multi-species call recognition

Using dataset A, we tested our approach to characterize all the 
acoustic activities in a highly biodiverse site. First, the cepstral coef-
ficients of each segmented sound were automatically extracted and 
clustered using LAMDA 3pi. Then, an experienced ecologist associ-
ated the resulting clusters with their respective species.

The median clustering hit rate performances were 85%, 96% and 
89%, with a median FPR of 4%, 8% and 8% for Aves, Amphibians and 
Insects, respectively. Only five species were detected with hit rates 
below 60% on a call-by-call basis (Figure 2). Colombia is a biodiver-
sity hotspot and many biophonies are still unknown; thus, there 
were several cases in which a species did not have a specific epithet. 
Nonetheless, their taxonomic group could be identified (Figure  2; 
e.g. Avian sp.1, Orthoptera sp. 1, etc.).

Our method was able to differentiate anuran species that call 
in similar frequency ranges (approximately 4.5 kHz) and had similar 
call patterns, such as Leucostethus jota and Hyloxalus ramosi. Our 
approach identifies them as different sonotypes, leaving the calls of 

Leucostethus jota in one cluster (red rectangles) and Hyloxalus ramosi 
in another one (blue rectangles), as is shown in Figure 3.

Species with high vocal complexity (i.e. calls of long duration 
with several notes in multiple frequency bands) were identified 
in most cases using the entire call or a significant part of their 
call, such as the case of Basileuterus sp. (Figure 4). This particu-
lar bird call has frequencies between 6 and 10 kHz and different 
notes. Our methodology focuses on the similarities among clus-
ters, rather than searching for a specific pattern. That allows the 
detection of variations present in species calls and captures the 
diversity within species.

We hypothesize that the five species with low clustering accu-
racy (Ramphocelus dimidiatus call, Pitangus sulphuratus, Avian sp. 4, 
Otrhoptera sp. 2, Orthoptera sp. 10) were mostly due to the reduced 
number of call examples available to generate a highly confident 
cluster. Some species had either few call examples or appeared in a 
small number of recordings (e.g. Pitangus sulphuratus). Additionally, 
species detection in this dataset proved complex, even for experts. 
Table 1, Appendix  A shows the difference between the partitions 
performed by the experts. Table 4 (Appendix  E) summarizes the 
cases where the accuracy was below 60% and compares our ap-
proach with manual detection.

3.2  |  Case 2: Comparison with other available 
software for species identification

We used dataset B to compare our proposal performance against 
Autodetect from WarbleR, MonitoR and Kaleidoscope Pro. 
Although the R packages (WarbleR and MonitoR) do not include 
a clustering step, we decided to include them as biologists widely 
use them for species identification. The dataset has five differ-
ent species manually labelled and has some recordings with strong 
background noise.

Table  1 presents the comparison results of our proposed ap-
proach with three other species recognition proposals. Despite 
using a completely unsupervised method, our approach achieved the 
best species detection performance, with an average hit rate of 75%. 
To see the detailed performance of each species in each analysed 
methodology, see Table 5 in Appendix F.

Our approach does not require the tuning process necessary for 
R packages and Kaleidoscope Pro to obtain the best performance. 
Those tools require prior knowledge of signal characteristics such 
as each species frequency band, amplitude, call length, and in the 
case of Kaleidoscope, additional knowledge in the cluster analysis 
parameters.

Our approach outperformed all the other methodologies, achiev-
ing hit rates above 60%. Low species detection occurred due to high 
gain activity across multiple frequency bands, which could compli-
cate signal detection. Analysis of audio recordings revealed the pres-
ence of rain, which likely masked the species signals. Nonetheless, 
our method was able to detect some of these masked signals (see 
Appendix G).

(7)Hit rate [%] =
Nd

Na

× 100,
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3.3  |  Case 3: Method validation on independent 
data and biodiversity assessments

To evaluate the performance of our unsupervised approach, a randomly 
selected subset of 207 audio recordings was manually labelled by a group 
of experts. Recordings include calls from birds, anurans and a primate 
species. Calls from all the recordings (from dataset C) were automati-
cally segmented and clustered using LAMDA. The median hit rate of our 
method was 89%, with a median FPR of 17% for the 11 species (Figure 5).

In some cases, our methodology successfully detected vocal-
izations with low intensity in the spectrogram, such as those pro-
duced by the bird species Nyctidromus albicolis (see Appendix H). 

Furthermore, there are audio recordings where different species vo-
calized in the same frequency band, such as in the case of the avian 
species Nyctidromus albicolis and the anuran species Leptodactylus 
fragilis. Our approach correctly identified both and grouped them 
into different clusters (see Appendix I).

In this case study, we applied our approach as a biodiversity indi-
cator, associating the number of sonotypes proposed by the method 
(clusters). For this purpose, we used 2431 audio recordings corre-
sponding to two different locations at the study site (KLSA13 and 
KLSA14) registered during March 2021. The locations were chosen 
due to their biodiversity variety, where 10 species were selected by 
experts. We analysed the recordings of each site and our proposal 

F I G U R E  2  Clustering results of our method at a site with 39 species. Each bar represents the hit rate for each species. Results are 
coloured in accordance with their taxonomic group (Aves, Amphibia and Insecta).
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suggests sonotypes. Then, we reviewed the number of different 
sonotypes in each recording and calculated the mean of the num-
ber of sonotypes per hour, generating the 24-hour acoustic pattern 
for biodiversity analysis. We compared our results with the acoustic 
indices used to measure biodiversity (ACI, NP, BI and SO). For each 
acoustic index and sonotypes found, the mean maximum value was 
taken to normalize each of the values.

Figure  6a,b shows the 24-hour pattern for each normalized 
acoustic index and our approach for sites KLSA13 and KLSA14, re-
spectively. When the number of sonotypes found for each hour is 
counted (see black line in Figure 5), it is possible to see that our pro-
posal characterizes biophony throughout the day in a similar way 
to acoustic indices. Nonetheless, our method allows going one step 
beyond, as we can perform automatic animal identification for each 
site and know the acoustic structure according to the selected spe-
cies (Figure 6c,d) serving as an indicator of biodiversity.

In this case, it is evident that both sites present a similar bio-
phony pattern (Figure  6a,b). Moreover, our method identifies the 
acoustic structure of each site showing that site KLSA13 and site 
KLSA14 (Figure 6c,d) are different in structure.

3.4  |  Case 4: Detection of ultrasonic species

Our method identifies species in the ultrasonic spectrum (>20 kHz), 
with no parameter adjustment. This capability was tested using re-
cordings collected with an ultrasonic recorder. Dataset included 13 
species of bats and 6 species of orthopterans, all of them found at 
ultrasonic frequencies.

Figure 7 shows the detection results for each ultrasonic species. 
The median hit rate for all the species was 96%, with a median FPR of 
15%. No parameter tuning was needed to achieve this result.

F I G U R E  3  Anurans calls. Red segments are associated with Leucostethus jota and blue segments are associated with Hyloxalus ramosi. Our 
methodology was able to differentiate the calls and separate them into different clusters.
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F I G U R E  4  Bird complex call associated with Basileuterus sp. Each blue rectangle is a species call segment detected by our methodology.
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4  |  DISCUSSION

We introduce an unsupervised methodology for animal iden-
tification in tropical soundscapes using a segmenter based on 
image analysis, cepstrals coefficients and frequency information 
as features, and clustering algorithm. As it is an unsupervised 

methodology, data for model training are not required. This pro-
posal allows detecting species from multiple taxonomic groups 
in recordings with biophony in multiple frequency bands, high 
frequencies and low-intensity calls in spectrograms without sig-
nificant background noise. Additionally, our approach analyses 
data recorded from different landscapes using different types of 
recorders. It is possible to use our methodology results to per-
form biodiversity assessments similar to acoustic indices, with 
the added benefit of identifying species from diverse taxonomic 
groups and determining the contribution of the acoustic richness 
structure associated with each species at different sites.

With our unsupervised approach, we detected the presence–
absence of species achieving performances between 75% and 96%, 
with FPRs between 4% and 17%. This performance is comparable 
to the one achieved with supervised methodologies such as CNNs 
(LeBien et al., 2020; Ruff et al., 2020; Ruff et al., 2021), other ma-
chine learning methods (Bellisario et al., 2019; Brodie et al., 2020; 
Xie et al., 2018) that require labelled species data, and unsupervised 
approaches (Bedoya, Isaza, et al.,  2014; Jancovic & Köküer,  2019; 
Potamitis, 2015). In comparison with other available packages and 

TA B L E  1  Presence–absence detection results in R libraries: 
WarbleR-Autodetec with a threshold of 10% (ATH10), WarbleR-
Autodetec with a threshold of 15% (ATH15), WarbleR-Autodetec 
with a threshold of 20% (ATH20), MonitoR, Kaleidoscope Pro (KP) 
and our proposal.

Software
Average 
hit rate

ATH10 0.49

ATH15 0.52

ATH20 0.48

MonitoR 0.52

KP 0.51

Our proposal 0.75

F I G U R E  5  Clustering results of our method with 11 species. Bars indicate hit rates for each species in all the recordings for dataset C. 
Results are coloured in accordance with their taxonomic group (Aves, Amphibia and Mammals).
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software, remarkable detections were obtained with our method-
ology despite the activity in multiple frequency bands that masked 
some species calls. Moreover, our proposal does not need to tune 
species-specific parameters, it only requires an expert to associate 
the clusters generated by the algorithm (sonotypes) to a species.

The LAMDA 3pi clustering method does not require the number 
of classes as an input parameter. Therefore, the number of gener-
ated clusters per hour within the analysed period informs about the 
biophony of the soundscape, and it is possible to identify the species 
present in the study area. In addition, we found cases where experts 
could identify the taxonomic group but not the specific species as 
some avians and orthopterans in the first and third case studies. This 
clustering algorithm can differentiate among species calls and allows 
finding sonotypes of species that were not expected a priori. It natu-
rally creates clusters from the differences found among segments in 
the soundscape at audible and ultrasonic frequencies.

Among its limitations, as in the case of supervised classification 
algorithms, we found that clustering results may be affected by 
background noise in the recordings. In addition, FPRs increase when, 
in the exploration stage, the number of vocalizations of a species is 
low. Therefore, recordings with significant vocalizations should be 
used. There were cases in which several species were grouped in the 

same cluster. This can happen due to the lack of vocalizations needed 
to form confident clusters, calls being masked by background noise 
or having calls with low intensity (e.g. some animal vocalizing farther 
away from the microphone). This limitation could be solved using 
cluster validation indices or using the fuzzy logic properties from 
the LAMDA clustering algorithm. Cluster validity indices evaluate 
the quality of the partition generated by a clustering algorithm. A 
partition is considered of good quality when it produces compact 
and well-separated clusters. This evaluation is applied to the output 
of the clustering algorithm and does not require adjusting any pa-
rameters during the clustering process. A clustering validation stage 
could significantly help experts to associate clusters with species, 
as high-quality index values usually correlate with high-confidence 
clusters. Despite the availability of various cluster validity indices in 
the literature, these remain significantly underused in animal com-
munication studies.

Recognizing multiple species is a complex task that depends on 
the adequate performance of previous stages. Signal pre-processing 
and segmentation stages are critical when several frequency bands 
are to be analysed simultaneously. This methodology can be im-
proved with a more robust pre-processing stage using techniques 
that do not sacrifice frequency bands. This would help to segment 

F I G U R E  6  Generated acoustic pattern using our proposed approach with the data corresponding to sites KLSA13 (a) and KLSA14 (b) 
in March 2021 compared with four commonly used acoustic indices for the estimation of species richness: ACI, BI, NP and SO. The y-axis 
corresponds to the normalized value of each acoustic index. In the case of our proposal, it corresponds to the normalized value of the mean 
number of sonotypes found for each hour of the day. Figures (c and d) correspond to the acoustic structure of each site according to the 
selected species. The percentage presence of each species in each zone is shown here.
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more accurately and obtain more representative clusters. In addi-
tion, using cluster validation indices, as mentioned above, could help 
to improve the cluster–species relationship.

We present an unsupervised method for the simultaneous iden-
tification of animals from diverse taxonomic groups. Our approach is 
highly accurate, works in both the audible and ultrasonic spectra, and 
does not require the labelling of training data. These features signifi-
cantly facilitate the analysis of massive acoustic datasets. In addition, 
our approach allows characterizing community composition in envi-
ronments where species, or their vocalizations, are yet unknown to 
science, a common scenario in biodiversity hotspots, underdeveloped 
countries, freshwater and marine ecosystems, and vibroscapes.
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